首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Humic substances improve the efficiency of different iron (Fe) sources overcoming Fe deficiency chlorosis of plants. However, applied at high rates, they can promote negative effects on plants. The main objective of this work was to study the potential adverse effect of three humic acids from different origin when they were applied with two effective Fe sources for plants: Fe- ethylenediaminedihydroxyphenylacetic acid (EDDHA) and Vivianite. To this end, an experiment with lupin (Lupinus albus L.) was performed involving two factors: (i) Fe source, and (ii) humic substances from three different origin (composted cork, leonardite, and compost obtained from a mixture of olive husk with cotton gin trash) applied at 0, 0.1, and 0.5 g organic carbon (C) kg?1 of growing media. At the rates used, humic substances promoted adverse effects on plant development, chlorophyll meter readings, and Fe content in lupin grown in calcareous media. Overall, the effect on dry matter and Fe content in plants was more relevant when Fe was supplied with Vivianite, the effect on chlorophyll meter readings being more significant when Fe was applied as Fe-EDDHA. Differences were also observed depending on the source of humic substances, those from leonardite promoting the greatest decrease in dry matter in roots and shoots. These humic substances possessed the highest values of spectroscopy index for aromaticity (A254 ). On the other hand, the application of humic substances from olive husk compost, which exhibited the lower aromaticity index, resulted in the smallest decrease in dry matter production and chlorophyll meter readings. Dry matter in roots decreased logarithmically with increased values of the estimates of the amounts of aromatic compounds accumulated in the growing media (R2 = 0.92; P < 0.01) with Vivianite as Fe source. Thus, the effects decreasing dry matter production, particularly in roots, and chlorophyll meter readings can be ascribed at least partially to the presence of phytotoxic aromatic compounds in humic substances.  相似文献   

2.
《Journal of plant nutrition》2013,36(8):1381-1393
Abstract

Root and leaf ferric chelate reductase (FCR) activity in Annona glabra L. (pond apple), native to subtropical wetland habitats and Annona muricata L. (soursop), native to nonwetland tropical habitats, was determined under iron (Fe)-sufficient and Fe-deficient conditions. One-year-old seedlings of each species were grown with 2, 22.5, or 45 µM Fe in a nutrient solution. The degree of tolerance of Fe deficiency was evaluated by determining root and leaf FCR activity, leaf chlorophyll index, Fe concentration in recently mature leaves, and plant growth. Root FCR activity was generally lower in soursop than in pond apple. Eighty days after plants were put in nutrient solutions, leaf FCR activity of each species was lower in plants grown with low Fe concentrations (2 µM) than in plants grown with high (22.5 or 45 µM) Fe concentrations in the nutrient solution. Leaves of pond apple grown without Fe became chlorotic within 6 weeks. The Fe level in the nutrient solution had no effect on fresh and dry weights of soursop. Lack of Fe decreased the leaf chlorophyll index and Fe concentration in recently matured leaves less in soursop than in pond apple. The rapid development of leaf chlorosis in low Fe conditions and low root and leaf FCR activities of pond apple are probably related to its native origin in wetland areas, where there is sufficient soluble Fe for adequate plant growth and development. The higher leaf FCR activity and slower growth rate of soursop compared to pond apple may explain why soursop did not exhibit leaf chlorosis even under low Fe conditions.  相似文献   

3.
In soil, iron (Fe) solubility depends on complex interactions between Fe minerals and organic matter, but very little is known about plant availability of Fe present in Fe oxides associated with humic substances. For this purpose, this study investigates the effect of Fe mineral crystallinity in the presence of humic acids (HA) on Fe availability to plants. Four Fe–HA mineral coprecipitates were prepared, either in the presence or absence of oxygen, i.e., two goethite (G)‐HA samples containing large amounts of Fe as nanocrystalline goethite and ferrihydrite mixed phases, and two magnetite (M)‐HA samples containing crystalline magnetite. Bioavailability studies were conducted in hydroponic systems on cucumber plants (Cucumis sativus L.) grown under Fe deficient conditions and supplied with the Fe–HA coprecipitates containing goethite or magnetite. Results showed that plants grown in the presence of Fe–HA coprecipitates exhibited a complete recovery from Fe deficiency, albeit less efficiently than plants resupplied with Fe‐chelate fertilizer used as control (Fe‐diethylene triamine penta acetic acid, Fe‐DTPA). However, the supply with either G‐ or M–HA coprecipitates produced different effects on plants: G–HA‐treated plants showed a higher Fe content in leaves, while M–HA‐treated plants displayed a higher leaf biomass and SPAD (Soil–Plant Analysis Development) index recovery, as compared to Fe‐DTPA. The distribution of macronutrients in the leaves, as imaged by micro X‐ray fluorescence (µXRF) spectroscopy, was different in G–HA and M–HA‐treated plants. In particular, plants supplied with the poorly crystalline G–HA coprecipitate with a lower Fe/HA ratio showed features more similar to those of fully recovered plants (supplied with Fe‐DTPA). These results highlight the importance of mineral crystallinity of Fe–HA coprecipitates on Fe bioavailability and Fe uptake in hydroponic experiments. In addition, the present data demonstrate that cucumber plants can efficiently mobilize Fe, even from goethite and ferrihydrite mixed phases and magnetite, which are usually considered unavailable for plant nutrition.  相似文献   

4.
Background, aim, and scope  The groundwaters of Western Siberia contain high concentrations of iron, manganese, silicon, ammonium, and, in several cases, hydrogen sulfide, carbonic acids, and dissolved organic substances. Generally, the groundwaters of Western Siberia can be divided into two major types: one type with a relatively low concentration of humic substances and high hardness (water of A type) and a second type with a relatively low hardness and high concentration of humic substances (water of B type). For drinking water production, the waters of A type are mostly treated in the classical way by aeration followed by sand bed filtration. The waters of B type often show problems when treated for iron removal. A part of iron practically does not form the flocs or particles suitable for filtration or sedimentation. The aim of this work was to determine the oxidizability of Fe(II), to characterize the iron colloids, and to investigate the complexation of the iron ions with humic substances and the coagulation of the iron colloids in the presence of dissolved organic matter. Materials and methods  Water samples of the A and B types were taken from bore holes in Western Siberia (A type: in Tomsk and Tomsk region, B type: in Beliy Yar and Kargasok). Depth of sampling was about 200 m below surface. The oxidation of the groundwater samples by air oxygen and ozone was done in a bubble reactor consisting of a glass cylinder with a gas-inlet tube. To produce ozone, a compact ozone generator developed by Tomsk Polytechnic University was used. For the characterization of the colloids in the water of B type, the particle size distribution and the zeta potential were measured. To investigate the formation of complexes between iron and humic substances in the water of B type, size exclusion chromatography was used. The coagulation behavior of iron in the presence of dissolved organic substances was investigated at different pH values. The agglomerates were detected by measuring the optical density using a UV-Vis spectrometer. Results  Ozone showed, as expected, a faster oxidation of Fe(II) than air oxygen. The rate constants for Fe(II) oxidation were not much different for the waters of A and B types when the same oxidation process was used. However, the removal of iron after oxidation and filtration was higher in the water of A type than in the water of B type. No evidence for the formation of soluble complexes between iron and humic substances were found. In the water of A type, the coagulation process started at pH = 4.5 and accelerated with increasing pH value. In the water of B type, the coagulation of colloids occurred only at pH = 11 and higher. Discussion  The oxidation experiments indicated no major effect of dissolved organic carbon concentration on the kinetics of Fe(II) oxidation. In contrast to this, the humic substances showed a significant influence on the aggregation behavior of the iron hydroxide colloids. Due to the sorption of humic substances on the iron hydroxide colloids, they were highly stable in the pH range between 4.5 and 10. The particle size measurements confirmed the presence of small colloids in the water of B type. In contrast to this, the iron hydroxide colloids aggregated rapidly at pH = 11. Conclusions  The results showed a great influence of humic substances on the iron removal from groundwaters of Western Siberia with high organic content. The sorption of humic substances on the iron colloids does not obviously allow their coagulation and formation of flocs suitable for filtration or sedimentation. Recommendations and perspectives  By treatment of groundwaters containing high amounts of humic substances, some problems with the removal of iron are likely to occur. To increase the effectiveness of iron removal, the surface coating and pH-dependent charge effects should be taken into account by the selection and optimization of water treatment processes. The iron colloids coated by humic substances should be separated from the water phase by membrane filtration or by flocculation followed by filtration through different solid materials.  相似文献   

5.
A new organic matter stability index (S.I.) has been developed determining the humic acid content in samples of compost, both as they stand and when subjected to treatment with apolar and polar solvents and acid hydrolyses for the purpose of eliminating substances (pseudo-humic substances) that interfere with analytical determination of the same. The index, which registers values between zero and one, easily relates to the degree of stability and maturity of organic matter. Checks on the reliability of the index when applied to 10 different types of organic matrices have confirmed its usefulness for direct measurement of the degree of stability (SI > 0.6) and maturity (SI > 0.8) of organic matter, as well as the effectiveness of the analytical method proposed for determining the humified fraction content in organic matter, as a means of obtaining more realistic values, especially in the case of immature substrates.  相似文献   

6.
Blood meal is an organic nitrogen (N) fertilizer containing about 10–13% organic N. The fertilizer is mainly composed of hemoglobin which is characterized by the presence of a prosthetic group containing iron (Fe). Knowledge about the influence of blood meal on soil organic matter and soil fertility is now limited. In this work, blood meal was incubated in the soil for one year and the evolution of the organic matter was followed at time intervals by use of isoelectric focusing (IEF) and humification parameters. The mineralization of the total N and the availability of some mineral nutrients (Fe in particular) were also followed. The results show that only a part (about 75%) of the organic carbon (C) and of the organic N mineralized and that the remaining C was transformed into humified compounds. The availability of the Fe increased during the incubation, probably due to the progressive degradation of the prosthetic group and the successive chelation of the Fe from the humic substances.  相似文献   

7.
This work evaluated the effect of cadmium (Cd) on the physiological responses of corn (Zea Mays L.) and wheat (Triticum aestivum L.) to iron (Fe) deficiency. For this purpose, seedlings of corn and wheat were cultivated under controlled conditions, plants were grown in different strength Hoagland's solutions for one month. In the fifth week, some seedlings were still in full strength Hoagland's solution (+Fe) and others were in full strength Hoagland's solutions without iron (?Fe). The plants were exposed to different cadmium (Cd) concentrations for four days. The plant chlorophyll content of young leaves, Fe and Cd content in shoots and roots, biomass production, and phytosiderophores (PS) release by roots were assessed. Results showed that Cd decreased the chlorophyll content of young leaves, accompanied by a significant shoot and root biomass reduction for Fe-deficient and Fe-sufficient wheat and corn across all Cd treatments. However, chlorophyll content and shoot and root biomass of Fe-deficient wheat and corn were lower than Fe-sufficient plants at different Cd concentrations. Iron-deficiency induced Cd accumulation compared to Fe-sufficient in wheat and corn; however, a depressive effect of Cd on iron acquisition in shoots and roots of Fe-deficient and Fe-sufficient wheat and corn across all Cd treatments was observed. Cadmium also inhibited PS release in Fe-deficient and Fe-sufficient wheat and corn. Iron-deficient PS release was higher than Fe-sufficient corn and wheat across all Cd treatments. These results suggested that Cd might reduce capacity of plants to acquire iron from solution by inhibiting PS release.  相似文献   

8.
Humus forms may be the first tool to assess qualitatively organic matter turnover in soils; as such they should be related to the stocks of organic C a soil can store, to the characteristics of organic matter that affect its stability and, more generally, to the factors of soil formation. In this work, we tested these hypotheses in 27 forest soils of northwestern Italy. Site variables representing the pedogenic factors allowed classifying the plots into three clusters, which were significantly different for soil and humus types. The average stocks of organic C in the humic episolum (organic and top mineral horizons) ranged from 2.7 kg m−2 in Eumulls to 9.5 kg m−2 in Amphimulls. A clear trend in C stocks was visible and related both to the increasing presence of organic layers where the environmental conditions do not favour a rapid turnover of organic matter and to the good mixing of organics and minerals in “bio-macrostructured” A horizons. The characteristics of organic matter were also linked to humus forms: The proportion of humified complex substances was the highest in the most active forms, and conversely, non-humified extracted substances formed a considerable part of organic matter only where the environmental conditions limit organic matter degradation. Humus forms seem therefore to reflect several mechanisms of organic matter stabilisation and are clearly related to the capacity of the soil to store C.  相似文献   

9.
Plants mainly rely on a mixture of Fe complexes with different organic ligands, like carboxylates and soluble fractions of water-extractable humic substances (WEHSs), to sustain the supply of this micronutrient. It has been demonstrated that the Fe-WEHS complex is more efficiently acquired by plant roots as it enhances functionality of the mechanisms involved in Fe acquisition at the root and leaf levels, allowing a faster recovery of the Fe-deficiency symptoms. The aim of this work is to verify whether this recovery involves also the allocation and accumulation of nutrients other than Fe to and within the leaf tissues. Iron-deficient plants treated with Fe-WEHS recovered more quickly the functionality both to uptake nitrate at the root level and to fixate CO2 in the leaves than those supplied with Fe-citrate. Concomitantly, Fe-WEHS-treated plants also accumulated other cationic nutrients faster and at a higher extent. Synchrotron 2D-scanning μ-X-ray fluorescence analyses of the leaves revealed that the recovery promotes a change in the allocation of these nutrients from the vascular system (K, Cu, and Zn) or trichomes (Ca and Mn) to the entire leaf blade. Fe-WEHS treatment efficiently promotes the recovery from Fe-deficiency-induced chlorosis with an enhanced allocation of other nutrients into the leaves and promoting their distribution into the entire leaf blade.  相似文献   

10.
Dicotyledons cope with ion (Fe) shortage by releasing low-molecular-weight organic compounds into the rhizosphere to mobilize Fe through reduction and complexation mechanisms. The effects induced by these root exudates on soil mineralogy and the connections between Fe mobilization and mineral weathering processes have not been completely clarified. In a batch experiment, we tested two different kinds of organic compounds commonly exuded by Fe-deficient plants, i.e., three organic acids (citrate, malate, and oxalate) and three flavonoids (rutin, quercetin, and genistein), alone or in combination, for their ability to mobilize Fe from a calcareous soil and modify its mineralogy. The effect of root exudates on soil mineralogy was assessed in vivo by cultivating Fe-deficient and Fe-sufficient cucumber plants (Cucumis sativus L.) in a RHIZOtest device. Mineralogical analyses were performed by X-ray powder diffraction. The batch experiment showed that citrate and, particularly, rutin (alone or combined with organic acids or genistein) promoted Fe mobilization from the soil. The combinations of rutin and organic acids modified the soil mineralogy by dissolving the amorphous fractions and promoting the formation of illite. These mineralogical alterations were significantly correlated with the amount of Fe mobilized from the soil. The RHIZOtest experiment revealed a drastic dissolution of amorphous components in the rhizosphere soil of Fe-deficient plants, possibly caused by the intense release of phenolics, amino acids, and organic acids, but without any formation of illite. Both batch and RHIZOtest experiments proved that exudates released by cucumber under Fe deficiency concurred to the rapid modification (on a day-scale) of the mineralogy of a calcareous soil.  相似文献   

11.
ABSTRACT

Biochemical responses to direct or bicarbonate-induced iron (Fe) deficiency were compared in two Tunisian native grapevine varieties, Khamri (tolerant) and Balta4 (sensitive), and a tolerant rootstock, 140Ru. Woody cuttings of each genotype were irrigated with a nutrient solution containing one of the following: 20 μM Fe (control), 1 μM Fe (direct Fe-deficiency), or 20 μM Fe + 10 mM HCO3 ? (indirect bicarbonate-induced Fe-deficiency). Under direct Fe-deficient conditions, lower leaf chlorosis score and higher chlorophyll and leaf Fe contents were found in Khamri and 140Ru compared with Balta4. Moreover, indirect Fe deficiency caused similar effects on these parameters, which were more pronounced in Balta4. Both tolerant genotypes, Khamri and 140Ru, showed higher roots-acidification capacity and phenol release under the direct Fe deficiency compared with the bicarbonate-induced condition. In the sensitive variety, Balta4, no significant changes were found between the control and Fe-deficient plants. Root Fe(III)-reductase activity was strongly stimulated by both types of Fe deficiency in Khamri and 140Ru, and displayed no significant changes in Balta4. In the three genotypes, root and leaf activities of two Fe-containing enzymes, catalase and guaiacol peroxidase, were significantly affected under Fe deficiency (either direct or induced), though to a greater extent in the sensitive variety, Balta4. The latter also displayed higher leaf malonyldialdehyde (MDA) content, traducing an important membrane lipid peroxidation.  相似文献   

12.
Poorly crystalline Fe oxides and organic matter are two important factors affecting Fe nutrition of plants. The main objective of this work was to study the contribution of humic substances to Fe nutrition of a typical Fe-chlorosis sensitive plant (white lupin, Lupinus albus L.). An experiment was performed involving two growing media (siliceous and calcareous) and different Fe sources: control without additional Fe added to the growing media, ferrihydrite (FH), FH + humic substances (HS, at two rates, 0.1 and 0.3 g C kg−1 growing media), Fe complexed to humic substances (Fe–HS), and Fe–EDDHA (as an effective Fe source in calcareous media). Chlorophyll meter readings and dry matter production (DM) were significantly greater with Fe–EDDHA and Fe–HS when compared with the other treatments in calcareous media. The positive effect of complexed Fe (to EDDHA or HS) on Fe nutrition can be, at least partially, related to an increase in Fe(III)-reducing capacity by roots, which seems to be improved by an enhanced root development. No positive effect on Fe nutrition was observed with the application of HS in a ferrihydrite enriched growing media (FH + HS) at 4 weeks, particularly with the application of HS at 0.3 g C kg−1 in calcareous media. Thus, the effect of HS on Fe availability was only positive if some Fe is complexed to HS. The efficiency of HS with Fe complexed (Fe–HS) in preventing Fe chlorosis was found to be similar to Fe–EDDHA. This is important not only for the knowledge of factors affecting Fe availability in soils, but also with a view of using Fe–HS complexes as effective products to correct this nutritional problem.  相似文献   

13.
 Vermicomposting is an eco-biotechnological process that transforms energy-rich and complex organic substances into a stabilized humus-like product. In a laboratory experiment, Eisenia fetida (Sav.) earthworms were employed to process putrescible sewage sludges into a high-value biofertilizer, very rich in urease activity and humic-urease complexes (stabilized extracellular enzymes). Extracellular humic-urease complexes were extracted by a single 24-h extraction at 37  °C using neutral pyrophosphate (0.1 M); then, the extracts were dialysed and characterized by means of an analytical isoelectric focusing technique. This technique gave a multiplicity of humic bands enzymatically active, with isoelectric points ranging from 4.8 to 5.6. The results demonstrated that, after an 18-week incubation period, sewage sludge had undergone a biochemical evolution, which caused a doubling of absolute urease activity and a six-fold increase in specific activity (activity with reference to the humic C fraction). The biochemical evolution of the vermicompost was evaluated also from the sharp decrease in pyrophosphate-extractable C and water-soluble C. Stabilization of organic C during vermicomposting and the activity of humic-urease complexes expressed at low pH values are of extreme importance when organic wastes are used in acid soils for biochemical restoration purposes. Received: 10 June 1999  相似文献   

14.
The solubility of Al and Fe in soil is of relevance for their toxicity and availability, respectively, to plant roots. Humic substances as the main part of stable soil organic matter and citrate which is often excreted by P deficient plants are strong complexants of Al and Fe(III). Therefore, equations were developed to calculate the Al and Fe(III) species distribution in the soil solution in the presence of humic substances and citrate as organic ligands. Calculations in the pH range 4.0–7.0 showed that at higher pH humic-Al complexes were the most important species whereas AlOH-citrate? dominated between pH 4.0 and 5.4. Free monomeric Al and AlSO4+ were of minor relevance. Iron(III) species calculations showed that humic-Fe complexes were the main species in the pH range 4.0–7.0. But if mugineic acid, a Fe complexing phytosiderophore released into the rhizosphere by graminaceous plant species, was present in the soil solution (10?6 M), Fe-mugineic acid complexes accounted for most of the Fe in solution. Fe-citrate? was relevant at lower pH but contributed little to Fe(III) species at pH > 6.0. The results demonstrate the strong importance of the considered organic ligands for Fe and Al in the soil solution.  相似文献   

15.
Greenhouse experiments were conducted using potted soil (Fe-deficient Typic Ustochrept) to study the influence of the vesicular-arbuscular mycorrhizal fungi (VAM), Glomus macrocarpum and G. fasciculatum, on the mobilisation of Fe in broccoli (Brassica oleracea L. var. italica Plenck) in the presence of pyrite and farmyard manure (FYM). Individual applications of either VAM or pyrite with NPK fertiliser significantly enhanced both the Fe2+ content in leaf tissue and total uptake of Fe and resulted in increased curd and straw yields of broccoli compared to those observed with NPK alone. Though the application of FYM decreased the Fe2+ content in leaf tissue relative to plants supplied NPK alone, this result was not statistically significant. The available Fe content in soil, after harvest of broccoli, was found to be lower in the presence of VAM than in the control. Received: 18 June 1997  相似文献   

16.
The dynamics of incorporation of fresh organic residues into the various fractions of soil organic matter have yet to be clarified in terms of chemical structures and mechanisms involved. We studied by 13C‐dilution analysis and CPMAS‐13C‐NMR spectroscopy the distribution of organic carbon from mixed or mulched maize residues into specific defined fractions such as carbohydrates and humic fractions isolated by selective extractants in a year‐long incubation of three European soils. The contents of carbohydrates in soil particle size fractions and relative δ13C values showed no retention of carbohydrates from maize but rather decomposition of those from native organic matter in the soil. By contrast, CPMAS‐13C‐NMR spectra of humic (HA) and fulvic acids (FA) extracted by alkaline solution generally indicated the transfer of maize C (mostly carbohydrates and peptides) into humic materials, whereas spectra of organic matter extracted with an acetone solution (HE) indicated solubilization of an aliphatic‐rich, hydrophobic fraction that seemed not to contain any C from maize. The abundance of 13C showed that all humic fractions behaved as a sink for C from maize residues but the FA fraction was related to the turnover of fresh organic matter more than the HA. Removal of hydrophobic components from incubated soils by acetone solution allowed a subsequent extraction of HA and, especially, FA still containing much C from maize. The combination of isotopic measurements and NMR spectra indicated that while hydrophilic compounds from maize were retained in HA and FA, hydrophobic components in the HE fraction had chemical features similar to those of humin. Our results show that the organic compounds released in soils by mineralization of fresh plant residues are stored mainly in the hydrophilic fraction of humic substances which are, in turn, stabilized against microbial degradation by the most hydrophobic humic matter. Our findings suggest that native soil humic substances contribute to the accumulation of new organic matter in soils.  相似文献   

17.
The coagulation of humic substances and its role in controlling the solubility of organic matter in soils are not well understood. We therefore studied the physico‐chemical behaviour of purified humic acid from forest soil coagulated with Na, Ca, Cu, Al at pH 4 and 6, and then modelled the behaviour with the Non‐Ideal Consistent Competitive Adsorption Donnan (NICA‐Donnan) model. We found that the coagulation of humic acid occurs when the Donnan potential is less negative than ?0.08 V. Based on this result, an empirical relation between the Donnan potential of humic acid and its concentration in solution was derived. In addition, the Donnan potential of the dissolved organic matter in the soil solution of six soil profiles from forests was calculated using the NICA‐Donnan model under the assumption that all the dissolved organic matter behaves as humic acid. The measured concentration of dissolved organic matter also decreases in a soil profile, as the calculated potential becomes less negative. The results are in many cases in semi‐quantitative agreement with the predicted concentration based on the humic acid coagulation experiment. Acid soils contain more dissolved organic matter, which may result from the presence of a fairly large fraction of more soluble organic molecules, such as fulvic acid.  相似文献   

18.
《Journal of plant nutrition》2013,36(10-11):2243-2252
Abstract

A research was carried out to evaluate the leaves' ability to utilize Fe supplied as a complex with water‐extractable humic substances (WEHS) and the long‐distance transport of 59Fe applied to sections of fully expanded leaves of intact sunflower (Helianthus annuus L.) plants. Plants were grown in a nutrient solution containing 10 µM Fe(III)‐EDDHA (Fe‐sufficient plants), with the addition of 10 mM NaHCO3 to induce iron chlorosis (Fe‐deficient plants). Fe(III)‐WEHS could be reduced by sunflower leaf discs at levels comparable to those observed using Fe(III)‐EDTA, regardless of the Fe status. On the other hand, 59Fe uptake rate by leaf discs of green and chlorotic plants was significantly lower in Fe‐WEHS‐treated plants, possibly suggesting the effect of light on photochemical reduction of Fe‐EDTA. In the experiments with intact plants, 59Fe‐labeled Fe‐WEHS or Fe‐EDTA were applied onto a section of fully expanded leaves. Irrespective of Fe nutritional status, 59Fe uptake was significantly higher when the treatment was carried out with Fe‐EDTA. A significant difference was found in the amount of 59Fe translocated from treated leaf area between green and chlorotic plants. However, irrespective of the Fe nutritional status, no significant difference was observed in the absolute amount of 59Fe translocated to other plant parts when the micronutrient was supplied either as Fe‐EDTA or Fe‐WEHS. Results show that the utilization of Fe complexed to WEHS by sunflower leaves involves an Fe(III) reduction step in the apoplast prior to its uptake by the symplast of leaf cells and that Fe taken up from the Fe‐WEHS complexes can be translocated from fully expanded leaves towards the roots and other parts of the shoot.  相似文献   

19.
A short-term experiment was carried out to study the effects of exogenous nitric oxide (NO) on some growth parameters and mineral nutrients of maize grown at high zinc (Zn). Maize seedlings were planted in pots containing perlite and subjected to 0.05 or 0.5 mM Zn in nutrient solution. Nitric oxide (0.1 mM) was sprayed to the leaves of maize seedlings. High Zn reduced total dry matter, chlorophyll (Chl.) content and leaf relative water content (RWC), but increased proline content and membrane permeability. Foliar application of NO significantly increased chlorophyll content, RWC and growth of plants treated with high Zn, and significantly reduced their membrane permeability and proline contents. High Zn resulted in increased leaf and root Zn, but lower concentrations of leaf phosphorus (P), and iron (Fe). Foliar application of NO lowered leaf and root Zn and increased leaf and root nitrogen (N) and leaf Fe in the high Zn plants. These results clearly demonstrated that externally-applied NO induced growth improvement in maize plants was found to be associated with reduced membrane permeability under high zinc. Results can be concluded that NO may be involved in nutritional and physiological changes in plants subjected to high Zn.  相似文献   

20.
Lignin was extracted with aqueous dioxane in the genetic series of humification: dead nonhumified plants → plant residues at the initial stage of humification (during the first 1–3 annual cycles) → weakly decomposed peat → highly decomposed peat. In the course of the humification and peat formation, the lignin was subjected to profound redox transformation; therefore, the elemental composition of the dioxane lignin in the humified peat-forming plants differed from that in the original plants by the higher contents of hydrogen and nitrogen and the lower contents of oxygen and carbon. As a result of the redox reactions, the lignin was partly oxidized and converted to humic substances during the humification of the dead plants. Therefore, it could not be extracted with aqueous dioxane. The reduced part of the lignin remained in the humified materials. The proportion of aromatic fragments in the molecules of the remaining lignin was smaller and that of aliphatic fragments larger than in the lignin of the original plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号