首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some densely-populated countries, farmland has been widely cadmium (Cd) contaminated, and the utilization of the contaminated farmland for crop production is currently unavoidable. This necessitates the use of low-Cd crops (i.e., pollution-safe cultivars, the crop varieties with the ability to accumulate a low level of Cd in their edible parts when grown on polluted soil) in these areas and highlights the importance of knowledge on phenotypic variation in crop Cd accumulation for food Cd risk control. Studies on phenotypic variation in heavy metal accumulation started decades ago for a wide range of crops, and synthesis of the scattered experimental results in the literature is in need. We built a Low-Cd Crops Database based on literature research, and relevant meta-analysis was performed to quantitatively explore the phenotypic variation in Cd uptake and translocation of rice and wheat. Considerable variability existed among rice (median grain Cd bioconcentration factor (BCF) of 0.10) and wheat (median grain Cd BCF of 0.21) phenotypes in grain Cd accumulation, and this variability was labile to soil pH and the level of Cd stress. Wheat statistically had a higher root-to-shoot Cd-translocating ability than rice, highlighting potential food Cd risks and the importance of growing low-Cd wheat in slightly Cd-contaminated regions. Meanwhile, no correlations were detected among soil-to-root, root-to-shoot, and shoot-to-grain translocation factors, implying that Cd uptake and internal translocation in crops were probably controlled by different underlying genetic mechanisms. Root-to-shoot Cd transport could be a favorable target trait for selecting and breeding low-Cd rice and wheat. In all, this review provides a comprehensive low-Cd crop list for remediation practice and a systematic meta-analysis inferring food Cd risks based on plant capacity for Cd accumulation and desired traits for low-Cd crop breeding.  相似文献   

2.
The concentrations of heavy metals in water, sediments, soil, roots, and shoots of five aquatic macrophytes species (Oenanthe sp., Juncus sp., Typha sp., Callitriche sp.1, and Callitriche sp.2) collected from a detention pond receiving stormwater runoff coming from a highway were measured to ascertain whether plants organs are characterized by differential accumulations and to evaluate the potential of the plant species as bioindicators of heavy metal pollution in urban stormwater runoff. Heavy metals considered for water and sediment analysis were Cd, Cr, Cu, Ni, Pb, Zn, and As. Heavy metals considered for plant and soil analysis were Cd, Ni, and Zn. The metal concentrations in water, sediments, plants, and corresponding soil showed that the studied site is contaminated by heavy metals, probably due to the road traffic. Results also showed that plant roots had higher metal content than aboveground tissues. The floating plants displayed higher metal accumulation than the three other rooted plants. Heavy metal concentrations measured in the organs of the rooted plants increased when metal concentrations measured in the soil increased. The highest metal bioconcentration factors (BCF) were obtained for cadmium and nickel accumulation by Typha sp. (BCF = 1.3 and 0.8, respectively) and zinc accumulation by Juncus sp. (BCF = 4.8). Our results underline the potential use of such plant species for heavy metal biomonitoring in water, sediments, and soil.  相似文献   

3.
The selection of appropriate plant species is critical in the successful application of phytoremediation techniques. The present study is an attempt to assess the capability of three brassicaceae, Brassica alba (L.) Rabenh, Brassica carinata A. Braun and Brassica nigra (L.) Koch, for the phytoextraction of Cr, Cu, Pb and Zn from an unpolluted and polluted silty loamy soil added with either Bacillus licheniformis BLMB1 or compost or both. Experiments were conducted in a greenhouse in pots filled with the soils. In all experiments metals were shown to accumulate in shoots and roots of plants grown on polluted soils, and both compost and B. licheniformis BLMB1 strain were able to enhance the accumulation of metals, especially Cr. In particular, Cr accumulation in B. alba resulted higher than the Cr threshold for hyperaccumulator plants (1000 mg kg? 1). This result provides a new plant resource that may have a potential use for phytoextraction of Cr from contaminated soil. However, because of the low bioconcentration factors (< 1) for all studied metals, these species cannot be regarded as suitable for the phytoextraction of excessive Cr, Cu, Pb and Zn from polluted soils. Thus, these species may be used with success only for low metal polluted soils.  相似文献   

4.
Contamination of metal ions in soil and water represents more pressing threats to resources as well as human health. The present research was carried out to screen the phytosequester plants growing in industrial waste- and wastewater-affected industrial areas of Okhla, New Delhi, India. Accumulation trend of metal Fe, Zn, Cu, Cr, Pb, Cd, Hg, and As from soil and wastewater by plants were collected for study. Among aquatic plants Hydrilla verticillata, Marsilea quadrifolia, and Ipomea aquatica were found to be highest metals accumulator, Eclipta alba and Sesbania cannabina among terrestrial plant were highest accumulator of metals. Among the algal spp. Spirulina platensis and Phormidium papyraceum were the most efficient in accumulating Cd and Hg. The maximum bioconcentration factor (BCF) was recorded in Hygroryza aristata for the metals (Hg, Cd) in M. quadrifolia (Cd, Cr), in E. alba (Cr, Cu), and in S. platensis (Hg, Pb). However, the translocation factor (TF) of metals was found more in M. quadrifolia followed by I. aquatica than other plants. Among all the plants, H. verticillata showed high TF and low BCF values for toxic metals (Pb, Cr) and was suitable for phytostabilization of these metals. Our study showed that native plant species growing on contaminated sites may have a potential of phytosequestration of these metals.  相似文献   

5.

Purpose

The objective of this work was to identify hyperaccumulator plants and evaluate their capacity on copper mine tailings in the Antofagasta Region (Chile), considered one of the most arid in the world.

Materials and methods

Two native plant species, Gazania rigens and Pelargonium hortorum, were grown during 11 weeks on mine tailings. The physico-chemical characterization of the mine tailings under study indicated that the substrate required conditioning to support a phytoremediation system. In this respect, organic and inorganic amendments and mycorrizhal fungi were added to the substrate. Three treatments were designed to assess the effects of the amendments through an analysis of variance.

Results and discussion

Indicators of plant growth and development were measured weekly, and concentrations of Cd, Cu, Fe, Mn, Pb, Al, and Zn in roots of tailing-grown plants and substrate were measured at the end of the experiment.

Conclusions

The results were used to determine the bioconcentration factor (BCF), which demonstrated that both species act as excluders of Fe, Mn, Pb, Al, and Zn. In addition, it was found that both species present characteristics of potential accumulators of Cu.
  相似文献   

6.
稻米镉的生物富集系数与其影响因素的量化关系   总被引:1,自引:1,他引:1  
窦韦强  安毅  秦莉  董明明  林大松 《土壤》2021,53(4):788-793
为进一步明确田间环境中稻米镉的生物富集系数(BCF)与其影响因素的定量关系,以原农业部环境监测总站对我国南方水稻产地的例行监测数据为基础,系统分析了土壤有效镉、pH、土壤有机质(SOM)及阳离子交换量(CEC)与稻米镉BCF的相关关系,并通过多元线性回归构建了二者间的定量关系模型。结果表明:研究区域土壤全镉范围为0.25~10.34 mg/kg,平均值为1.94 mg/kg,是我国《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB15618—2018)中镉污染风险筛选值(0.4 mg/kg)的4.85倍;简单线性相关分析表明,稻米镉的BCF与土壤有效镉和SOM呈极显著正相关(P0.01),相关系数分别为0.395和0.474,与p H呈极显著负相关(P0.01),相关系数为–0.470,与CEC呈显著负相关(P0.05),相关系数为–0.200;通过多元线性回归得到土壤有效镉、pH和SOM构建的三因子量化关系模型lgBCF=–0.346pH+0.013lgSOM+0.181lgCdavailable+2.001(R2=0.560,P0.01,n=112)达到了极显著水平,能较好预测我国南方水稻产地稻米镉含量及土壤镉的生态安全阈值。  相似文献   

7.
通过盆栽实验,以小白菜(上海青)、大白菜和萝卜为指示作物,研究了酸雨作用下Cu,Zn,Pb,Cd,Cr和Ni复合污染物在土壤-作物系统中的吸收与富集情况。结果表明,酸雨-重金属复合污染处理使Cu,Pb,Cr和Ni在蔬菜中积累量明显高于对照处理;Zn和Cd一般只有在复合污染处理中外源Zn或Cd含量较高时才明显高于对照处理。与对照相比,酸雨-重金属复合污染处理使Pb和Ni的富集系数增大,Cu的富集系数多数情况下增大,Cd的富集系数多数情况下减小,Zn和Cr富集系数的变化在不同蔬菜之间存在较明显的差异;重金属在不同蔬菜中的富集系数一般表现为萝卜>上海青>大白菜,蔬菜中不同重金属富集系数一般表现为Zn>Cd>Ni>Cu>Pb>Cr。酸雨-重金属复合污染条件下蔬菜中重金属积累量与其在土壤中总量之间的相关性均达到显著或极显著水平。以大宗蔬菜上海青、大白菜和萝卜为指示作物对酸雨地区蔬菜地中重金属的健康风险基准进行了估算,这对开展酸雨地区土壤重金属环境容量评价、重金属污染修复目标及地方性土壤环境质量标准的制订提供了参考依据。  相似文献   

8.
Abstract

Heavy metal pollution is a widespread global problem causing serious environmental concern. Cadmium, one of the heavy metals, is water soluble and can be transferred from soil to plants and enter into the food chain. It is detrimental to human health because it accumulates in the body and can cause renal tubular dysfunction, pulmonary emphysema and osteoporosis. This heavy metal needs to be cleaned up for a clean and safe environment. An experiment was conducted to evaluate the potential of Dyera costulata as a phytoremediator to absorb cadmium from contaminated soils. Dyera costulata seedlings were planted on six different growth media (soil + different levels of cadmium): Control, 25 ppm Cd, 50 ppm Cd, 75 ppm Cd, 100 ppm Cd and 150 ppm Cd. The highest growth performance mainly height, basal diameter and number of leaves were in the control, 50 ppm Cd and 25 ppm Cd treatments, respectively. The highest accumulation of cadmium (52.9 ppm) was in the 75 ppm Cd treatment. Among the plant parts, leaves showed the highest concentration of cadmium. Dyera costulata showed high translocation factor and low bioconcentration factor values in soil at high cadmium concentrations and was also able to tolerate and accumulate high concentrations of cadmium. The roots of Dyera costulata were found to be suitable for the absorption of cadmium in contaminated soils. This species can be an efficient phytoremediator for soils contaminated with cadmium.  相似文献   

9.
Seven Brassica species were evaluated for their resistance to the cabbage aphid, Brevicoryne brassicae, in a series of field experiments. Four wild Brassica species, two 8 chromosome species with similarities to the B genome of Brassica nigra (Brassica fruticulosa and Brassica spinescens) and two 9 chromosome species containing the C genome (Brassica incana and Brassica villosa) were identified as possessing consistently high levels of antibiosis mediated resistance to B. brassicae. None of the species were shown to possess consistently high levels of antixenosis resistance. In more detailed glasshouse experiments one B-like genome species, B. fruticulosa, showed considerable variation between accessions collected from different sites for resistance to B. brassicae. In addition, individual accessions of one A genome species (Brassica rapa) and one C genome species (Brassica alboglabra) were shown to be highly variable in their resistance to B. brassicae, some plants of each accession being highly resistant and others very susceptible. The implications of the variability in resistance to B. brassicae within wild Brassica species for exploitation in Brassica breeding programmes are discussed.  相似文献   

10.
ABSTRACT

The present study was conducted to evaluate the effects of different concentrations of cadmium (Cd) and zinc (Zn), singly and in combination, on uptake and bioaccumulation of Cd and Zn in Daucus carota L. (carrot) grown under natural field conditions. Carrot plants were treated with two Cd concentrations (10 and 100 μg mL?1), two Zn concentrations (100 and 300 μg mL?1), and two combined concentrations of Cd and Zn (10 + 100 and 100 + 300 μg mL?1) 15 d after seed germination. Treatments were repeated at 10 d intervals up to 90 d of plant age. A control was also kept without a Cd or Zn treatment. Uptake, total accumulation rate (TAR), bioconcentration factor (BCF), primary transport index (PTI), secondary transport index (STI), and accumulation of Cd and Zn in root, stem, and leaf were quantified. The results show that uptake, TAR, and accumulation of Cd and Zn are concentration-dependent phenomena. Highest accumulation of Cd and Zn was found in the root, followed by the stem and then leaves. The results also showed that bioaccumulation of Cd in root, stem, and leaf was greater at the low metal-application rates of Cd and Zn in combination than at the higher rate. This study further showed that interactions of Zn and Cd are dependent on the concentrations of those metals in the soil.  相似文献   

11.
Purpose

Characterization of tannery sludge (TS) for its plausible use in amelioration and phytoremediation of heavy metal rich TS treated soil by growing economically important plants (Ricinus communis, Brassica juncea and Nerium oleander).

Materials and methods

Treatments were prepared by amalgamation of TS (0, 5, 10, 20, 30, 50, 75, 100 %) with garden soil (GS). All treatments were analysed for chemical properties, total and DTPA (Diethylene triamine pentaacetic acid) extractable heavy metals (Cr, Pb, Cu, and Mn). Seed germination experiment was conducted; unvarying saplings were selected and planted in concerned pots and allowed to grow for 90 days in green house. At harvest, plant samples were washed with distilled water and used for determination of growth parameters (biomass of root, shoot and total biomass on dry weight basis) and metal accumulation in different parts of the plant. Translocation factor (TF) and bioconcentration factor (BCF) have been calculated to check the phytostabilization capability of studied plants.

Results and discussion

Application of TS in fixed quantity as an amendment resulted in significant improvements of GS characteristics (alkaline pH with high electrical conductivity, organic carbon, available NPK and heavy metals) and in treatments. DTPA extractable heavy metal concentrations were found very low and total heavy metal concentrations were also found under allowable range in control and treated soil (T-I to T-VI). The maximum seed germination percentage, plant growth, biomass production for all plant species were observed in T-III treatment (20 % TS + 80 % GS) with majority of the metal accumulation in underground part (BCF >1) and meagre translocation in aerial part (TF <1). From T-IV to T-VII treatment, accumulation of heavy metals in plant parts has generally increased; however, biomass has been tremendously decreased.

Conclusions

TS was found rich in NPK content with significant concentration of heavy metals. Pot growth experiment suggested amelioration of GS with specific quantity of 20 % TS can tremendously enhance the plant growth, help in the utilization of TS and can act as a substitute of synthetic fertilizer. Majority of the metals was accumulated in root part (BCF >1) and meagre translocation (TF <1) in aerial part, concludes R. communis and B. juncea could be suitable plant species to be grown in heavy metal rich TS treated soil, vis-à-vis for phytostabilization of heavy metals. In addition, these oil yielding and medicinal plants can also be used for phytoremediation of moderately contaminated tannery soils.

  相似文献   

12.
Abstract

Heavy metals are dangerous environmental pollutants that can be transferred and accumulated in human and animal bodies causing deoxyribonucleic acid (DNA) damage and carcinogenic effects. A glass house experiment was conducted to evaluate the potential of Justicia gendarussa Burm F. to absorb heavy metals from textile industry sludge. Justicia gendarussa seedlings were planted on six different growth media (soil+sludge) comprising: 100% soil, 100% sludge, 80% sludge+20% soil, 60% sludge+40% soil, 40% sludge+60% soil and 20% sludge+80% soil. The maximum height increment and number of leaves were found in 20% sludge+80% soil while the highest basal diameter increment was recorded in the 100% sludge. Copper and iron were highly concentrated in the roots, zinc in the leaves, while aluminium was concentrated in both leaves and stems. Justicia gendarussa seems to have a high potential to absorb high amounts of Al and Fe in the leaves and roots. This species showed high translocation (TF) and low bioconcentration factor (BCF) in the contaminated soil. Justicia gendarussa was able to tolerate and accumulate a high concentration of heavy metals. Therefore, this species can be considered as a potential phytoremediator.  相似文献   

13.
在自然条件下,采用人工模拟水缸培养方法,研究了湖泊底泥不同Cu、Cd处理对沉水植物伊乐藻生长、叶绿素含量以及Cu、Cd吸收和积累的影响。结果表明,较低浓度Cu刺激伊乐藻的生长(生物量、叶绿素),高浓度抑制伊乐藻的生长;随着Cd处理浓度的增加,伊乐藻的生物量、叶绿素含量均一直降低,在底泥Cd含量为168.69mg·kg^-1 DW(含背景值)时,植株出现死亡。随着Cu处理浓度的增加,伊乐藻体内的Cu含量一直增加,在底泥cu含量为414mg·kg^-1DW(含背景值)时,根部、叶部的富集系数均达到最大(0.21和0.17);伊乐藻体内的Cd含量随Cd处理浓度的增加先增后减,底泥Cd含量为88.69mg·kg^-1 DW时,根部、叶部的富集系数均达到最大(0.07和0.09)。以上结果说明,伊乐藻对Cu、Cd具有很强的耐受性,可以作为原位修复Cu和Cd污染底泥的植物种类应用。  相似文献   

14.
不同钝化剂对Cu、Cr和Ni复合污染土壤的修复研究   总被引:8,自引:2,他引:8  
利用盆栽试验研究了不同钝化剂(沸石、牡蛎壳、鸡蛋壳、硅藻土和聚丙烯酰胺(PAM))对生长在重金属污染土壤上的青菜(Brassica chinensis L.)生物量、重金属吸收以及超氧化物歧化酶的活性(SOD)和丙二醛(MDA)含量的影响,同时,通过对土壤p H和土壤重金属提取态的分析,探讨了钝化剂影响青菜生物量和重金属吸收的可能原因。结果表明:钝化剂加入可显著降低青菜地上部分Cu、Zn、Ni和Cd的含量及其氧化性损伤和脂膜损伤(SOD和MDA指标显著降低)。施入钝化剂后,土壤p H显著提高,重金属提取态Cu、Zn、Pb、Ni和Cd普遍降低(硅藻土处理除外)。相关性分析表明,土壤p H与提取态重金属Pb、Zn、Ni和Cd呈显著的负相关,而青菜中的重金属Zn、Ni和Cd的含量与土壤提取态含量呈显著正相关。综合考虑,单一钝化剂牡蛎壳和沸石+牡蛎壳+鸡蛋壳(FMJ)组合对降低青菜重金属吸收的效果尤为显著,可推荐作为重金属复合污染土壤的改良剂。本研究为重金属中轻度污染菜地的土壤修复提供了一种新方法。  相似文献   

15.

Purpose

This study was undertaken to determine the feasibility of using three aquatic macrophytes, Phragmites australis, Juncus effusus and Iris pseudacorus, to phytoextract potentially toxic elements (PTEs) from a contaminated area by mining activities.

Materials and methods

An artificial pond was constructed with two topsoils (yellow and black samples) collected from Portman Bay. In order to simulate the mixing with carbonate materials, which naturally occurs in this area, a stabilisation approach was applied by mixing with 30 % of limestone filler. Three replicates of each type of soil have been prepared in pots for the selected species. The total PTEs content (arsenic, cadmium, copper, iron, lead and zinc) was determined and the bioconcentration factor (BCF) and transfer factor (TF) calculated.

Results and discussion

Soil samples showed high PTEs content as a result of mining activities. As regards the root contents, the PTEs is higher in yellow samples (YS) than in black ones, because in these samples the PTEs content that could be mobilised is higher. The BCF results were higher than unity for arsenic, copper, lead and cadmium for I. pseudacorus and P. australis growing on YS soil. Overall, copper and manganese showed a larger number of plants with BCF higher than unity. The PTEs content in leaves is low, and the TF results are lower than unity in almost all samples.

Conclusions

The results indicate that it is possible to use the selected species for phytostabilisation of soils contaminated with PTEs. J. effusus, P. australis and I. pseudacorus could be considered as tolerant, and natural or artificial wetlands containing these species could be used for remediation purposes.
  相似文献   

16.
泽兰实蝇(Procecidochares utilis Stone)是目前入侵杂草紫茎泽兰(Eupatorium adenophorum Spreng)的一种重要天敌, 但在重金属污染的矿区泽兰实蝇对紫茎泽兰的植株寄生率明显降低。故利用同心圆采样法在云南兰坪金顶铅锌矿区5 km范围内采集土壤、紫茎泽兰及泽兰实蝇并测定重金属含量, 以研究重金属在土壤 紫茎泽兰茎 泽兰实蝇系统中的生物富集效应, 探讨重金属胁迫影响泽兰实蝇控制效果的机制。结果表明: 土壤 紫茎泽兰茎 泽兰实蝇系统中Pb、Zn和Cd含量随着距矿中心距离的增加而极显著下降, Cd、Pb和Zn在土壤 紫茎泽兰茎系统中的富集系数分别为0.205~0.614、0.058~0.079和0.222~0.398, 平均值分别为0.453、0.067和0.315, 在紫茎泽兰茎 泽兰实蝇系统中的富集系数分别为1.06~7.69、9.68~20.13和1.13~1.56, 平均值分别为2.47、12.83和1.42。Cd和Zn属于强聚集, Pb属于很强聚集的元素。本研究结果证明, Pb、Zn和Cd可以在土壤 紫茎泽兰茎 泽兰实蝇系统逐级传递富集, 并初步阐明了重金属Cd、Pb和Zn在土壤 紫茎泽兰 泽兰实蝇系统中的传递规律。这丰富了重金属污染的生态毒理学效应, 为进一步研究重金属胁迫影响泽兰实蝇控制效果的机制奠定了基础。  相似文献   

17.
Cadmium (Cd) pollution affects plant growth and poses a serious threat to food safety and human health.Cadmium-contaminated rice is assumed to be the main source of Cd exposure to humans,with grave health risks.Phytoremediation is an efficient,cost-effective,and eco-friendly approach to minimize Cd accumulation in rice.However,research on the effect of rice intercropping with wetland plants that exhibit great capacity for phytoremediation in decreasing Cd concentrations in paddies is limited.A p...  相似文献   

18.
Summary A bis-(p-nitrophenyl) phosphatase (BPN-Pase) was extracted from a forest soil and fractionated by DEAE-cellulose column chromatography into seven fractions (1, 2, 3, 4, 5, 6 and 7). The main fraction (fraction 5) was further fractionated into 3 subfraction (fractions 1, 2 and 3) by affinity chromatography for nuclease. The properties of the BPNPase in subfraction 3 were characterized and the results are reported in this article. Subfraction 3, which had a peak at about 278 run in the UV absorption spectrum, hydrolyzed 2,3-cyclic-nucleotides more readily than 3,5-cyclicnucleotides, adenylyl-(3 5)uridine, uridylyl-(3 5)adenosine, thymidine 3-p-nitrophenyl phosphate, thymidine 5-p-nitrophenyl phosphate, p-nitrophenyl phosphate and BPNP. Subfraction 3 hydrolyzed BPNP into 2 mol p-nitrophenyl and 1 mol inorganic phosphate during incubation. Apparent molecular weight of the BPNPase was estimated to be about 58 000 by gel filtration. The BPNPase activity had a pH optimum at 5.0 and was inhibited by Hg2+ and slightly inhibited by F and PO 4 3– .These observations suggest that the BPNPase is subfraction 3 has been constituted mainly with 2,3cyclic-nucleotide 2-phosphodiesterase [EC 3.1.4.16] or 2,3-cyclic-nucleotide 3-phosphodiesterase [EC 3.1.4.37].  相似文献   

19.
刈割对六种牧草吸收重金属和修复污染土壤潜力的研究   总被引:1,自引:0,他引:1  
The pollution of soils by heavy metals has dramatically increased in recent decades. Phytoextraction is a technology that extracts elements from polluted soils using hyperaccumulator plants. The selection of appropriate plant materials is an important factor for successful phytoextraction in field. A field study was conducted to compare the efficiency of six high-biomass forage species in their phytoextraction of heavy metals (Cd, Pb and Zn) from contaminated soil under two harvesting strategies (double harvesting or single harvesting). Among the tested plants, amaranth accumulated the greatest amounts of Cd and Zn, whereas Rumex K-1 had the highest amount of Pb in the shoot under both double and single harvesting. Furthermore, double harvesting significantly increased the shoot biomass of amaranth, sweet sorghum and sudangrass and resulted in higher heavy metal contents in the shoot. Under double harvesting, the total amounts of extracted Cd, Pb and Zn (i.e., in the first plus second crops) for amaranth were 945, 2 650 and 12 400 g ha-1, respectively, the highest recorded among the six plant species. These results indicate that amaranth has great potential for the phytoextraction of Cd from contaminated soils. In addition, the double harvesting method is likely to increase phytoextraction efficiency in practice.  相似文献   

20.
Phytoremediation is a developing technology that uses plants to clean up pollutants in soils. To adopt this technology to cadmium (Cd)–contaminated soils efficiently, a Cd hyperaccumulator with fast growth rate and large biomass is required. In the present study, we selected Caryophyllales as a potential clade that might include Cd hyperaccumulators because this clade had a high mean concentration of zinc (Zn), which is in the same element group as Cd. Three species in Caryophyllales and three species in different clades were grown with Cd. Among them, Amaranthus tricolor showed high accumulating ability for Cd under both water‐culture and soil‐culture conditions, whereas Brassica juncea, a known Cd hyperaccumulator, accumulated high concentrations of Cd in shoots only under water‐culture conditions. This result suggests that A. tricolor has Cd‐solubilizing ability in rhizosphere. Because A. tricolor has large biomass and high growth rate, this species could be useful for phytoremediation of Cd‐contaminated fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号