首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Sanitary landfilling is the most common way to eliminate solid urban wastes. An important problem associated to landfills is the production of leachates. The factors determining the characteristics of leachates from solid urban waste landfills are reviewed together with the reported compositions of leachates from various countries and origins. New data obtained from two landfills of different age in the same area are reported. The advantages and disadvantages of the various existing alternatives for solving the leachates problem are discussed under the items: (1) Leachate Channeling (Combined Treatment with domestic sewage, Recycling and Lagooning with recycling). (2) Biological Processing (Aerobic and Anaerobic). (3) Chemical/Physical Treatment (Chemical Precipitation, Chemical Oxidation, Adsorption onto activated carbon, Reverse osmosis, and Stripping of NH3). The performance at several operational conditions of the most important methods is reviewed and summarized in several tables. From all this information a table designed to aid the choice of solutions for each particular case is presented.  相似文献   

2.
Composition and properties of leachates from farmyard manure heaps Besides some rheological characteristics, the Ntotal, NH4+-N, NO3? -N, P, K+, dry matter and ash content, as well as chemical oxygen demand and conductivity of farmyard manure leachates were examined. The K+ concentration was highest with an average of 5921 mg l?1, followed by Ntotal (1139 mg l?1, 66% of it as NH4+-N and 4% NO3?-N) and P (334 mg l?1). All parameters were highest in leachates of fresh manure and lowest at the end of a 6 months storage period. During the storage, the P concentration in leachates showed a decrease of 67.7%, followed by a decrease in Nt (-57.3%) and K+ (-24.0%). In leachates from a manure with an relatively high initial Nt content of 0.51% and a low C:N ratio of 16.8 the Nt concentration was 0.5–1 times higher than that of a manure with 0.44% Nt and a C:N ratio of 19.9. The viscosity and the thixotropy of leachates were both relatively high at the beginning of the manure's storage period, which led to a strongly developed blocking of porous systems. These properties that contribute to explain the high retention rate of nutrients in the top soil layer at manure storage sites, decreased with an increase in storage time.  相似文献   

3.
Abstract

Losses over 18 weeks of iron (Fe) in leachates from several peats and wood wastes that had been amended with ferrous sulfate (FeSO4‐7H2O) were generally less than 1% of the total Fe in the material. Increasing additions of Fe either had little effect on Fe losses in leachates or lowered them, mainly through a lowering in the concentration of Fe‐organic complexes in leachates. DTPA‐extractable Fe in wood wastes did not decline with leaching but there were some reductions in peats. The data suggest that a single pre‐plant addition of 0.75–1.0 g/L FeSO4‐7H2O would supply enough Fe for at least six months of plant growth in media based on peat with a low native Fe content.  相似文献   

4.
A thin film of well-ordered anatase TiO2 nanotubes prepared by anodic oxidation of titanium metal were synthesised and used as adsorbent medium for the purification of water from aqueous uranium and lead. The amount of subtracted metal ions was quantified by using X-ray photoelectron spectroscopy at the surface of the reacted TiO2 surface. Batch experiments for the sorption of U and Pb at the surface of the titania substrate were carried out in separated solution equilibrated with air of uranyl acetate and lead nitrate, in the pH range 3?C9. For uranium, the experiments were also repeated in anoxic (N2) atmosphere. The amount of metal ions adsorbed onto the titania medium was quantified by measurements of the surface coverage expressed in atomic percent, by recording high-resolution XPS spectra in the Ti2p, U4f and Pb4f photoelectron regions. Adsorption of the uranyl species in air atmosphere as a function of pH showed an adsorption edge near pH 4 with a maximum at pH 7. At higher pH the presence of very stable uranyl?Ccarbonate complexes prevented any further adsorption. Further adsorption increased until pH 8.5 was obtained when the uranyl solution was purged from dissolved CO2. Lead ion showed a sorption edge at pH 6, with a maximum uptake at pH 8. The results showed that the uptake of uranium and lead on the selected titania medium is remarkably sensitive to the solution pH. This study demonstrates the reliability of this type of material for treating water polluted with heavy metals as well as leachates from radioactive nuclear wastes.  相似文献   

5.
Fly ash generated from medical waste incinerator and wastewater produced from electroplating plants contains various hazardous contaminants such as heavy metals and chlorinated organic compounds. The primary goal of this research was to investigate the feasibility of removing heavy metals from wastewater using medical waste incinerator fly ash as the treatment reagent with addition of small amount of sodium carbonate (Na2CO3) in a hydrothermal process. Copper (Cu) was used as the model heavy metal contaminant in the process. The results revealed that medical waste incinerator fly ash could effectively stabilize Cu(II) ion from wastewater, the crystal phase and simple substance formed during the treatment played a significant role in the fixation of heavy metals in wastewater and fly ash. The heavy metal leachability of treated ash was also measured after removal process. The co-disposal of Cu-containing wastewater and heavy metals-bearing medical waste incinerator fly ash by hydrothermal treatment with addition of a small amount of Na2SO3 was found promising as an effective way of removing Cu from wastewater. The reutilization feasibility of fly ash and the formation mechanism of copper-containing substances were also discussed in this paper.  相似文献   

6.
Biosolids are commonly applied to agricultural soils. A laboratory investigation was carried out to determine polybrominated diphenyl ether (PBDE) congener profiles in biosolids and leachability by water. In addition, PBDE fractionation in water and suspended solids of different sizes was examined to determine the potential for enhanced mobility of these contaminants within soils. The leachates from glass column experiments were passed through a series of filters, and the filtrates and retained particles analyzed for PBDEs. PBDEs were found to sorb on solid particles suspended in the leachate, allowing PBDEs to be present at concentrations exceeding their aqueous solubilities. The filtration process indicated that PBDEs are associated with fine and ultrafine particles. Filters of different pore sizes provide a better indication of PBDE levels in the leachate compared to not filtering or using a single filter. PBDEs concentrations were much higher on ultrafine than on fine particles, due to the greater surface area and higher organic content of the former.  相似文献   

7.
A magnetic chitosan-modified Fe3O4@SiO2 with sodium tripolyphosphate adsorbent (MTPCS) was synthesized by surface modification of Fe3O4@SiO2 with chitosan using sodium tripolyphosphate (STPP) as the cross-linker in buffer solution for the adsorption of Cu(II) ions from aqueous solution. The structure and morphology of this magnetic nanoadsorbent were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area measurements, Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The effects of initial pH, adsorbent amount, and initial concentration of heavy metal ions were investigated by batch experiments. Moreover, adsorption isotherms, kinetics, and thermodynamics were studied to understand the mechanism of adsorbing metal ions by synthesized MTPCS. The results revealed that adsorption kinetics was best depicted by the pseudo-second-order rate mode and intraparticle-diffusion models. The adsorption isotherm fitted well to the Langmuir model. Moreover, thermodynamic study verified the adsorption process was endothermic and spontaneous in nature. The maximum adsorption occurred at pH 5 ± 0.1, and the adsorbent could be used as a reusable adsorbent with convenient conditions.  相似文献   

8.
Samples of ash from municipal refuse incinerators in six Connecticut towns as well as samples of incinerated sewage sludge were collected during 1988 and 1989. The samples were analyzed for pH, metal content by HNO3 + H2O2 digestion, extractable metals by solvents including NaOAc, DTPA, H2CO3 and H2O. Two samples were examined for metals that could be leached by H2O from laboratory columns. Most ash samples were highly alkaline and their pH changed slowly, decreasing by about two pH units over a 6-week period. The variability in metal content of ash from different incinerators was similar to that observed in samples obtained from the same facility at different times. Only a portion of the metals were extracted by the solvents in the order NaOAc > DTPA > H2CO3 > H2O. The relative amounts of the total metals in the ash that could be extracted with specific solvents varied widely, suggesting different chemical forms in different ashes. After the initial removal of large concentrations of metals in the leachates from laboratory columns over 2 to 3 days, leaching of metals continued at extremely low concentrations that were generally below drinking water standards.  相似文献   

9.
The effect of tyiosin fermentation waste and pure tyiosin on microbial activity in soil was investigated. The addition of tylosin fermentation waste at concentrations equivalent to 0.4, 1.2 and 2 tonnes ha?1 in the field stimulated microbial activity as measured by O2 uptake. CO2 release and N mineralization. After 10 weeks incubation half of the C in the waste had been released as CO2 while mineralization of N ranged between 31 and 38%. Tylosin was detected in the leachates, and at 10 weeks between 20 and 32% of the tylosin present in the waste had been leached from the soil. Addition of high concentrations of pure tylosin. equivalent to those which would be found in 4. 20 and 40 tonnes fermentation waste ha?1 in the field, resulted in a decrease in microbial respiration for 5–7 weeks after the addition of the antibiotic. N mineralization was reduced throughout the experiment, compared with the control. A higher concentration of tylosin was detected in the leachates in this experiment and after 10 weeks the quantity of tylosin detected represented between 16 and 24% of the tylosin added. It is suggested that the full fertilizer potential of large additions of antibiotic waste to soil could be reduced to some extent due to the inhibitory activity of the residual antibiotic.  相似文献   

10.

Purpose

This study aimed to compare the effectiveness of chemical-enhanced soil washing (with chelating agents, humic substances and inorganic acids) and soil stabilisation by inorganic industrial by-products (coal fly ash, acid mine drainage sludge and zero-valent iron) and organic resource (lignite) for timber treatment site remediation.

Materials and methods

Both remediation options were assessed in terms of extraction/leaching kinetics and residual leachability (toxicity characteristic leaching procedure, TCLP) of the major risk drivers, i.e. Cu and As.

Results and discussion

In chemical-enhanced soil washing, chelating agents only minimised the Cu leachability. Humic substances were ineffective while inorganic acids reduced the As leachability to the detriment of the soil quality. For the waste-stabilised soil, the short-term leaching potential (72 h) and long-term TCLP leachability (9 months) revealed that Fe-/Al-/Ca-rich AMD sludge and coal fly ash sequestered As through adsorption and (co-)precipitation, while carbonaceous lignite stabilised Cu with oxygen-containing functional groups. The short-term and long-term leaching of Cu and As into the soil solution was negligible in the presence of the waste materials. However, the waste-stabilised soil did not maintain sufficient Cu stability in the TCLP tests, in which acetate buffer induced significant mineral dissolution of the waste materials.

Conclusions

These results suggest that chelant-enhanced washing (significant reduction of Cu leachability) may be augmented with subsequent stabilisation with inorganic waste materials (effective control of As leachability), thus minimising the environmental risks of both Cu (heavy metal) and As (metalloid) while preserving the reuse value of the soil. Additional tests under field-relevant conditions are required to provide a holistic performance evaluation.  相似文献   

11.
Electric arc furnace dust (EAFD) is a toxic waste which is mainly rich in iron oxide, zinc, and lead. Hydrometallurgical extraction of zinc from Jordanian EAFD in alkaline medium was investigated; NaOH, NaHCO3, and Na2CO3 were used as leaching agents. The pH values for the prepared solutions were 8.3, 8.2, and 12.55 for NaHCO3, Na2CO3, and NaOH, respectively. The effect of NaOH concentration (1, 3, 5, 7, and 9 M), contact time (5 min to 3 h), temperature (20, 40, and 60), and solid-to-liquid ratio (SLR; 20, 40, 80, and 120 mg/ml) on the leachability of zinc from EAFD were tested. The initial EAFD and the resulting leach residues were characterized using X-ray diffraction (XRD) and X-ray fluorescence (XRF). EAFD contained 25.9% Zn, 18.0% Fe, and 3.2% Pb. A maximum zinc recovery of 92.9% was achieved using 6 M NaOH at 60 °C with solid loading of 20 g/L and 3 h leaching time. NaHCO3 and Na2CO3 were not efficient leaching agents for Zn extraction since the recoveries were only 2.6 and 4.5%, respectively. Zn and Pb were depleted in the residues with an E-factor of 0.5–0.6 and 0.1–0.25, respectively. Iron was enriched in the residues; the E-factor was around 2. The EAFD contained mainly zincite, franklinite, and magnetite. After 3 h leaching, only traces of zincite exist in the residues, while sylvite and halite were completely dissolved.  相似文献   

12.
This study evaluated the effects of iron oxide (Fe2O3) and zinc oxide (ZnO) on two wheat genotypes (Kavir and Tajan) at three levels (0, 75, and 150 mM sodium chloride (NaCl)) of salinity. Spray treatments included two forms of normal and nanoparticles of Fe2O3 and ZnO, a mixture of nanoparticles of Fe2O3 and ZnO (2 g L?1) and a non-spray treatment. The pot experiment was arranged as factorial in a randomized complete block design with four replications. Two forms of Fe2O3 and ZnO significantly accelerated plant height, leaf area, shoot dry weight, and the concentration of iron (Fe) and zinc (Zn) in comparison with non-spray treatment. The highest plant height and leaf Fe concentration belonged to Fe2O3 nanoparticles; however, it seems that the spray of nanoparticles may not be superior compared with normal forms in alleviation of salinity impacts.  相似文献   

13.
Tomato seedlings were transferred to continuously, aerated plastic containers. Treatments consisted of three nitrogen (N) levels [0, 1.5, and 3% as ammonium chloride (NH4Cl) and ammonium phosphate (NH4H2PO4) 2:1 w/w] and three salinity levels (0, 30, and 60 mM using sodium chloride (NaCl) and calcium chloride (CaCl2)]. Results indicated significant positive and negative responses in fruits fresh weight to nitrogen and salinity treatments, respectively. Number of fruits and root length decreased at high salinity level. Phosphorus (P) content was highest in fruits and lowest in roots. Fruit P uptake decreased with salinity applications in N controls. At low salinity levels, N application mitigated the salinity detrimental effects; however, such an effect was not observed at the high salinity level. Nitrogen application significantly decreased iron, zinc, copper, and manganese concentration and uptake. Application of nitrogen and salinity levels significantly increased the citric acid content of tomato fruits. Vitamin C content of fruits was neither influenced by nitrogen nor by salinity.  相似文献   

14.

Purpose

Wastes from a former Portuguese steel plant were deposited between 1961 and 2001 on the riverbank of a tributary of the Tagus River creating a landfill connected to the river, posing a potential contamination risk to the Tagus estuary ecosystem. This study aims to assess the transfer of chemical elements from contaminated sediments to the estuarine water from cycles of sediment leaching so as to evaluate the ecotoxicity of the leachates, and to analyze the solid phases crystallized from those leachates.

Materials and methods

Landfill sediment and estuarine water samples were collected during low tide. Sediment samples were analyzed for pH, electric conductivity (EC), Corg, NPK, and iron oxides. Leaching assays (four replicates) were done using estuarine water (200 cm3/replicate) and 1.5 kg of sediment per reactor. Each reactor was submitted to four leaching processes (0, 28, 49, and 77 days). The sediment was kept moist between leaching processes. Sediment (total (acid digestion) and available fraction (diluted organic acid extraction-Rhizo)) elemental concentrations were determined by inductively coupled plasma–instrumental neutron activation analysis (ICP/INAA). Leachates, and estuarine and sediment pore waters were analyzed for metals/metalloids by ICP/mass spectrometry (MS) and carbonates/sulfate/chloride by standard methodologies. Ecotoxicity assays were performed in leachates and estuarine and pore waters using Artemia franciscana and Brachionus plicatillis. Aliquots of the leachates were evaporated to complete dryness (23–25 °C) and crystals analyzed by X-ray powder diffraction (XRD).

Results and discussion

Sediment with pH?=?8 and high EC and Corg was contaminated with As, Cd, Cr, Cu, Pb, and Zn. The element concentrations in the available fraction of the sediment were low compared to the sediment total concentrations (<1 % for Rhizo extraction). The concentrations of potentially hazardous elements in the estuarine water were relatively low, except for Cd. Concentrations of hazardous elements in the leachates were very low. Calcium, K, Mg, Na, and chloride concentrations were high but did not vary significantly among the four leaching experiments. Total concentrations of carbonate were much higher in leachates than in estuarine water. Both estuarine water and leachates showed negligible toxicity. Crystals identified in the solids obtained from the leachates by evaporation were halite, anhydrite, epsomite, dolomite, and polyhalite.

Conclusions

The sediment showed the capacity to retain the majority of the potentially hazardous chemical elements. Remobilization of chemical elements from sediment by leaching was essentially negligible. The variation of total concentrations of Ca, carbonate, and sulfate in leachates indicates that the sediment contained reactive sulfides. Due to its composition, the sediment seems to be a dynamic system of pollution control, which should not be disturbed.
  相似文献   

15.
Semi-solid Fenton process (SSFP) was firstly conducted on hazardous solid waste detoxication. Batch tests, Box–Behnken designs, and response surface methodology were applied to optimize the key factors including the pH, the initial Fe(II) content, and the liquid-to-solid ratio (L/S). It shows that the optimal pH, the initial Fe(II) content, and the L/S in SSFP are 3.5, 0.062 mol kg?1 dry weight and 1.77, respectively. Correspondingly, the removal efficiencies of ONA and ArNH2 are 98.5?±?0.5% and 100% which agree well with the results of an established polynomial model. It suggests that SSFP is an efficient and environment-friendly method for hazardous solid waste detoxication without wastewater generation.  相似文献   

16.
评价城市土壤磷素淋溶风险的化学指标   总被引:8,自引:0,他引:8  
Soils from urban and suburban areas are normally enriched with phosphorus (P). Sixteen urban soils with a wide range of total P concentrations under typical urban land uses were sampled and analyzed for extractable P concentrations using water, sodium bicarbonate and citric acid. Meanwhile the soils were artificially leached in columns and P concentrations in the leachates were determined. With linear regression a two-stage linear relationship was found to exis tbetween concentrations of P in the leachates and soil P contents obtained by various chemical measurements, i.e., there was a “change-point” denoting the critical threshold value for extractable P between the regression lines, above which concentrations of P in leachates increased substantially. These threshold “change-point” values were 1.5 mg kg^-1 for water-soluble P and CaCl2-P, 25 mg kg^-1 for Olsen-P, and 250-350 mg kg^-1 for citric acid-P with the sharpest change and the best predictor [τ2 (upper) = 0.928, τ2 (lower) = 0.807] appearing for Olsen-P. These “change-points” were considered important criteria in assessing the risk of P leaching from urban soils and could be used as standards to delineate and target hazardous areas in urban and suburban areas.  相似文献   

17.
Nanofertilizers, which supply nutrients to the plant, are used to replace conventional fertilizers. Iron (Fe) is one of the essential elements for plant growth and plays an important role in the photosynthetic reactions. To study the effects of nano-iron fertilizer on Catharanthus roseus, plants were treated with different concentrations (0, 5 10 20, 30, and 40 mM) of iron oxide nanoparticles (Fe2O3) for 70 days. Fe2O3 nanoparticles increased growth parameters, photosynthetic pigments, and total protein contents in the treated plants significantly. The maximum amounts of growth parameters, photosynthetic pigments, and protein contents were obtained with 30 µM Fe2O3 and minimum values of these parameters were found with 0 µM Fe2O3. The highest value of total alkaloid content was obtained in 0 µM Fe2O3 and the lowest value was observed in control plants. Iron oxide nanoparticles increased potassium, phosphorus, and iron absorption but did not show a significant effect on sodium content.  相似文献   

18.

Background, aim, and scope

An innovative stabilization/solidification (S/S) process using high-performance additivated concrete technology was developed for remediating soil contaminated by metals from abandoned industrial sites. In order to verify the effectiveness of this new ex situ S/S procedure, an area highly contaminated by metallic pollutants (As, Cd, Hg, and Pb), due to the uncontrolled discharge of waste generated from artistic glass production on the island of Murano (Venice, Italy), was selected as a case study. The technique transforms the contaminated soil into an aggregate material suitable for reuse as on-site backfill. This paper reports the main results of the demonstration project performed in collaboration with the local environmental protection agency (ARPAV).

Materials and methods

An ex situ treatment for brownfield remediation, based on the transformation of contaminated soil into very dense, low porous, and mechanically resistant granular material, was set up and tested. Specific additives (water reducers and superplasticizers) to improve the stabilized material properties were developed and patented. A demonstration plant assembled on the study area to treat 6 m3 h–1was then tested. After excavation, the contaminated soil was screened to remove coarse material. The fraction Ø?>?4 mm (coarse fraction), mainly composed of glass, brick, concrete, and stone debris, was directly reused on site after passing through a washing treatment section. The highly polluted fraction Ø?≤?4 mm (fine fraction) was treated in the S/S treatment division of the plant (European patent WO/2006/097272). The fine fraction was mixed with Portland cement and additives defined on the basis of the high performance concrete technique. the mixture was then granulated in a rolling-plate system. After 28 days curing in an onsite storage area to allow for cement hydration, the stabilized material was monitored before its in situ relocation. The chemical, mechanical, and ecotoxicological reliability and performance of the treatment was checked. Metal leachability was verified according to four leaching test methods: Italian Environmental Ministry Decree (1998), EN 12457 (2002) tout court, amended only with MgSO4 and, lastly, with artificial sea water. The mechanical properties were measured according to BS (1990) and AASHTO (1999) to obtain the Aggregate Crushing Value and California Bearing Ratio, in that order. Moreover, leachate samples prepared with artificial seawater were assessed via the Crassostrea gigas embryotoxicity test and Vibrio fischeri bioluminescence inhibition test to discriminate the presence of potential ecotoxicological effects for the brackish and saltwater biota.

Results

Outcomes from all leachate samples highlighted the effectiveness of the remediation treatment, fully complying with the Italian legislation for non-hazardous material reuse under a physicochemical viewpoint. The stabilized granular material demonstrated high mechanical strength, low porosity, and leachability. Moreover, ecotoxicological surveys indicated the presence of low toxicity levels in leachate samples according to both toxicity tests.

Discussion

Remediated soil samples revealed a significant decrease in leachability of heavy metals as a consequence of the application of additivated cement that enhanced granular material properties, resulting in improved compactness due to the reduction in water content. The toxicity data confirmed this state-of-the-art technique, indicating that leachates could be deemed as minor acutely toxic.

Conclusions

The proposed S/S treatment proved to be able to remediate soil contaminated by heavy metals through trapping pollutants in pellet materials presenting adequate physicochemical, mechanical, and ecotoxicological properties in order to prevent leachability phenomena, their reclamation, and reuse being made easier by its granular form.

Recommendation and perspectives

This project foresees long-term monitoring activity over several years (until 2014) to consider treatment durability.  相似文献   

19.
Abstract

The effect of soil pH on the exchangeability and solubility of soil cations (Ca, Mg, Na, K, and NH4‐N) and anions (NO3‐N, Cl, and P) was investigated for 80 soils, spanning a wide range in physical and chemical properties and taxonomic groups. This information is needed from environmental and agronomic standpoints to estimate the effect of changes in soil pH on leachability and plant availability of soil nutrients. Soils were incubated with varying amounts of acid (H2SO4) and base (CaCO3) for up to 30 days. Although acid and base amendments had no consistent effect on cation exchangeability (as determined by neutral NH4OAc), amounts of water‐soluble Ca, Mg, Na, K, NH4‐N, and P decreased, while NO3‐N and Cl increased with an increase in soil pH. The increase in cation solubility was attributed to an increase in the negative charge of the soil surface associated with the base addition. The change in surface electrostatic potential had the opposite effect on amounts of NO3‐N and Cl in solution, with increases in N mineralization with increasing soil pH also contributing to the greater amount of NO3‐N in solution. The decrease in P solubility was attributed to changes in the solubility of Fe‐, A1‐, and Ca‐P complexes. The logarithm of the amount of water‐soluble cation or anion was a linear function of soil pH. The slope of this relationship was closely related (R2 = = 0.90 ‐ 0.96) to clay content, initial soil pH, and size of the cation or anion pool maintaining solution concentration. Although the degree in soil pH buffering increased with length of incubation, no effect of time on the relationship between cation or anion solubility and pH was observed except for NO3‐N, due to N mineralization. A change in soil pH brought about by acid rain, fertilizer, and lime inputs, thus, affects cation and anion solubility. The impact of these changes on cation and anion leachability and plant availability may be assessed using the regression equations developed.  相似文献   

20.
Summary An understanding of no-till ecosystems is essential for increased acceptance of conservation tillage practices. The primary objective of the present research was to assess the nutrient contributions of leachates from decomposing corn residue to soil in continuous-corn no-till ecosystems. A secondary objective was to estimate the phytotoxic effects of these leachates on corn seedling growth. The effects of moisture, temperature, and resident and non-resident microflora on leachates recovered from decomposing surface-applied corn residue were also studied. Leachates were analyzed for organic C, total N, PO 4 3– -P, acid and alkaline phosphatase activity, urease activity, and phytotoxic effects. Within the first 90 days of a 215-day field study 73%, 83%, and 60% of C, N, and P, respectively, were leached. In terms of nutrient concentration, this suggests two distinct phases of release of nutrients onto the soil: A high initial flux of nutrients that is followed by a low-concentration release. No phytotoxic effect of field leachates was observed. Acid and alkaline phosphatase activity was highest on days 39 and 47 whereas urease activity peaked on day 149. In laboratory studies, alterations in temperature or moisture had little effect on the leachate nutrient concentration, or phytotoxic or enzyme activity. Increasing amounts of organic C and N were extracted over time. No phytotoxic effects were expressed in the laboratory. Overall, it appears that the maximum leaching of nutrients occurs early in the decomposition process and that in no-till systems no phytotoxicity can be associated with decomposition of surface residues.Paper No. 11871 of the Purdue University Agricultural Experiment Station Series  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号