首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
通过布置的设施菜田土壤淋溶装置,研究了长期不同施肥处理(不施肥NN、有机物料MNS、优化施氮SN、传统施氮CN和秸秆还田)对设施菜田土壤硝态氮淋溶(90cm)的影响。结果表明,整个生育期不同的施肥处理之间硝态氮淋溶存在显著差异,淋溶量大小均表现为CNSNMNSNN,分别为475,295,239,176kg/hm2,2013年秋冬季和2014年冬春季淋溶范围分别为84~187kg/hm2和92~288kg/hm2;2014年冬春季硝态氮淋溶量高于2013年秋冬季,高出53.9%;番茄不同生长时期硝态氮淋溶量不同,淋溶主要集中在番茄的生长前期,生长前期淋溶最大比重达到63.9%,生长后期最小的淋溶比重仅为5.5%。2013年秋冬季CN和CN+S、2014年冬春季SN和SN+S以及CN和CN+S之间差异均达到了显著性水平,秸秆还田处理一年共减少了207kg/hm2硝态氮的淋溶,说明秸秆还田降低硝态氮淋溶量。  相似文献   

2.
针对蔬菜灌溉水肥渗漏问题,采用田间试验和室内分析相结合,研究了番茄膜下沟灌灌水量与土壤硝态氮的根层外渗漏关系,分析了灌水量与不同根层土壤硝态氮的淋溶和保蓄特征,结果表明:灌溉不施肥条件下灌水量与土壤硝态氮淋溶量和淋溶率、灌溉施肥条件下灌水量与土壤施入硝态氮的保蓄率和渗漏率均呈直线关系;灌溉均会引起浅根层(0—20 cm)硝态氮淋溶,灌溉施肥条件下7.5~15 mm灌水量范围硝态氮积累有一个峰值,而22.5~45 mm范围则有两个峰值;灌水量在7.5~15mm之间,灌溉不施肥条件下根层土壤硝态氮淋溶率为0,灌溉施肥条件下土壤硝态氮渗漏率为0~5.19%;灌水量在22.5~45 mm之间,灌溉不施肥土壤硝态氮淋溶率为5.38%~19.08%,灌溉施肥条件下根层土壤硝态氮渗漏率为21.91%~61.96%。日光温室番茄膜下沟灌能减少肥料淋溶与渗漏的节水灌水量为15 mm。  相似文献   

3.
优化施肥对大棚番茄氮素利用和氮素淋溶的影响   总被引:6,自引:1,他引:5  
以河北省徐水县连续11年种植春番茄的大棚蔬菜地为试验对象,采用田间对比和土壤硝态氮地下淋溶原位监测方法,研究了合理优化施肥对春番茄经济效益和土壤中硝态氮淋溶的影响。试验以氮素空白为对照,设单施有机肥、常规施肥和优化施肥。其中优化施肥与常规施肥有机肥用量一致,无机氮素减少了240 kg/hm2。结果表明, 1) 优化施肥的春番茄产量和经济效益较常规施肥分别提高了4.1% 和4.5%; 2)优化施肥的氮素利用率显著提高,比常规施肥增加了1.48%; 3) 优化施肥可以显著减少大棚菜地敞棚期硝态氮的淋溶量。2011年本试验敞棚期(5月8日9月30日)降水总量为465.3 mm,优化施肥土壤硝态氮淋溶量比常规施肥减少了50.06 kg/hm2。  相似文献   

4.
探讨纳米碳添加对土壤酶活性、土壤速效养分、番茄产量品质的影响。以“普罗旺斯”品种的番茄为材 料,在河北石家庄温室大棚进行纳米碳培肥试验,设置 4 个施肥处理:化肥(CK)、化肥 + 清水(CKH)、化肥 +0.1% 纳米碳(C1)、化肥 +0.3% 纳米碳(C2),研究添加不同量纳米碳对土壤碳氮转化相关酶活性、硝态氮、 速效钾、番茄产量与品质的影响。结果表明,(1)施加纳米碳可显著提高土壤 β-1,4- 葡萄糖苷酶、β- 纤维二 糖苷酶、β-1,4-N- 乙酰葡糖氨糖苷酶、亮氨酸氨基肽酶的活性。(2)施加纳米碳可提高土壤硝态氮、速效钾含 量。采收旺盛期,C1、C2 处理比 CK 土壤硝态氮含量提高 50.7%、122.8%,比 CKH 土壤硝态氮含量提高 46.1%、 115.9%。收获期,C1 处理的土壤速效钾含量比 CK、CKH 土壤速效钾含量高 32.0%、35.1%,C2 处理下的土壤速 效钾含量比 CK、CKH 的土壤速效钾含量高 52.4%、55.9%,C2 比 C1 处理土壤速效钾含量提高 15.4%。(3)施用 不同量纳米碳均表现出增产的效果,对部分番茄品质指标数值有提升作用。化肥中添加适量纳米碳可提高土壤碳 氮转化相关酶活性,提高土壤对碳和氮的利用、转化,提高土壤硝态氮、速效钾含量,对番茄有增产提质的潜力。  相似文献   

5.
降低设施菜田的氮素淋溶对于缓解菜区农业面源污染具有重要意义。通过有机肥替代氮肥及节水研究了设施番茄和辣椒农田氮素淋溶变化特征。试验设置:化肥(HF)处理、有机肥替代化学氮肥40%(TDN)处理、有机肥替代化学氮肥40%+节水30%(TDN+JS)处理。研究结果表明:两个监测年度不同蔬菜季所有处理淋溶液硝态氮平均浓度为70.4~202.4 mg/L。一个番茄辣椒轮作周期HF、TDN和TDN+JS硝态氮平均淋溶量分别为130.9、116.2和97.2 kg/hm~2。TDN处理硝态氮淋溶量比HF处理平均降低11.4%。TDN+JS处理硝态氮淋溶量比HF处理显著降低25.9%。硝态氮淋溶是氮淋溶的主体,占总氮淋溶的69.1%~73.1%,可溶性总氮占总氮淋溶的77.2%~79.3%。两季番茄产量为33.0~50.8 t/hm~2,辣椒产量为17.6~19.8 t/hm~2,不同处理之间差异不显著。说明有机肥替代氮肥及适当节水灌溉是降低设施菜田氮素淋溶的有效途径。  相似文献   

6.
为了弄清不同灌溉方式对日光温室番茄水分利用效率及硝态氮在土壤剖面中迁移的影响,选择山东寿光日光温室,以当地主栽品种"齐达利"为试材,研究了沟灌、小水勤灌和滴灌3种灌溉条件下设施番茄的产量,水分利用效率及硝态氮在0—90cm土壤剖面中的分配规律。结果表明,与传统沟灌相比,小水勤灌、滴灌均能够显著提高设施番茄经济产量,增产率分别为15.5%,11.3%,同时节水率分别为16.7%,36.0%,而相应产量水分效率则分别提高了38.7%,74.0%;同时,两种灌溉方式还显著改变了硝态氮在土壤剖面的分布,将更多的硝态氮保留在作物所能再利用的土层中,减少了硝态氮的淋失,对保护地下水环境具有重要意义。  相似文献   

7.
【目的】研究黄土区旱作农田不同施肥和覆盖处理对土壤水分与硝态氮淋溶的影响,以提高水肥利用效率,增加作物产量,为选取适宜于该区可持续生产的农田管理措施提供理论基础。【方法】选取渭北旱塬定位试验中不施肥对照、施氮磷化肥、氮磷化肥配施钾肥、氮磷化肥配施生物炭、氮磷化肥与休闲期地膜全覆盖、氮磷化肥与生育期地膜全覆盖和氮磷化肥与全年地膜全覆盖共7个处理。分析了不同处理连续耕作冬小麦15年后收获期剖面硝态氮累积和生长季内土壤剖面水分变化状况。【结果】与对照相比,施氮磷化肥处理显著增加了硝态氮在0—300 cm土层中的累积,累积量是对照的6.1倍。与施氮磷化肥相比,在氮磷化肥基础上生育期地膜全覆盖、配施生物炭、配施钾肥和全年地膜全覆盖处理显著减少了土壤硝态氮累积量,分别减少了78.7%、73.2%、66.0%和59.7%,氮磷化肥与休闲期地膜全覆盖土壤硝态氮含量较施氮磷化肥处理虽无显著差异,但硝态氮累积量也减少19.2%。与对照相比,施氮磷化肥处理对0—300 cm土层水分补给和消耗量无显著影响。与施氮磷化肥相比,氮磷化肥基础上配施钾肥和生物炭对土壤水分补给和消耗量也无显著影响,而施氮磷化肥基础上的休闲期地膜全覆盖、生育期地膜全覆盖和全年地膜全覆盖显著增加土壤水分补给量,其中只有氮磷化肥与休闲期地膜全覆盖处理显著增加了土壤水分消耗量。硝态氮在土壤中的累积受土壤水分运移影响,其在土壤中的累积量随着水分补给量的增加而增加。土壤水分运移能显著影响硝态氮在土壤剖面的分布,其结果是氮磷化肥与生育期地膜全覆盖和氮磷化肥配施生物炭处理硝态氮主要分布在0—20 cm土层,氮磷化肥配施钾肥和氮磷化肥与全年地膜全覆盖处理硝态氮主要分布在0—100 cm土层,而施氮磷化肥和氮磷化肥与休闲期地膜全覆盖处理硝态氮主要分布在0—200 cm土层,其中施氮磷化肥和氮磷化肥基础上配施钾肥、全年地膜全覆盖、休闲期地膜全覆盖4个处理出现硝态氮累积峰。【结论】不同农田管理措施通过对水分的调控减少硝态氮淋溶,进而提高氮素利用效率,其中在施氮磷化肥的基础上增加生育期地膜全覆盖能有效调控土壤水分运移和减少硝态氮淋溶累积,是旱塬区改善农田水肥状况,增加作物产量的适宜措施。  相似文献   

8.
日光温室土壤剖面矿质态氮的含量、累积及其分布特性   总被引:11,自引:0,他引:11  
测定了西安郊区和杨凌地区日光温室栽培番茄生长期间及收获后土壤剖面矿质态氮(铵态氮及硝态氮)的含量,分析了不同形态氮素在土壤剖面的累积及分布情况。结果表明,随着番茄的生长,土壤剖面硝态氮含量逐渐降低,降低的幅度因土壤层次不同而异;土壤剖面铵态氮以3月份含量最高,11月份与5月份相近。番茄收获后土壤剖面残留矿质氮以硝态氮为主,约占土壤剖面矿质氮的比例为80%~90%;残留的铵态氮在土壤剖面的分布相对较为一致。蔬菜生长期间及收获时日光温室土壤剖面硝态氮累积量均表现出在土壤表层相对累积现象,且温室土壤剖面硝态氮的残留量仍高于露地及高产农田。为减少硝态氮淋失带来的环境问题,除合理施用氮肥外,如何减少日光温室蔬菜作物收获后残留硝态氮的淋溶是值得进一步研究的问题。  相似文献   

9.
采用田间小区试验,研究了生物黑炭对设施土壤硝态氮动态变化的影响,以期利用生物黑炭解决设施土壤硝态氮累积和淋溶问题。结果表明,生物黑炭能显著降低设施土壤表层及剖面硝态氮含量,且使用量越大,效果越明显。以番茄生长后期为例,7.5 t/hm2黑炭(T2),15 t/hm2黑炭(T3),30 t/hm2黑炭(T4)处理与习惯处理(T1)相比,表层土壤硝态氮含量分别降低11.71%、16.08%、24.83%,剖面硝态氮含量也分别降低11.63%、17.51%、25.38%。设施土壤硝态氮含量季节性变化明显,施用生物黑炭能降低设施土壤硝态氮周年变化幅度,使用量越大,效果越明显。生物黑炭也可降低蔬菜硝酸盐含量,且使用量越大,蔬菜硝酸盐含量越低。低量生物黑炭对蔬菜产量影响不大或有提高作用,但随使用量的增大,产量有下降趋势,因此,设施土壤生物黑炭使用量不宜过高。  相似文献   

10.
灌溉施肥对壤质潮土硝态氮淋溶的影响   总被引:64,自引:5,他引:59  
在衡水市邓庄乡壤质潮上上进行了以灌水为主处理、氮用量为副处理,各五水平的定位试验。结果表明,氮肥用量是硝态氮淋溶损失的决定因素,冬小麦施氮150kghm-2不发生淋溶,施氮225~300kghm-2则硝态氮的淋溶增强。小麦播前基施氮肥量过高会使冬季发生硝态氮的淋溶。小麦拔节期和灌浆期灌溉一般不会引起硝态氮的淋溶损失;尽管一次灌水1350m3hm-2硝态氮的淋失量不高,但土壤剖面中的硝态氮含量显著比低灌水量的低。为降低硝态氮的损失,应控制一次灌水量不超过1050m3hm-2。雨季降水导致大量硝态氮淋溶损失,防治雨季土壤硝态氮的淋溶损失至关重要。  相似文献   

11.
分根区交替灌溉和氮形态影响土壤硝态氮的迁移利用   总被引:1,自引:0,他引:1  
采用模拟土柱利用15N标记于土层10~20 cm、40~50 cm的方法,并设置不同形态氮肥供应(铵态氮、硝态氮)、灌溉方式(常规灌溉CI、分根区交替灌溉APRI),研究APRI下土壤中不同层次硝态氮的去向以及不同形态氮肥的影响。结果发现,APRI节水34.31%而不显著影响产量(P0.05)。随着15N标记层次下降,番茄植株对15N吸收利用率以及番茄收获后15N在1 m土层内的残留量显著下降,损失率显著增加。CI对10~20 cm土层的15N淋洗作用强于40~50 cm土层,APRI对10~20 cm的15N淋洗作用相对CI减弱,而促进了40~50 cm土层中61.3%的15N向上层土壤迁移。APRI下15N的损失率显著降低,利用率没有大幅度下降。相对于铵态氮肥料,硝态氮供应由于促进了植株生长及对15N的吸收,造成番茄收获后1m土层内15N累积量减少,而损失率与相应铵态氮供应的处理没有显著差异。因此分根区交替灌溉能够减少土壤中硝态氮的淋洗,并能够促进下层土壤硝态氮向上迁移,减少损失,增加植物吸收利用的机会;不同形态氮肥通过影响植物生长而影响土壤中硝态氮的去向。  相似文献   

12.
根系密集层以下土壤剖面硝态氮累积导致的土壤氮淋溶是活性氮损失的主要途径,然而不同养分管理措施对菜田土壤硝酸盐累积和淋溶的系统性影响尚不清楚。该文通过搜集整理2000-2021年间发表的国内外相关文献数据,分别以农民传统施氮量(TF)、单施化肥(CF)和不添加抑制剂(WI)为对照组,应用Meta分析方法整合分析了减量施氮(RF)、有机无机配施(OF)和抑制剂调控(IF)三种主要优化养分管理措施对菜田土壤硝酸盐累积淋溶的影响。结果表明,与各自的对照相比,三种养分管理措施均可以有效降低0~100 cm土壤剖面的硝酸盐累积量及淋溶量。RF、OF和IF分别显著降低0~100、60~80和0~80 cm土层硝酸盐累积量;RF的氮淋溶阻控效应值为?4.301,硝酸盐淋溶量下降43.19%;OF的氮淋溶阻控效应值为?4.279,淋溶量下降36.79%,但有机氮肥替代率大于60%时阻控效应反而下降;对于IF来说,单施脲酶抑制剂或硝化抑制剂,以及二者同时配施对硝酸盐淋溶均具有显著的阻控效应,但以二者同时配施最好,效应值为?4.373,淋溶量下降37.12%。施氮量和水分投入量是影响菜田硝酸盐累积淋溶的两个主要因素,二者总的贡献度达43.2%~47.3%。综合分析表明:对于减氮施肥措施而言,水分、纯氮投入量分别为430.74 mm和646.53 kg/hm2左右时,减氮比例以30%~50%为宜;对于有机无机配施措施而言,在土壤有机质含量较高的土壤上,水分、纯氮投入量分别为360.28 mm和432.18 kg/hm2左右时,有机肥替代化肥比例以30%~60%为宜;抑制剂调控氮素转化则以脲酶/硝化抑制剂配合施用效果最佳。该研究可为蔬菜生产中制定适宜的养分管理策略提供依据。  相似文献   

13.
研究了陕北黄绵土,关中土与陕南水稻土土壤剖面中硝酸盐的分布与累积,分析了硝酸盐淋移与土壤剖面粘粒含量的关系。结果表明,黄绵土由于粘粒含量少,土壤疏松,氮肥施入土壤后硝化作用速度快,氮素多以硝态氮存在于土壤中,遇到过量的灌溉或降水,容易引起硝酸盐淋失。在米脂的川道地,施肥2个月后,硝酸盐峰值在50cm左右,4个多月后,峰值下移至100cm左右,6个月后,该峰值下降到130cm左右,一年内,硝酸盐的峰值已经消失,分布在130至350cm之间。因此,在黄绵土地区可以灌溉的川道地,氮素损失的主要途径是硝酸盐淋失。关中土,粘粒含量相对较高,硝化作用速度快,但由于在80120cm有一粘化层,阻碍了水分与硝酸盐的向下淋移,使得大部分硝酸盐累积在0100cm土层,其累积量占到0400cm总累积量的64%~74%,而200400cm仅占到7%~13%。而且淋移到100cm以下的硝酸盐,也通过反硝化损失了。陕南水稻土,由于深层土壤水饱和,硝酸盐难以向下淋移,氮素主要累积在土壤表层。由于下层土壤长期处于厌气条件,即使淋移到下层的硝酸盐也通过反硝化作用而损失掉了。  相似文献   

14.
不同水氮用量对日光温室黄瓜季硝态氮淋失的影响   总被引:3,自引:2,他引:1  
于2010年3~7月,在河北省辛集市马庄农场研究了不同水氮用量对黄瓜季硝态氮淋失的影响,结果表明,通过调节不同生育阶段灌水量使黄瓜全生育期土壤含水量保持在18.7%~22.1%,不仅可以满足黄瓜生长发育对土壤水分的要求,而且可以减少用水量30%。不同处理中以节水灌溉、习惯施氮处理(W2N1)土壤硝态氮含量最高,习惯灌水、减量施氮处理(W1N2)最低。全生育期内,土体95cm深度硝态氮淋失量与土壤含水量、土壤硝态氮含量均呈正相关,其中以初瓜期和盛瓜期相关性系数最高。与农民习惯水氮处理(W1N1)相比,节水减氮处理(W2N2)在节水30%减施氮25%的情况下,可以显著降低黄瓜季土壤硝态氮淋失量,整个生育期降低淋失量35.0%。3年连续试验结果表明,节水减氮处理(W2N2)与习惯水氮处理(W1N1)间黄瓜产量结果差异不显著,说明河北省温室大棚蔬菜生产,目前农民习惯施氮和灌水量有很大的节水节肥空间,根据蔬菜不同生育期需肥量和土壤含水量来合理分配水、氮可取得明显的节水节氮效果。  相似文献   

15.
有机肥配施保水剂对紫色土水分入渗及氮素淋溶的影响   总被引:6,自引:2,他引:4  
以有机肥、保水剂(聚丙烯酰胺PAM、高分子吸水树脂SAP和沃特)为供试材料,通过室内土柱模拟试验,研究有机肥配施保水剂对紫色黏土水分入渗及氮素淋溶的影响。结果表明:有机肥配施保水剂可有效增加土壤的保水保肥能力,是控制土壤水分和养分淋失的有效措施。单施有机肥和有机肥配施保水剂均降低了湿润锋运移深度和入渗速率。与对照相比,单施有机肥和有机肥配施保水剂处理的湿润锋运移深度降低了33.33%~46.49%,入渗速率降低了22.73%~31.82%,累计淋溶液体积降低了1.25%~6.78%。施用有机肥有一定增肥保肥能力,但随淋洗次数增加保肥能力逐渐降低,与对照相比,在持续淋溶条件下单施有机肥的硝态氮和全氮累计损失率分别升高了12.00%,17.51%。有机肥配施保水剂可有效减少氮素淋失量,降低氮素淋失率,提高土壤保肥能力。与施用有机肥相比,有机肥配施保水剂硝态氮损失率降低了35.49%~78.46%,全氮损失率降低了35.53%~71.85%,其中有机肥配施PAM处理保水保肥效果最好。  相似文献   

16.
层状包气带结构中黏土层对污染物进入地下水具有阻滞作用,黏土层的厚度对硝态氮(NO_3~--N)在包气带迁移中的淋失、累积以及反硝化作用等具有非常重要的影响,而目前关于这方面的研究还不足。该研究通过设置高度为40 cm、砂土与黏土层厚度比分别为3∶1,1∶1,1∶3的"上粗下细"型以及全黏土型的4组填充土柱,采用稳定浓度的定水头淋滤试验,研究黏土层厚度不同的土柱NO_3~--N溶液入渗过程、土壤NO_3~--N淋滤、累积和反硝化特征,进而阐明层状包气带黏土层厚度对NO_3~--N迁移的影响。结果表明:湿润锋运移深度和累积入渗量与入渗时间的关系在溶液穿越砂黏土层界面前后由非线性趋于线性,累积入渗量随黏土层厚度增加而显著减小(P0.05);当土柱内黏土层厚度达到40 cm时,其对NO_3~--N淋滤的阻滞作用明显强于黏土层厚度为10~30 cm的土柱;淋滤试验过程中在砂黏土层界面形成水分滞留层,界面处黏土层中NO_3~--N和NO_2~--N累积量均达到峰值,且随着深度的增加,NO_3~--N和NO_2~--N累积量降低;黏土层厚度差不小于20 cm的土柱内NO_3~--N累积量差异显著(P0.05),而40 cm黏土层的土柱反硝化量[(0.15±0.05) g]显著高于黏土层厚度为10~30 cm的土柱(P0.05),说明当黏土层达到一定厚度时(如40 cm),对NO_3~--N的阻滞作用和反硝化作用具有显著影响,对防止NO_3~--N淋失进入地下水产生重要作用。该研究可为层状包气带土壤条件下农田施肥管理与地下水保护提供科学依据。  相似文献   

17.
Seven grassland experiments on sandy and clay soils were performed during a period of 4 years to estimate the nitrogen (N) fertilizer replacement value (NFRV) of concentrated liquid fractions of separated pig slurry (mineral concentrate: MC). The risk of nitrate leaching when applying MC was compared to when applying mineral fertilizers. Grassland yields in 2009–2012 fertilized with MC were compared with grassland fertilized with two mineral fertilizers: granulated calcium ammonium nitrate and liquid ammonium nitrate (LAN). The mineral fertilizers comprised 50% nitrate-N and 50% ammonium-N, and MC comprised 95–100% ammonium-N. Treatment application rates included zero N and three incremental rates of N fertilization. The liquid fertilizers were shallow injected (0–5 cm). The NFRV of MCs was 75% on sandy and 58% on clay soil with granulated ammonium nitrate as reference, and 89% on sandy and 92% on clay soil with LAN as reference. Risk of nitrate leaching after application of MC, measured in residual soil mineral N post-growing season and N in the upper groundwater in the following spring, was equal to that for mineral fertilizers.  相似文献   

18.
采取土柱模拟实验的方法研究了不同施氮强度对宁夏引黄灌区灌淤土中氮素淋洗损失特征,以期为氮素淋失控制和合理施用提供科学依据。试验设5个氮水平,分别为对照处理(N0)、常规氮水平300 kg·hm-2(N300)、优化氮水平(N240)、2倍常规氮水平(N600)、2倍优化氮水平(N480)。试验结果表明:不同施氮水平淋洗液中NO3--N的浓度表现出先升高后降低的趋势,浓度峰值出现的时间随施氮水平增加逐渐后移,NO3--N是氮素淋洗损失的主要形态,而NH4+-N的淋失损失主要出现在淋洗前期,增加施氮量可以推迟各形态氮素峰值出现时间,增加淋失风险。N240,N300,N480和N600处理总氮累积淋失量分别为94.53、128.02、222.06 kg·hm-2和268.6 kg·hm-2,淋洗损失比例分别为39.38%、42.67%、46.26%和44.77%,当季施入稻田土壤的氮肥极易淋洗到100 cm深度以下,成为浅层地下水的潜在威胁。施入到灌淤土的氮素有39.38%~46.26%通过淋洗途径损失,各处理总氮累积量淋失规律服从对数方程Yt=a+blnt(R2=0.927~0.975)。  相似文献   

19.
不同水氮管理对日光温室番茄产量及土壤无机氮的影响   总被引:6,自引:0,他引:6  
以传统水氮管理为对照,分别采用氮素实时监控技术对保护地番茄主要生育期进行氮素追施优化管理,同时结合小管出流的灌溉方式及夏季休闲季添加小麦秸秆-氰氨化钙的优化水氮管理处理并根据课题组同一地区多年的番茄氮素优化管理经验得出的推荐水氮管理处理,即将氮素追施量定为N 300 kg/hm2,在番茄第一、三、五穗果实膨大期各追施N100 kg/hm2,比较研究了不同水氮管理措施对保护地番茄产量及土壤无机氮的影响。结果表明:与传统水氮管理相比,在保证番茄产量的前提下,优化水氮管理和推荐水氮管理两季番茄分别减少了63.5%和50%的氮肥追施量,优化水氮管理处理两季番茄分别减少了44%和39%的灌溉用水。此外,优化水氮管理处理还显著提高了番茄全年的总产量,增产约10%。传统的氮素投入使番茄生育期内的土壤无机氮含量保持较高水平,试验结束时,传统水氮管理处理在0-180 cm各土层无机氮残留量均在N 200 kg/hm2以上,其0-180 cm土层无机氮残留总量已超过N 1 500 kg/hm2;而优化水氮管理和推荐水氮管理处理在改进水氮管理措施后,0-180 cm各土层无机氮残留量显著降低,仅为传统水氮管理的1/2,大幅度降低了土壤氮素的淋洗风险,减轻了由于不合理的水氮管理而对环境造成的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号