首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为深入了解不同草原类型下参考作物蒸散特征及其对气候变化的响应,该文利用FAO Penman-Monteith公式研究了内蒙古地区46个站点1961-2010年参考作物蒸散量及其辐射项和动力学项的时空分布规律和变化特征,并对其主要影响因素进行了分析讨论。研究结果表明:近50a来内蒙古各站点参考作物蒸散量的年平均值均介于570~1 674 mm之间,该地区参考作物蒸散量及其构成项的值西高东低,而且从高到低的5个草原类型依次为:荒漠、草原化荒漠、荒漠化草原、典型草原、草甸草原。各区生长季内参考作物蒸散量约占全年的80%。内蒙古各站点年参考作物蒸散量的变化率在-48~50 mm/10a之间,荒漠、草原化荒漠、荒漠化草原和典型草原参考作物蒸散量变化均不明显,草甸草原参考作物蒸散量显著上升(P=0.001)。各区域参考作物蒸散量辐射项的年值和月值均呈显著的上升趋势,除草甸草原外各区域参考作物蒸散量动力学项的年值和月值呈下降的趋势。风速是影响荒漠、草原化荒漠、荒漠化草原和典型草原西部地区参考作物蒸散量变化的首要因子,风速下降导致该地区蒸散呈下降的趋势;日平均温度是次要因子,但气温升高对参考作物蒸散量变化的作用有限,参考作物蒸散量并未随气候变暖而显著增大;相对湿度是第三因子,与参考作物蒸散量呈负相关(P=0.006);日照时数是第四因子,其值降低导致参考作物蒸散量的下降。典型草原东部和草甸草原地区各站点受气象因子综合影响使参考作物蒸散量呈上升的趋势。该研究探讨了内蒙古各类型草原参考作物蒸散对气候变化的响应,为内蒙古各类型草原的生态保护和可持续发展提供科学依据。  相似文献   

2.
几种常用净辐射计算方法在黄淮海平原应用的评价   总被引:4,自引:2,他引:4  
Penman修正式和FAO Penman-Monteith公式是利用气象资料计算参考作物蒸散量方法中应用最广泛的。这些公式中净辐射是根据温度、日照时数、湿度以及一些当地的参数来计算的。用实测数据评价净辐射计算方法的研究还很少。该文作者利用中国科学院禹城综合试验站实测数据对两个公式中净辐射计算方法在黄淮海平原的应用进行了评价。在Penman修正式中,别尔良德法、彭曼法、布朗特法和邓根云法是常用的净长波辐射计算方法。结果表明:在Penman修正式净辐射公式中,采用别尔良德净长波计算方法误差最小,而且与FAO Penman-Monteith公式中净辐射计算精度一致,但都存在相对误差在11~1月份比其他月份偏大的现象。进一步建立了适合本地区的用总辐射推算净辐射的经验公式。  相似文献   

3.
参考作物蒸散量(ET0)的估算是作物需水量计算的关键,诸多估算方法在不同地区具有不同的适应性。本文利用中国农业主产区6个代表站点的气象数据,以FAO 56 Penman-Monteith (PM)为标准,对常用的1963 Penman(Pen63)、FAO 1979 Penman(FAO 79)、FAO 24 Penman(FAO 24)及1996 Kimberly Penman(Kpen)共4种参考作物蒸散量综合方法进行比较评价。结果表明:(1)Pen63、FAO 79及Kpen的日估算值均比PM估算值偏高,FAO 24偏低,其平均偏差分别为0.28、0.52、0和-0.17mm×d-1,相对偏差为16.0%、25.2%、2.4%、-5.3%,相对均方根误差为12.1%、22.4%、14.2%和13.5%。(2)Pen63、FAO 79的月估算值显著高于PM值,在高估最大的5月份平均偏高12.5mm (10.8%)和28.2mm (22.6%)。FAO 24表现为低估,低估最大的月份平均偏低11.4mm (8.1%),但在南方站点多数月份的估算值与PM估算值无显著差异。Kpen月估算值与PM估算值相比,既有高估(5-10月),也有低估,高估最大的月份平均偏高19.7mm(14.5%),且在南方站点的秋冬季有近6个月与PM无显著差异。(3)Pen63和FAO 79的年值均显著大于PM年值,平均偏高103.8mm(11.8%)和191.5mm(21.3%)。FAO 24年平均低估PM值60.9mm (6.3%),Kpen则平均高估50.5mm (5.8%)。(4)时间尺度对评价结果具有一定影响,4种综合法依据日、年值的评价效果排序分别为Pen63>FAO 24>Kpen>FAO 79和Kpen>FAO 24>Pen63>FAO 79。在日尺度下4种方法更适于湿润气候,但年尺度下仅FAO 79和FAO 24较适于湿润气候。可见,4种综合法以Pen63普适性最好,FAO 79最低,因此使用FAO 79前对其进行适应性评价尤为重要。  相似文献   

4.
基于气象-生理的夏玉米作物系数及蒸散估算   总被引:1,自引:1,他引:0  
准确估算作物系数对预测作物实际蒸散量和制定精准的灌溉计划至关重要。为反映作物逐日作物系数变化,综合考虑气象和生物因子对作物生长的共同影响,采用五道沟水文实验站大型蒸渗仪夏玉米实测蒸散及气象数据,基于地温及叶面积指数建立了气象-生理双函数乘法模型,并结合梯度下降法对模型进行了精度优化。结果表明,在整个玉米生长期中,作物系数实测值和计算值平均绝对误差为0.12,均方根误差为0.15,相关性为0.91,蒸散量实测值与计算值平均绝对误差为1.0 mm/d,均方根误差为4.5 mm/d,相关性为0.75。该模型计算的全生育期蒸散量准确率(误差在2~3 mm/d以内)相比使用联合国粮农组织(FAO)推荐的作物系数计算所得准确率提高了3倍以上,可更精确用于作物系数及蒸散量计算。  相似文献   

5.
干旱区人工绿洲间作农田蒸散研究   总被引:7,自引:1,他引:7  
在黑河流域中游的张掖绿洲区建立了大田环境下的春小麦和夏玉米间作农田能水平衡研究观测点,以气象观测资料为基础,采用波文比能量平衡法(BREB)和参考作物蒸散量—作物系数法(ET0-Kc)对作物的蒸散进行了计算。结果表明:在一个完整的生长期内,利用波文比能量平衡法得到的间作作物蒸散量为688 mm,日均3.4 mm/d,用参考作物蒸散量—作物系数法得到的作物蒸散量为666 mm,日均3.3 mm/d,两种计算方法得到的蒸散量总值差别小。同期,水文平衡法计算结果为733 mm。利用波文比能量平衡法所得结果的分析表明,试验地在不同生长阶段,ET变化剧烈,生长初期、中期、末期分别为1.19、4.41和2.58 mm/d,其蒸散量分别占全年蒸散总量的7.79%、78.73%和13.48%。ET月变化显示,3月维持在一个较低水平;4月和5月剧烈增加;6月达到最大;此后的7月和8月降低,但仍维持在一个高水平;9月,随着作物进入生长末期,蒸散急剧减小。对ET日内变化分析可知,作物蒸散开始于早晨7∶00~8∶00,在14∶00左右达到最大,19∶00~20∶00趋于0 mm/d。不同生长阶段蒸散强度差异明显。  相似文献   

6.
东北地区参考作物蒸散量对主要气象要素的敏感性分析   总被引:13,自引:1,他引:12  
利用国家气象局提供的地面气候资料日值数据集,通过FAO推荐的Penman-Monteith公式计算了东北地区1961-2008年生长季(5-9月)逐日的参考作物蒸散量(ET0),分析了ET0及主要气象要素的变化趋势,并通过响应曲线、敏感矩阵、敏感系数等方法分析了ET0对气温、日照时数、平均风速、平均相对湿度的敏感性。结果表明:(1)近50a来,东北地区的气温呈极显著上升趋势(P0.01),日照时数、平均风速、平均相对湿度呈极显著下降趋势(P0.01);东北地区生长季平均日ET0在以3.60mm.d-1为平均值、±0.3mm.d-1的范围内波动,总体上比较稳定,最大值出现在2001年(3.87mm.d-1),最小值出现在1990年(3.28mm.d-1);(2)当气温、日照时数、平均风速的变化量从-20%变化到20%时,ET0表现为逐渐增加的趋势,当平均相对湿度的变化量从-20%增加到20%时,ET0则逐渐减小;(3)气温、日照时数、平均风速、平均相对湿度的生长季平均日敏感系数均具有较强的空间分异特性,其中气温变化对ET0的影响最为明显,其次是平均相对湿度,日照时数、平均风速对ET0的影响较小。  相似文献   

7.
太行山山前平原区蒸散量和作物灌溉需水量的分析   总被引:9,自引:2,他引:9  
应用Penman-Montieth、Priestley-Taylor和FAO-24 Blaney-Criddle 3种方法计算了太行山山前平原高产区的参考作物蒸散量并对计算结果和利用实际蒸散量计算的作物系数进行了分析,结果表明:Penman-Montieth公式和FAO-24 Blaney-Criddle公式估算的参考作物蒸散量结果相近,而Priestley-Taylor方法结果偏低;在不同公式基础上计算的作物系数也存在着明显的差异,以Penman-Montieth公式为基础计算的作物系数比较合理,FAO-24 Blaney-Criddle计算的作物系数在4月到10月之间比较合理,Priestley-Taylor公式计算的作物系数偏高;在分析了多年作物系数的基础上,对不同水分年型下的作物需水量和灌溉需水量进行了计算,冬小麦和夏玉米季的灌溉需水量分别在270~400 mm和0~330 mm之间。  相似文献   

8.
半干旱地区不同水文年Hargreaves和P-M公式的对比分析   总被引:11,自引:1,他引:10  
该文运用P-M和Hargreaves公式,对河南新乡市4个典型水文年参考作物蒸散量进行了计算,并以P-M公式的计算结果为标准,对Hargreaves公式计算结果进行分析.研究结果表明:Hargreaves公式计算的年值偏差随降水量的增加而增大,但在各典型年的第1~12旬和31~36旬,两公式旬值计算结果没有显著差别;偏差出现在第13~30旬,各典型年Hargreaves公式的计算值均大于P-M公式的计算值.另外,该文建立了各典型年两公式在第13~30旬的回归关系,修正后的Hargreaves公式能很好的在新乡市应用,并且为其他类似的半干旱地区准确运用Hargrcaves公式计算ET0提供参考.  相似文献   

9.
依据2006-2007年田间试验资料,利用Penman-Monteith公式计算鲁北地区主要作物(冬小麦、夏玉米、棉花、苹果和韭菜)各生育期的参考作物蒸散量,利用农田水量平衡方程及土壤水分胁迫系数计算作物不同生育期实际蒸散量,计算得到相应的作物系数.结果表明,鲁北地区目前产量状况下冬小麦、夏玉米、棉花、苹果和韭菜全生育期的需水量分别为491.2、371.0、425.8、666.8和891.8mm,作物系数分别为1.32、1.34、0.85、0.99和1.33.  相似文献   

10.
联合国粮农组织推荐的蒸散计算方法中,蒸散系数是计算实际蒸散必不可少的参数。本文从蒸散系数的定义出发,在2005年额济纳绿洲生长季连续观测的基础上,运用波文比能量平衡法计算额济纳绿洲草地的实际蒸散量,利用FAO 56Penman-Monteith模型计算草地的参考蒸散,将实际蒸散与参考蒸散相除即得到额济纳绿洲草地的蒸散系数。通过研究发现:生长季草地的蒸散量(ETc)为446.96mm,从生长季初期开始,草地的蒸散量开始增加,在6月后半月达到最大值6.724mm/d,此后蒸散量开始快速下降,在生长季末期达到最低值1.215mm/d;蒸散系数(Kc)呈现出与蒸散量(ETc)相同的变化趋势,自生长季初期开始蒸散系数快速上升,在6月后半月达到生长季最大值0.623,之后随着草地生长减缓,蒸散系数快速下降,直至生长季末期草地停止生长。对额济纳绿洲草地蒸散系数的计算可以为该地区准确估算草地生态需水量提供依据。  相似文献   

11.
构建华北地区设施茄子蒸散量估算模型,可为制定其优化灌溉制度提供理论依据。本研究设灌水定额15 mm(W1)、22.5 mm(W2)、30 mm(W3)和37.5 mm(充分灌溉, CK)4个处理,在设施茄子苗期、开花座果期和成熟采摘期土壤含水率分别达田间持水量的70%、80%和70%时进行灌溉,以保证土壤供水充足。基于修正后的Penman-Monteith方程,通过分析CK处理的作物系数与叶面积指数的关系,建立了基于气象数据与叶面积指数的蒸散量估算模型,利用W1、 W2和W3实测蒸散量对其进行验证。结果表明:修正后的Penman-Monteith方程可用于设施参考作物蒸散量的估算,W1、W2和W3蒸散量的实测值与新建模型的模拟值平均相对误差分别为17.81%、18.31%和17.97%。作物系数与叶面积指数呈显著线性关系,可通过叶面积指数确定作物系数。分析W1、W2、W3和CK处理的产量和水分利用效率(WUE)得出, W2与CK产量差异性不显著,而WUE差异性显著,较CK提高31.59%,表明W2兼顾产量和WUE。W2处理下茄子的作物系数,苗期为0.21~0.46,开花座果期为0.62~0.94,成熟采摘期为0.70~0.92。本研究认为,新建模型在估算设施茄子实际蒸散量上具有较好适用性,计算出的作物系数在节水灌溉条件下具有实际应用价值。  相似文献   

12.
利用小蒸发皿观测资料确定参考作物蒸散量方法研究   总被引:6,自引:2,他引:6  
参考作物蒸散量是土壤-植被-大气系统水分能量平衡模型的重要参数,如何准确获得将直接影响模型应用和最终模拟预测精度。该文利用分布于黄土高原地区65个气象站1971~2000年的气象资料,以FAO推荐的Penman-Monteith方法确定的参考作物蒸散量为标准,提出了根据平均相对湿度与风速为变量确定由20 cm小蒸发皿观测的水面蒸发量计算参考作物蒸散量的系数Kp。结果表明:由蒸发皿观测值计算的3 d或更长尺度的ET0与Penman-Monteith方法计算的ET0结果一致性很高,在对Kp方程系数进行适当的地域性调整后,由蒸发皿观测值和Kp确定的ET0与Penman-Monteith方法确定的ET0结果一致,从而认为在黄土高原地区参考作物蒸散量计算可以应用20 cm蒸发皿系数法。  相似文献   

13.
中国参考作物腾发量时空变化特性分析   总被引:28,自引:6,他引:28  
分析参考作物腾发量的时空变化特征,有助于了解中国农业及生态需水的分布与演变规律。基于全国范围200多个气象站测站逐日气象观测资料,应用FAO-Penman-Monteith公式,计算得出各站历年逐日参照作物腾发量ET0。利用GIS的空间分析功能,采用反距离空间插值方法得到全国参考腾发量的分布图,统计分析了不同分区不同时段ET0的变化情况。结果表明:西北河西走廊地区和南方岭南地区的参考作物腾发量较大,最大值超过1500 mm。而东北黑龙江一带和四川盆地附近,参考作物腾发量较小,在600~700 mm之间。此外,夏季ET0的分布特征决定了全年ET0的分布特征。选取4个代表气象站,对其ET0的历年变化及其与气象因素的关系进行了分析。分析表明,受风速减小和气温增加的共同影响,干旱地区、半干旱地区和半湿润地区的参考作物腾发量呈现减少趋势,湿润地区则相对稳定。  相似文献   

14.
为了扩大气象卫星FY-3在科研、业务中的应用范围,将数据尽快用于遥感反演蒸散量业务工作中,根据FY-3/VIRR卫星通道特点,以山东为研究区域,基于地表能量平衡方程,结合地面气象要素,提出了利用FY-3卫星遥感数据进行区域蒸散反演的方法,建立了省级的区域逐日蒸散量估算系统。以2013年5月11日、8月20日、10月16日估算的日蒸散量为例,分析表明:基于FY-3/VIRR卫星反演的日蒸散量与利用Pen-man公式方法得到的数据对比,偏差分别为-0.19、-0.12和0.16 mm/d,相对偏差分别为10%、12%和11%;反演结果可准确揭示区域内不同地表覆盖类型的蒸散量的空间特点和差异性,结果较为合理;与同区域、同时段的EOS/MODIS蒸散产品进行对比分析表明:2种日蒸散产品的空间分布特征总体非常相似,相关系数在0.99以上,均方根差在0.36 mm以下,说明2种产品的一致性较好。利用中国新型自主研发的FY-3卫星资料估算蒸散量是可行的。  相似文献   

15.
河北省近35年农作物需水量变化趋势分析   总被引:25,自引:3,他引:22  
根据联合国粮农组织(FAO)推荐的参考作物蒸散计算方法和相关作物系数,利用河北省84个地面气象站的资料,计算了河北省主要作物冬小麦和玉米近35年(1965~1999年)的需水量和缺水量,并分析了其变化趋势.结果表明:河北省主要作物冬小麦和玉米的需水量在近35年呈减少趋势,每10年下降量冬小麦全省平均26 mm,其中中南部地区28 mm,东部地区15mm;夏玉米全省平均9.7 mm,其中南部地区9.4 mm,中部地区10.2mm;春玉米全省平均9.9mm,其中东部地区8.8 mm,北部地区10.5 mm.全省和各区域作物需水量变化均通过0.05信度的显著性检验.不同作物缺水量不同,其中冬小麦最多,全省平均345 mm,夏玉米20 mm,春玉米29 mm;虽然不同作物均表现出缺水增加的趋势,但不显著.  相似文献   

16.
西北地区小型蒸发皿资料估算参考作物蒸散   总被引:4,自引:3,他引:1  
参考作物蒸散是水文循环的重要参量,它的准确估算对于农业水资源的合理规划和利用尤为关键。本文利用西北干旱半干旱地区123个气象台站1971-2000年的逐日气象观测资料,以FAO推荐的Penman-Monteith公式确定的参考作物蒸散为标准,建立了基于相对湿度与10m高度处风速的由20cm小型蒸发皿换算参考作物蒸散的Kp模型。结果表明:西北地区参考作物蒸散ETref与蒸发皿蒸发Epan的相关系数达到0.967,两者之间存在明显的线性相关关系。与单站模型和全区模型相比,分区域Kp模型的精度介于两者之间,同时具有一定的推广价值,建议使用。  相似文献   

17.
Abstract

The rate of crop evapotranspiration though can be predicted theoretically but the actual field study would give a more accurate data. Result from a simple lysimeter study showed that the daily rate of actual crops evapotranspiration, ETa of chilli (Capsicum annum) under the tropical condition was in the range between 4.94–7.72 mm. Their actual crop evapotranspiration/ reference crop evapotranspiration ratio, ETa/ETo ratio was between 0.94 to 1.76 depending on the growth stages of the crops. The estimated monthly value of ETo using Blaney‐Criddle was about 5 mm/day.  相似文献   

18.
The objective of this study is to investigate the potential of artificial neural networks (ANNs) for estimating reference monthly evapotranspiration under arid and semi-arid environments. A simple leave one out data analysis was carried out; one neural network solution on six inputs and another six network solutions on five inputs for each monitoring station were done. Comparison of the results showed that the accuracy of ANNs is decreased when relative humidity, wind speed and solar or extraterrestrial radiation are excluded as input variables. The results also showed that monthly evapotranspiration could be computed with relatively good accuracy compared with local calibrated Hargreaves equation based on air temperature using trained ANNs at another location. We conclude, based on our overall results, that temperature-based method ANNs can be used with relatively good accuracy for water resource management, irrigation scheduling and management, and environmental assessment when data are not enough using trained ANNs from another location.  相似文献   

19.
The Penman–Monteith (FAO-56 PM) equation is suggested as the standard method for estimating evapotranspiration (ET0) by the International Irrigation and Drainage Committee and Food and Agriculture Organization (FAO). On the other hand, the Hargreaves–Samani (HS) equation is an alternative method compared with the FAO-56 PM equation. In the present study, the original coefficient C of the HS equation is calibrated based on the FAO-56 PM equation for estimating the reference ET0 from 15 meteorological stations in central Iran (about 170,000 km2) under semiarid and arid conditions. After calibration, the new values for C are ranged from 0.0018 to 0.0037. The mean bias error (MBE), the root mean square error (RMSE), and the ratio of average estimations of ET0 (R) values for all stations are ranged from 0.12 to 5.38, ?5.35 to 1.15 mm d?1 and 0.64 to 1.28 for the HS equation and from 0.12 to 2.48, ?2.2 to 0.60 mm d?1, and 1.00 to 1.05 for the calibrated Hargreaves–Samani equation (CHS), respectively. Results indicate that the average RMSE and MBE values are decreased by 40% and 66%, respectively. Relationships for calibrating the C coefficient on the basis of annual average of daily temperature range (ΔT) and wind speed (V) are proposed, calibrated, and validated. Hence, the CHS equation can be used for ET0 estimates with acceptable accuracy instead of the FAO-56 PM method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号