首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
In spite of their low concentrations in soil solutions, low–molecular weight organic substances (LMWOS) such as amino acids, sugars, and uronic acids play a major role in the cycles of C and N in soil. With respect to their low concentrations and to possible matrix interferences, their analysis in soil leachates is a challenging task. We established two HPLC (high‐performance liquid chromatography) methods for the parallel determination of amino acids and carbohydrates in soil leachates. The pre‐column derivatization of amino acids with an o‐phthaldialdehyde (OPA) mercaptoethanol solution yields quantitation limits between 0.03 and 0.44 µmol L–1 and SD values of <8.3% (n = 9). High‐performance anion‐exchange chromatography (HPAEC) on a Dionex CarboPac PA 20 column with a NaOH acetate gradient combined with pulsed amperometric detection (PAD) was used for the determination of carbohydrates. The calibration curves obtained for 11 carbohydrates showed excellent linearity over the concentration range from 0.02 to 50.0 mg L–1. Recovery studies revealed good results for all analytes (89%–108%). Interferences from Hg(II) salts and chloroform used for stabilization of the leachates did not occur with both chromatographic methods. The optimized method was successfully used for quantitative determinations of amino acids and carbohydrates in soil leachates.  相似文献   

3.
Adoption of input‐responsive varieties enhanced food production during the second half of the 20th century. However, even bigger challenges lie ahead because of the growing societal demands. For example, the global population of 7.2 billion in 2013 is projected to reach 9.2 billion by 2050 and stabilize at 10 billion by 2100. The growing and increasingly affluent population, with preference towards more and more meat‐based diet, is likely to jeopardize the finite, fragile, and dwindling soil and water resources which are already under great stress in densely populated countries in Asia and elsewhere. Economic growth and increase in gross domestic product also lead to generation of waste or by‐products, along with contamination and eutrophication of water resources. International trade in food/feed products also involves transfer of virtual water, which is a serious issue when water‐scarce countries export virtual water to water‐endowed countries. The problem is confounded by the present and future climate change driven by the growing energy demands of the carbon civilization. Thus, adaptation to climate change represents both a threat and an opportunity for sustainable development. Adaptive strategies must be sustainable socially and environmentally and advance the Millennium Development Goals, while buffering agroecosystems against extreme climate events (e.g., pedologic, agronomic, and ecologic drought). Thus, recognizing and addressing the water‐soil‐waste nexus is important to achieving climate‐strategic agriculture. Sustainable intensification of agroecosystems, producing more per unit consumption of essential resources, must consider judicious management of hydrological and biogeochemical cycles (C, N, P, S). The soil C pool must be managed and enhanced to offset anthropogenic emissions, and mitigate/adapt to the climate change. The pace of adoption of recommended land use and soil‐/plant‐/animal‐management practices can be kept at par with advances in scientific knowledge through continuous dialogue between scientists on the one hand and policy makers / land managers on the other to translate research data into policy and action plans.  相似文献   

4.
Under‐ as well as overfertilization with nitrogen (N) will result in economic loss for the farmer due to reduced yields and quality of the products. Also from an ecological perspective, it is important that the grower makes the correct decision on how much and when to apply N for a certain crop to minimize impacts on the environment. To aggravate the situation, N is a substance that is present in many compartments in different forms (nitrate, ammonium, organic N, etc.) in the soil‐plant environment and takes part in various processes (e.g., mineralization, immobilization, leaching, denitrification, etc.). Today, many N‐recommendation systems are mainly based on yield expectation. However, yields are not stable from year to year for a given field. Also the processes that determine the N supply from other sources than fertilizer are not predictable at the start of the growing season. Different methodological approaches are reviewed that have been introduced to improve N‐fertilizer recommendations for arable crops. Many soil‐based methods have been developed to measure soil mineral N (SMN) that is available for plants at a given sampling date. Soil sampling at the start of the growing period and analyzing for the amount of NO ‐N (and NH ‐N) is a widespread approach in Europe and North America. Based on data from field calibrations, the SMN pool is filled up with fertilizer N to a recommended amount. Depending on pre‐crop, use of organic manure, or soil characteristics, the recommendation might be modified (±10–50 kg N ha–1). Another set of soil methods has been established to estimate the amount of N that is mineralized from soil organic matter, plant residues, and/or organic manure. From the huge range of methods proposed so far, simple mild extraction procedures have gained most interest, but introduction into practical recommendation schemes has been rather limited. Plant‐analytical procedures cover the whole range from quantitative laboratory analysis to semiquantitative “quick” tests carried out in the field. The main idea is that the plant itself is the best indicator for the N supply from any source within the growth period. In‐field methods like the nitrate plant sap/petiole test and chlorophyll measurements with hand‐held devices or via remote sensing are regarded as most promising, because with these methods an adequate adjustment of the N‐fertilizer application strategy within the season is feasible. Prerequisite is a fertilization strategy that is based on several N applications and not on a one‐go approach.  相似文献   

5.
Little is known about the bacterial ecology of evaporative salt‐mining sites (salterns) of which Teguidda‐n‐Tessoumt at the fringe of the West African Saharan desert in Niger is a spectacular example with its many‐centuries‐old and very colorful evaporation ponds. During the different enrichment steps of the salt produced as a widely traded feed supplement for cattle, animal manure is added to the crude brine, which is then desiccated and repeatedly crystallized. This study describes the dominant Bacteria and Archaea communities in the brine from the evaporation ponds and the soil from the mine, which were determined by PCR‐DGGE of 16S rDNA. Correspondence analysis of the DGGE‐community fingerprints revealed a change in community structure of the brine samples during the sequential evaporation steps which was, however, unaffected by the brine's pH and electric conductivity (EC). The Archaea community was dominated by a phylogenetically diverse group of methanogens, while the Bacteria community was dominated by gamma proteobacteria. Microorganisms contained in the purified salt product have the potential to be broadly disseminated and are fed to livestock across the region. In this manner, the salt mines represent an intriguing example of long‐term human activity that has contributed to the continual selection, cultivation, and dissemination of cosmopolitan microorganisms.  相似文献   

6.
Short‐term (<7 years) effects of prescribed litter‐raking on forest‐floor nutrient pools, stand nutrition, and seepage water chemistry were studied in an N‐saturated Scots pine (Pinus sylvestris L.) forest in Southern Germany subject to high atmospheric‐nitrogen deposition. The study was based on a comparison of plots with and without annual prescribed litter raking at three sites with different N‐deposition levels. Prescribed litter‐raking resulted in a considerable reduction of forest‐floor thickness and mass, as well as of forest‐floor C, N, P, K, Mg, and Ca pools. Furthermore, it induced a significant decrease of the foliar N content in current‐year needles of the pines and a more balanced nutritional status of the stand. Particularly on the site subject to the highest N deposition, but to a lesser degree also at the other sites, the mean NO concentration in the subsoil seepage water and the N export into the groundwater were substantially reduced on the litter‐raked plots. The results show that in N‐saturated Scots pine ecosystems prescribed litter‐raking on areas of limited size, which are used as sources of groundwater‐derived drinking water and/or serve as habitat for endangered plant species, is a quick and effective method to achieve a more balanced nutritional status of the trees and to reduce seepage‐water NO concentrations and N export into the groundwater. In terms of sustainable ecosystem nutrient management, the conversion of conifer monocultures into broadleaf‐rich mixed stands is the better, yet less immediately effective method to reduce the seepage‐water N export from conifer forests subject to high atmospheric‐N deposition.  相似文献   

7.
Data on quantification of erosion rates in alpine grasslands remain scarce but are urgently needed to estimate soil degradation. We determined soil‐erosion rates based on 137Cs in situ measurements. The method integrates soil erosion over the last 22 y (time after the Chernobyl accident). Measured erosion rates were compared with erosion rates modeled with the Universal Soil Loss Equation (USLE). The comparison was done in order to find out if the USLE is a useful tool for erosion prediction in steep mountainous grassland systems. Three different land‐use types were investigated: hayfields, pasture with dwarf shrubs, and pasture without dwarf shrubs. Our test plots are situated in the Urseren Valley (Central Switzerland) with a mean slope steepness of 37°. Mean annual soil‐erosion rates determined with 137Cs of the investigated sites ranged between the minimum of 4.7 t ha–1 y–1 for pastures with dwarf shrubs to >30 t ha–1 y–1 at hayfields and pastures without dwarf shrubs. The determined erosion rates are 10 to 20 times higher compared to previous measurements in alpine regions. Our measurements integrated over the last 22 y, including extreme rainfall events as well as winter processes, whereas previous studies mostly reported erosion rates based on summer time and short‐term rainfall simulation experiments. These results lead to the assumption that heavy‐rainfall events as well as erosion processes during winter time and early spring do have a considerable influence on the high erosion amounts that were measured. The latter can be confirmed by photographs of damaged plots after snowmelt. Erosion rates based on the USLE are in the same order of magnitude compared to 137Cs‐based results for the land‐use type “pasture with dwarf shrubs”. However, erosion amounts on hayfields and pasture without dwarf shrubs are underestimated by the USLE compared to 137Cs‐based erosion rates. We assume that the underestimation is due to winter processes that cause soil erosion on sites without dwarf shrubs that is not considered by the USLE. Dwarf shrubs may possibly prevent from damage of soil erosion through winter processes. The USLE is not able to perform well on the affected sites. Thus, a first attempt was done to create an alpine factor for the USLE based on the measured data.  相似文献   

8.
9.
10.
11.
In spite of several published studies we have an incomplete understanding of the ion‐release mechanisms and characteristics of polymer‐coated fertilizers (PCF). Here we extend current conceptual models describing release mechanisms and describe the critical effects of substrate moisture and temperature on macro‐ and micronutrient release of three PCF types: Polyon®, Nutricote®, and Osmocote®. Nutrient release was quantified at weekly intervals for up to 300 d from 5°C to 40°C in water and chemically inert sand, substrates that allowed release quantification without confounding effects of ion sorption/desorption. At least two release‐timeframe formulations of each PCF type were studied and all products had similar nutrient concentrations to allow isolation of the effect of coating technology. Contrary to several studies, our data and model indicate that there is no significant difference in nutrient‐release rates in water and a moist, solid substrate. This means that release rates determined in water can be used to model bio‐available nutrient concentrations in moist soil or soilless media where sorption/desorption properties alter concentrations after release. Across all PCF, the nutrients most affected by temperature were typically N, K, B, Cu, and Zn, while the least affected were P, Mg, and Fe. We also found consistent differences among the coating technologies. Osmocote fertilizers released faster than specified at both high and low temperatures. Nutricote had relatively steady release rates over time and a nonlinear response to temperature. Polyon released more slowly than specified but replicate samples were highly uniform.  相似文献   

12.
Many applications have been developed for aqueous dispersions of jet‐cooked starch‐oil composites prepared by excess steam jet cooking. Previous formulations have typically contained 20–50% oil by weight based on the weight of starch. To expand the range of potential applications, new preparation methods were investigated to increase the oil content to as high as four times the weight of starch. High‐amylose corn starch was cooked in an excess‐steam jet cooker in the presence of oleic acid, and soybean oil was added to form the starch‐oil composites. Amylose is removed from solution by forming helical inclusion complexes with the oleic acid and, if the materials are cooled sufficiently quickly, the helical inclusion complexes only form small aggregates and shells around the oil droplets. Depending on the composition and preparation method, a wide range of stable, high‐oil materials from low‐viscosity liquids to smooth pastes can be formed. The flow, textural, and structural properties of these materials are shown. The materials can be used in a wide range of applications, including spray lubricants, lotions, and for fat delivery in cake mixes.  相似文献   

13.
Wheat breeders need a nondestructive method to rapidly sort high‐ or low‐protein single kernels from samples for their breeding programs. For this reason, a commercial color sorter equipped with near‐infrared filters was evaluated for its potential to sort high‐ and low‐protein single wheat kernels. Hard red winter and hard white wheat cultivars with protein content >12.5% (classed as high‐protein, 12% moisture basis) or < 11.5% (classed as low‐protein) were blended in proportions of 50:50 and 95:5 (or 5:95) mass. These wheat blends were sorted using five passes that removed 10% of the mass for each pass. The bulk protein content of accepted kernels (accepts) and rejected kernels (rejects) were measured for each pass. For 50:50 blends, the protein in the first‐pass rejects changed as much as 1%. For the accepts, each pass changed the protein content of accepts by ≈0.1%, depending on wheat blends. At most, two re‐sorts of accepts would be required to move 95:5 blends in the direction of the dominant protein content. The 95:5 and 50:50 blends approximate the low‐ and high‐protein mixture range of early generation wheat populations, and thus the sorter has potential to aid breeders in purifying samples for developing high‐ or low‐protein wheat. Results indicate that sorting was partly driven by color and vitreousness differences between high‐ and low‐protein fractions. Development of a new background specific for high‐ or low‐protein and fabrication of better optical filters for protein might help improve the sorter performance.  相似文献   

14.
A comparative study on the suitability of one compost and two vermicomposts, obtained from the same batch of tomato‐crop waste, as growth media for ornamental plant production was carried out. Each material was mixed with Sphagnum peat at 100 : 0, 75 : 25, 50 : 50, 25 : 75, and 0 : 100 (peat control) proportions by volume. Two ornamentals (Calendula officinalis, Viola cornuta) were sown and grown in the 13 substrates. Substrates were characterized physically and chemically. Seed germination, total leaf chlorophyll (SPAD units), plant growth, and plant nutrient concentrations were determined. The compost and the vermicomposts were markedly different from peat. Compost and the vermicomposts had greater bulk density and lower total porosity than peat. Compost had larger aeration and lower water‐holding capacity than vermicomposts and peat. Compost and vermicomposts were alkaline (pH = 8.8 on average) whilst peat was acidic (pH = 5.9). Electrical conductivity was low in peat (0.23 dS m–1) and vermicomposts (0.65 dS m–1), and high in compost (2.85 dS m–1) due to the high concentrations of K+ and SO$ _4^{2-} $ . Mixing compost and vermicomposts with peat produced substrates with intermediate characteristics. Physical properties were within adequate range for all mixes except for the compost ones. pH was within adequate range only in pure peat, and salinity was extremely high in the compost mixes. Compost was phytotoxic, as shown by the strong reduction of seed germination, chlorophyll content, and plant growth of both ornamentals. Vermicomposts did not affect seed germination but reduced plant growth, though much less than compost. Mixing these materials with peat improved germination and growth. The diluted materials (compost at the 25 : 75 and vermicomposts at the 50 : 50 and 25 : 75 proportions) produced good‐quality plants.  相似文献   

15.
Soil erosion by water is a major cause of landscape degradation in Mediterranean environments, including Lebanon. This paper proposes a conditional decision‐rule interpolation‐based model to predict the distribution of multiple erosion processes (i.e. sheet, mass and linear) in a representative area of Lebanon from the measured erosion signs in the field (root exposure, earth pillars, soil etching and drift and linear channels). First, erosion proxies were derived from the structural OASIS classification of Landsat thematic mapper (TM) imageries combined with the addition of several thematic erosion maps (slope gradient, aspect and curvature, drainage density, vegetal cover, soil infiltration and erodibility and rock infiltration/movement) under a geographic information systems (GIS) environment. Second, erosion signs were measured in the field, and interpolated by the statistical moments (means and variance) in the defined erosion proxies, thus producing quantitative erosion maps (t ha−1) at a scale of 1:100 000. Seven decision rules were then generated and applied on these maps in order to produce the overall decisive erosion map reflecting all existing erosion processes, that is, equality (ER), dominance (DOR), bimodality (BR), masking (MR), aggravating (AR), dependence (DER) and independence (IR). The produced erosion maps are divided into seven classes ranging between 0 and more than 1·8 t ha−1 for sheet erosion, and 0 and more than 10·5 t ha−1 for mass and linear erosion. They are fairly matching with coincidences values equal to 43 per cent (sheet/linear), 48 per cent (sheet/mass) and 49 per cent (linear/mass). The overall accuracies of these maps were estimated to be 76 per cent (sheet erosion), 78 per cent (mass erosion) and 78·5 per cent (linear erosion). The overall decisive erosion map with 15 classes corresponds well to land management needs. The model used is relatively simple, and may also be applied to other areas. It is particularly useful when GIS database on factors influencing erosion is limited. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
17.
The main objective of this study was to analyse how different sewage sludges influence soil wetting and drying dynamics. Three composted and three thermally‐dried municipal sludges from different wastewater plants located in Catalonia (NE Spain) were mixed with a mine‐soil obtained from a limestone quarry. Measurements of the time required to reach zero contact angle () and water holding time (WHT) provided information on the time required for a mine‐soil to reach its complete wettability and the residence time of water stored between ?0.75 and ?25 MPa of soil suction, respectively. One month after sludge amendments, one composted and one thermally‐dried sludge significantly increased . WHT was increased in the mine‐soil treated by composted sludges (50.6% by Blanes' sludge, 65.5% by Manresa's sludge and 52.5% by Vilaseca's sludge) one month after sludge amendments. The amount of water retained in the mine‐soil was increased by all composted sludges and one thermally‐dried sludge after one month (by 42.3% with Blanes' sludge, 42.3% with Manresa's sludge, 65.7% with Vilaseca's sludge and 23.9% with Mataró's sludge) and one year after sludge amendments and at a small suction. Increments in WHT corresponded with the amount of water retained so the time‐scale of soil water availability should also be considered. The value was modified mainly by increments in carbon stock and microbial biomass, while the WHT was modified mainly by increments in pH and electrical conductivity. Under similar air‐drying conditions, mine‐soil treated with composted sludges retained more water for longer compared with thermally‐dried sludges.  相似文献   

18.
Soil structure, moisture content and strength have profound effects on plant growth. Traditional methods for monitoring soil condition are invasive and therefore may affect the samples of interest. We have demonstrated the potential of a non‐invasive measurement technique for the in situ monitoring of soil physical properties in the field. When soils are regarded as porous and elastic media, sub‐surface wave propagation can be indicative of the soil status. Such propagation can be initiated by airborne sound through acoustic‐to‐seismic (A–S) coupling. Measurements of near‐surface sound pressure and acoustically induced soil particle motion can be exploited to estimate the pore‐related and elastic properties of soils. We have conducted laboratory measurements on dry and wet sand and field measurements on an arable soil growing wheat using a compression driver, microphones and a laser Doppler vibrometer. The excitation levels were chosen so as to reduce the influence of soil non‐linearity while still yielding sufficient signal‐to‐noise ratios. Measured data were compared with model predictions based on wave propagation in layered homogeneous isotropic poro‐elastic media described by linear Biot‐Stoll theory. Soil properties were estimated through an optimization process minimizing the differences between the measurements and predictions. Latin hypercube sampling was adopted to ensure uniform seeding for optimization throughout the multi‐dimensional search space. The fitted soil characteristics are air permeability, porosity, P‐/S‐wave speeds (related to bulk and rigidity moduli) and a loss factor. Layer depth was also estimated for multi‐layered samples. The current work has demonstrated that soil can be characterized non‐invasively by using A–S coupling. It is also shown that field soils can be represented adequately by multiple homogeneous layers.  相似文献   

19.
Corn masa by‐product streams are high in fiber and are amenable for utilization in livestock feed rations. This approach is a potentially viable alternative to landfilling, the traditional disposal method for these processing residues. Suspended solids were separated from a masa processing waste stream, blended with soybean meal at four levels (0, 10, 20, and 30% wb), and extruded in a laboratory‐scale extruder at speeds of 50 rpm (5.24 rad/sec) and 100 rpm (10.47 rad/sec) with temperature profiles of 80‐90‐100°C and 100‐110‐120°C. Processing conditions, including dough and die temperatures, drive torque, specific mechanical energy consumption, product and feed material throughput rates, dough apparent viscosity, and dough density, were monitored during extrusion. The resulting products were subjected to physical and nutritional characterization to determine the effects of processing conditions for these blends. Extrudate analysis included moisture content, water activity, crude protein, in vitro protein digestibility, crude fat, ash, product diameter, expansion ratios, unit and true density, color, water absorption and solubility, and durability. All blends were suitable for extrusion at the processing conditions used. Blend ratio had little effect on either processing parameters or extrudate properties; extrusion temperature and screw speed, on the other hand, significantly affected both processing and product properties.  相似文献   

20.
Soil‐quality parameters, such as soil organic matter (SOM) and plant‐available nutrient contents, microbial properties, aggregate stability, and the amounts of heavy metals were carried out in arable soils of different rotation schedules applied with a total of 50 Mg dry mass ha–1 biowaste compost relative to an untreated control. This was investigated during a 10 y period from 1994 to 2004. Overall, soil‐quality parameters studied appeared to be promoted by biowaste‐compost application. This was evidenced for example by a remarkable increase of SOM and total N content of ≈ 15%–20% relative to the control. Subsequently, amounts of soil microbial biomass and alkaline phosphatase activity were significantly increased as well. In addition, biowaste‐compost application revealed an increase of plant‐available P and K contents and aggregate stability in soil. There was, however, no treatment effect for net N‐mineralization rates. Moreover, in soils of maize and sugar beet rotation schedule a slight decrease was found. Heavy‐metal contents of Pb and Zn were significantly increased in all compost‐treated soils, whereas no significant increase of Cd and Cu contents was measured. However, the investigated amounts were far below of the limits of the German Biowaste Ordinance. It is finally recommended, that biowaste compost may sustain and improve soil quality in agriculture when N nutrition will be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号