首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
黄壤上烤烟氮素积累、分配及利用的研究   总被引:3,自引:0,他引:3  
田间条件下,利用同位素15N示踪技术于黄壤有机质含量分别为19.2和40.7 g/kg和当地推荐最佳氮肥用量基础上,设15N用量分别为105和82.5 kg/hm2的情况下,研究了两个试验点烤烟15N积累、吸收比例、氮素利用率及15N在各器官分配。结果表明,在二种有机质含量的黄壤上,烤烟15N吸收规律相似,于烤烟移栽后3~5周内,烟株吸收15N较少,5周后15N积累量明显增加,到移栽后13周达到高峰,肥料15N吸收时间拖后;二种土壤上,肥料15N在整个生育期内积累量分别为28.41和26.55 kg/hm2。烟株于移栽后3~5周来自肥料15N占吸收总氮的比例为53.84%~71.33%,氮(15N)肥利用率为1.11%~7.34%;到烟叶采收结束(移栽后17周)时,烟株来自肥料15N占吸收总氮的比例为28.69%~29.75%,氮(15N)肥利用率为27.06%~32.18%。各个部位烟叶采收结束时,二种土壤上,肥料15N在上部、中部、下部烟叶及茎和花积累分别占吸收肥料总15N的35.08%~35.26%、25.87%~26.19%、17.92%~18.25%和22.73%~24.49%,肥料15N主要集中在中、上部烟叶。可见,肥料氮吸收时期拖后,土壤后期供氮能力强和中上部烟叶肥料氮比例较高是黄壤烟区烤烟氮素营养存在的主要问题。  相似文献   

2.
在田间条件下,利用15N示踪技术研究了黄壤2个点烤烟追肥15N积累、吸收比例、氮素利用率及15N在各器官分配。结果表明,烤烟于移栽后35d追肥,追肥15N积累于移栽后13周达到高峰,烟叶采收结束时(17周),追肥15N积累量分别为16.13和15.28kg/hm2,分别占烟株吸收总氮的16.95%~16.51%,追肥氮(15N)利用率为51.20%~61.73%,追肥中氮是烟株氮素重要来源之一,2个点追肥中15N在上部、中部、下部烟叶及茎+花中积累分别占吸收肥料总15N的32.30%~32.72%、32.68%~31.47%、17.65%~17.28%、27.22%~26.44%,60%以上追肥15N集中在中、上部烟叶。因此,烟株吸收追肥15N比例高、吸收时间拖后,追肥15N集中分布于中上部烟叶等均为黄壤烟区上部烟叶烟碱偏高的重要因素。  相似文献   

3.
不同质地土壤上烤烟氮素积累、分配及利用率的研究   总被引:7,自引:0,他引:7  
【目的】土壤质地能概括反映土壤内在的肥力特征,对土壤养分供应具有调控作用,是影响农田中土壤氮素供应和氮肥利用的重要因素。本试验通过在皖南烟区3种质地(壤土、黏壤、砂壤)土壤上施用等量氮肥来研究其对烤烟不同生育期的氮素吸收、积累及利用特征的影响,旨在为烟田土壤改良及烤烟合理施肥提供理论依据。【方法】在皖南烟区现代农业科技园的典型壤土、黏壤和砂壤土上分别建立田间试验,采用15N田间微区试验和室内分析相结合的研究方法,在烤烟的团棵期(移栽后38 d)、现蕾期(移栽后53 d)、平顶期(移栽后64d)和成熟期(移栽后103 d),采集长势一致的烟株样品,测定烟株各部位的生物量,并采用凯氏定氮法检测其全氮含量,采用ZHTO2型同位素质谱仪测定其15N丰度。【结果】皖南烟区壤土和黏壤土上烤烟总氮和肥料氮积累均随生育期呈单峰变化,在烤烟平顶期达最大,总氮积累量分别为4.25 g/plant和3.96 g/plant,肥料氮积累量分别为2.34 g/plant和2.54 g/plant,而砂壤土上烤烟到成熟期其总氮和肥料氮的积累量达到最大,分别是5.64 g/plant和2.73 g/plant,均显著高于同时期的壤土和黏壤;壤土、黏壤和砂壤土上烤烟均以叶部肥料氮占总氮比例及氮素分配率较高,茎部次之,根部最低;不同质地土壤上烤烟氮肥利用率与肥料氮的积累动态具有一致的变化趋势,其中壤土和黏壤在平顶期最大,分别为34.5%和40.7%,之后壤土利用率缓慢下降,黏壤下降幅度较大,而砂壤土上烤烟氮肥利用率在生育期内呈上升趋势,至成熟期最大,为43.7%。【结论】不同质地土壤上烟株对氮素的吸收利用顺序为砂壤壤土黏壤,黏壤土在烤烟生育期内供氮能力较弱,应合理调控土壤氮的矿化及增加肥料氮的供应;砂壤土氮肥利用率较高,应严格控制氮肥的施用量。  相似文献   

4.
利用15N示踪技术在黄壤烟区研究了烤烟不同部位烟叶氮和烟碱含量的变化及肥料氮在烟碱中的分配。结果表明,不施氮肥的情况下,烟株第10片以上烟叶烟碱含量达到3.54%;施氮量为97.5kghm-2时,10片以上烟叶烟碱含量达到4.13%以上。烟碱积累在整个生育期是呈不断增加的趋势,于移栽后7周内积累较少,烟碱积累主要集中在9~15周,到烟叶采收结束17周为122.55kghm-2。烟叶进入成熟期后,烟碱含量与各部位烟叶来自土壤氮素比例呈正相关,其中与上部烟叶相关系数达0.88。烟碱总氮中来自肥料氮于下部、中部和上部烟叶分别占28.31%,26.63%和25.45%;相应构成烟碱的氮素中,下、中、上部烟叶中有来自土壤氮分别为71.69%、73.37%和74.55%。追肥氮占施氮总量30%条件下,烟碱中氮来自追肥氮在下、中和上部烟叶分别占14.25%、15.30%和14.94%,追肥氮是烟叶烟碱总氮主要氮源。  相似文献   

5.
施氮水平对烤烟根冠平衡及氮素积累与分配的影响   总被引:4,自引:0,他引:4  
在盆栽条件下,设不施氮(CK),每株施N 5.45g(N1)和8.18g(N2)3个施氮水平,运用15N示踪技术,研究了不同施氮量条件下烤烟根冠平衡及氮素在不同器官间的积累与分配。结果表明,移栽至打顶期烤烟地上部干物质累积量随施氮量增加而增加,根系干物质积累量以N1处理最高;打顶至成熟期地上部干物质累积量N1处理最高,根系干物质积累量随施氮量增加而增加。打顶期根冠比随施氮量增加而降低,成熟期根冠比随施氮量增加而提高。打顶至成熟期烟株氮素积累量以N1处理最高;期间N1处理各器官均有一定氮素积累,而 N2处理和CK下部叶及中部叶有一定量的氮素输出。打顶期氮素在根系中的分配比例随施氮量增加而降低。随施氮量增加,烤烟积累的氮素中来自肥料氮的比例增加;积累的肥料氮中来自基肥氮的量增加。在本试验条件下,施氮(N)5.45 g/plant可促进根冠平衡,使烟株稳健生长。  相似文献   

6.
为提高烤烟肥料利用率,减少化肥施用,2018 年在安徽皖南进行小区试验,设置不施肥、常规施肥(对照)处理,在氮肥减少13%,磷肥和钾肥各减少30% 条件下水溶性肥料追肥比例分别为50%、60%、70%、80%,共6 个处理,3 次重复,分析其对烤烟氮磷钾的吸收利用、生长发育及产量质量的影响。结果表明:(1)追肥比例为50% ~ 60% 时总干物质积累量显著高于常规对照;随追肥比例的提高,叶部和总干物质积累量呈降低趋势。(2)随追肥比例的提高,氮、钾的吸收量呈降低趋势。(3)追肥比例为50% 时烟株的氮、磷、钾利用率比常规对照分别提高6.3、3.4、25.3 个百分点;随着追肥比例的提高,氮、钾利用率呈降低趋势。(4)水溶性肥料追肥各处理烟叶的产量、产值和感官质量与常规对照相比总体无明显差异。氮肥、磷肥和钾肥适当减量的情况下,采用水溶性肥料追肥,追肥比例为50% 左右时,能够提高肥料利用率,促进根系生长和烟株干物质积累,且烟叶产量和品质不受影响。  相似文献   

7.
为明确适合烤烟生长并降低土壤氮素损失的滴灌施氮策略,为烤烟生产提供理论指导。以烤烟品种K326为材料,在盆栽条件下,研究了滴灌施氮对烤烟氮素积累、分配和利用及土壤无机氮含量与分布的影响。结果表明:移栽后28 d滴灌追氮一次,增加追氮比例,叶片的氮素含量、氮素积累量和分配比例增加,根和茎的氮素积累量和分配比例降低,烟株表观氮素利用率提高;土壤无机氮含量升高,土壤无机氮的表观盈余量降低。移栽时施氮50%,移栽后28和42 d滴灌追氮两次的氮素利用率显著高于追氮一次处理;而追氮比例为70%和90%时,氮素利用率低于追氮一次处理。移栽后滴灌追氮两次提高了距滴注点垂直距离5~20 cm和水平距离15~20 cm土层的土壤无机氮含量,降低了距滴注点垂直距离20~25 cm土层的土壤无机氮含量。从烟株氮素利用,土壤无机氮分布及盈余量等方面考虑,移栽时施氮50%,移栽后28 d滴灌追氮35%,42 d滴灌追氮15%可作为生产中参考的滴灌施肥制度。  相似文献   

8.
有机质对红壤烤烟氮素累积分配特征的影响   总被引:6,自引:1,他引:5  
利用15N示踪技术,研究了有机质含量对红壤烤烟氮累积分配特征的影响。结果表明,随着土壤有机质含量增加,烤烟氮素累积时期延长,且累积量增加。烤烟后期吸收的氮素,在低有机质含量红壤上来自土壤供氮,中有机质含量来自肥料供氮,高有机质含量来自肥料供氮与土壤供氮。烤烟吸收总氮量中29.07%~40.26%来自肥料供氮,59.74% ~70.93%来自土壤供氮,表明烤烟吸收氮素大部分来自土壤供氮。氮素在烟株不同部位分配量表现为:烟叶烟茎烟根;烟叶各部位中的分配量为:在低有机质含量的红壤,下、中、上3个部位分配量相等,中有机质含量和高有机质含量上则为上部叶中部叶下部叶。有机质含量对下部叶氮素分配量影响不大,其它部位均表现为有机质含量越高,氮素分配量越大。烤烟不同部位中肥料氮比例表现为下部叶中部叶烟根烟茎上部叶,土壤氮比例表现为上部叶烟茎烟根中部叶下部叶;并且土壤有机含量越高,各部位中土壤氮的比例越高,肥料氮的比例越低,上部叶受土壤供氮影响最大。红壤上烤烟氮肥利用率在25.42%~30.61%之间,低有机质含量土壤氮肥利用率较低,中、高有机质含量利用率相对较高。在施肥过程中,低有机质红壤上应在N 90 kg/hm2基础上适当增加氮肥施用量,中等有机质含量上保持不变,高有机质含量上应适当降低氮肥用量。  相似文献   

9.
樊玉星  张洁洁  闫凯龙  苏强  刘阳 《土壤》2016,48(3):455-462
采用大田试验研究分析了凉山州植烟水稻土在不同施氮水平下的无机氮供应动态、烟株干物质积累、烟株对氮素的吸收分配规律以及烤后烟叶品质的差异。结果表明:施氮对土壤无机氮的影响持续到移栽后13周,随施氮量的增加土壤无机氮浓度升高,各处理无机氮供应高峰出现在移栽后7周和13周;各施氮处理烟株干物质积累均显著高于不施氮处理,说明施氮可以促进前期烟株根系的发育;施氮显著提高了各时期烟株中氮素的含量,尤其表现在移栽后9~11周,施氮75 kg/hm~2处理烟株氮积累量显著高于施氮45 kg/hm~2处理,但施氮105 kg/hm~2处理积累量与施氮75 kg/hm~2处理差异不大。综合感官评吸结果,本研究认为供试水稻土施氮量以75 kg/hm~2较为适宜。  相似文献   

10.
烤烟烟碱合成及其氮素来源与移栽期和氮肥的关系研究   总被引:2,自引:0,他引:2  
采用田间试验与15N同位素示踪微区试验,在湖北襄樊植烟生态区老湾村(N 31°27,′E 111°14′,海拔1130 m)研究了3个不同移栽期和施用氮肥对烤烟烟碱含量和烟碱氮素来源的影响。研究结果表明,与5月5日移栽相比,推迟移栽期至5月15日2~5日,烟碱含量、烟碱氮占总氮比例以及烟碱肥料氮比例分别平均增加10%8~5%、5%1~10%和21%5~6%;与不施氮相比,施用氮肥提高烟碱含量12%5~9%,提高烟碱氮占总氮比例5%~127%。烤烟烟碱氮占总氮的比例随生育进程逐渐增加,而各部位烟叶烟碱肥料氮比例随生育进程和叶位上升逐渐下降。土壤氮是烟碱氮的主要来源,对烟叶烟碱含量有决定性影响。结果说明在当地条件下,控施氮肥和适当提前移栽期更有利于降低烟叶(尤其是中、上部叶)中的烟碱含量。  相似文献   

11.
Abstract

Limited information is available on optimum N levels in winter wheat (Triticum aestivum L.), particularly at higher yield levels. Three experiments were conducted in the Coastal Plain region of Virginia where N was applied at rates of 0, 67, 90 and 112 kg/ha to Wheeler, Mc Nair 1003 and Coker 747 soft red winter wheat varieties. Yields ranged from 2.33 to 5.83 Mg/ha in the study. Nitrogen fertilization increased yield up to the 67 kg/ha rate and increased N concentration in the plant tissue up to 67 or 112 kg of N/ha, depending on variety. Optimum N concentration, i.e., N concentration at maximum (100%) yield for Wheeler, Mc Nair 1003 and Coker 747, over the three experiments, was 4.54%, 4.52% and 4.81%, respectively, for entire above‐ground plant samples collected at Feekes growth stage 4 and 4.72%, 4.73% and 4.44% for flag leaf samples collected at Feekes growth stage 10. A N sufficiency range of 4.00–5.00% is suggested for use for the plant parts sampled for both growth stages.  相似文献   

12.
黑垆土有机氮组分对可矿化氮的关系   总被引:4,自引:0,他引:4  
LI Ju-Mei  LI Sheng-Xiu 《土壤圈》2003,13(3):279-288
Mineralizable N and organic N components in different layers (0-15, 15-30, 30-45, 45-60, 60-80 and 80-100 cm) of six soils with different fertilities sampled from Yongshou County, Shaanxi Province, China,were determined by the aerobic incubation method and the Bremner procedure, respectively. Correlation,multiple regression and path analyses were performed to study the relation of minerallzable N to organic N components. Results of correlation and regression analyses showed that the amounts of the N mineralized were parallel to, and significantly correlated with, the total acid hydrolyzahle N, but was not so with the acid-insoluble N. Of the hydrolyzable N, the amino acid N and the ammonia N had a highly consistent significant correlation with the mineralized N, and their partial regression coefficients were significant in the regression equations, showing their importance in contribution to the mineralizable N. The amino sugar N, on the other hand, had a relatively high correlation with the mineralized N, but their partial regression coefficients were not significant in the regression equations. In contrast, the hydrolyzable unknown N had no such relations.Path analysis further indicated that the amino acid N and ammonia N made great direct contributions to the mineralized N, but the contributions of the amino sugar N were very low. These strongly suggested tha tthe mineralized N in the soils tested was mainly from the hydrolyzable N, particularly the amino acid N and ammonia N which are the major sources for its production.  相似文献   

13.
Summary Three Illinois Mollisols were incubated for 2 weeks at 25°C after treatment with different amounts of glucose and/or 15N-labelled (NH4)2SO4 or 15N-labelled KNO3. The objectives were: (1) to compare the immobilization and interaction of NH inf4 sup+ –N and NO inf3 sup- –N with the native soil N, and (2) to study the relationship between immobilization of applied N and the added N interaction. As determined, immobilized N refers to forms not extractable with 2 MKCl (immobilized 15N+clay-fixed 15NH inf4 sup+ ). In all cases, both NH inf4 sup+ –N and NO inf3 sup- –N were actively immobilized and transformed into organic forms in the presence of glucose. In the absence of glucose, a higher proportion of NH inf4 sup+ than NO inf3 sup- was recovered in organic forms. Although the three soils differed considerably in the amounts of applied N immobilized, similar trends in N immobilization were observed. A positive added N interaction occurred with all soils, the magnitude increasing with the rate of N addition. In the absence of glucose, higher added N interactions were obtained for NH inf4 sup+ than NO inf3 sup- , whereas there was very little difference between NH inf4 sup+ and NO inf3 sup- in the presence of glucose. The results indicate that under conditions of rapid immobilization (e.g., in the presence of glucose), NH inf4 sup+ and NO inf3 sup- will show comparable interaction with the native soil N, whereas in unamended soil, the extent of this interaction will be greater with NH inf4 sup+ than with NO inf3 sup- . Significant correlations were observed between applied N immobilized and the added N interaction only in one soil having a high initial mineral N content.  相似文献   

14.
Reliable and quick methods for measuring nitrogen (N)–supplying capacities of soils (NSC) are a prerequisite for using N fertilizers. This study was conducted to develop a routine method for estimation of mineralizable N in two calcareous soils (sandy loam and clay soils) treated with municipal waste compost or sheep manure. The methods used were anaerobic biological N mineralization, mineral N released by 2 M potassium chloride (KCl), ammonium (NH4 +) N extracted by 1 N sulfuric acid (H2SO4), NH4 +-N extracted by acid potassium permanganate (KMnO4), and NH4 +-N released by oxidation of soil organic matter using acidified potassium permanganate. The results showed that oxidizable N extracted by acid permanganate, a simple and rapid measure of soil N availability, was correlated with results of the anaerobic method. Oxidative 0.05 N KMnO4 was the best method, accounting for 78.4% of variation in NSC. Also, the amount of mineralized N increased with increasing level of organic materials and was greater in clay soil than sandy loam soil.  相似文献   

15.
The use of composted municipal refuse on agricultural land requires prior knowledge of the interactions among compost, soil, and plants. Research into the availability of N in highly matured municipal refuse compost is particularly important considering the current concern about groundwater contamination by NO inf3 sup- -N. A greenhouse pot bioassay was conducted to determine the percentage of short-term apparent bioavailable N of a highly matured refuse compost and its relative efficiency in supplying inorganic N to the soil-plant system in comparison with NH4NO3. Municipal refuse (after 165 days of composting) was applied at rates equivalent to 10, 20, 30, 40, and 50 t ha-1 to a ferrallitic soil from Tenerife Island (Andeptic Paludult). NH4NO3 was applied at rates equivalent to the total N content of the compost treatments. Perennial ryegrass (Lolium perenne L.) was grown in 3-kg pots and the tops were harvested at regular intervals after seedling emergence. The compost increased dry matter yield, soil mineral N, and plant N uptake proportional to the applied rate. These increases were significantly higher than the control at an application rate of 20 t ha-1. After 6 months the apparent bioavailable N ranged from 16 to 21%. The relative efficiency was 43% after 30 days. This suggests that large inputs of inorganic N into soil can be obtained with high rates of this kind of compost, with a potential for NO inf3 sup- -N contamination. However, applied at moderate rates in our bioassay (<50 t ha-1), compost showed a low N-supplying capacity to ryegrass, i.e. a small fraction of the mineralized compost N was used by plants in the course of time. This was ascribed to a partial biological immobilization. This pattern of N availability in highly matured municipal refuse compost, positive net mineralization but partial immobilization, is similar to the pattern of N availability in biologically active soils and is therefore extremely interesting for the conservation of N in agro-ecosystems.  相似文献   

16.
华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡   总被引:39,自引:0,他引:39  
对华北地区冬小麦-夏玉米轮作体系农田氮素输入输出的数量特征、平衡状况进行了分析,并评估其优化潜力。研究表明,华北地区冬小麦-夏玉米轮作体系农田每年的氮素输入中,化学氮肥、农家肥、降水、灌溉、非生物固氮和种子带入农田的氮分别为545、68、21、15、15和5kghm-2a-1,氮素年输入总量为669kghm-2a-1;每年的氮素输出中,作物收获带走的氮为311kghm-2a-1,而氨挥发、反硝化和淋洗损失的氮分别为120、16和136kghm-2a-1,氮素年输出总量为583kghm-2a-1;氮素年盈余量为86kghm-2a-1。目前我国华北地区冬小麦-夏玉米轮作体系农田氮素处于大量赢余状态,从而导致氮素大量损失。因此,加强氮肥管理,提高氮肥利用率,加大有机肥施用的力度,是华北地区农田氮素资源管理的长期任务。  相似文献   

17.
Yield and N uptake of tomato (Lycopersicum esculentum Mill.) and pepper (Capsicum annuum L.) crops in five successive rotations receiving two compound fertilizers (12-12-17 and 21-8-11 N-P2O5-K2O) were studied to determine 1) crop responses, 2) dynamics of NO3-N and NH4-N in different soil layers, 3) N balance and 4) system-level N efficiencies. Five treatments (2 fertilizers, 2 fertilizer rates and a control), each with three replicates, were arranged in the study. The higher N fertilizer rate, 300 kg N ha-1 (versus 150 kg N ha-1), returned higher vegetable fruit yields and total aboveground N uptake with the largest crop responses occurring for the low-N fertilizer (12-12-17) applied at 300 kg N ha-1 rather than with the high-N fertilizer (21-8-11). Ammonium-N in the top 90 cm of the soil profile declined during the experiment, while nitrate-N remained at a similar level throughout the experiment with the lower rate of fertilizer N. At the higher rate of N fertilizer there was a continuous NO3-N accumulation of over 800 kg N ha-1. About 200 kg N ha-1 was applied with irrigation to each crop using NO3-contaminated groundwater. In general, about 50% of the total N input was recovered from all treatments. Pepper, relative to tomato, used N more efficiently with smaller N losses, but the crops utilized less than 29% of the fertilizer N over the two and a half-year period. Local agricultural practices maintained high residual soil nutrient status. Thus, optimization of irrigation is required to minimize nitrate leaching and maximize crop N recovery.  相似文献   

18.
Summary Extraction of synthetic amino acids dissolved in water by means of electro-ultrafiltration (EUF) showed average recovery rates of about 75%. Higher losses were obtained, particularly with cysteine, methionine and NH4 4; the latter, probably being deprotonated at the cathode, may be lost in form of NH3. The EUF extracts of three arable and two forest soils were investigated for their N compounds. In the arable soils only about 3% of the total organic N extracted by EUF was free amino acids; about 23%–55% consisted of amino N (hydrolysable N) and the rest was non-hydrolysable N. The two forest soils contained higher amounts of EUF-extractable organic N compared with the arable soils. In the two forest soils the content of free amino-acid N amounted to 8% and 11% of the EUF organic N, and the proportion of hydrolysable N from total EUF-organic N was 41% and 46%. It is suggested that the amino-acid N and the hydrolysable N can be easily mineralized.  相似文献   

19.
华南受干扰林和成熟林氮素流失对模拟氮沉降的响应   总被引:1,自引:0,他引:1  
Current nitrogen (N) leaching losses and their responses to monthly N additions were investigated under a disturbed pine (Pinus massoniana) forest and a mature monsoon broadleaf forest in southern China. N leaching losses from both disturbed and mature forests were quite high (14.6 and 29.2 kg N ha-1 year-1, respectively), accounting for 57% and 80% of their corresponding atmospheric N inputs. N leaching losses were substantially increased following the first 1.5 years of N applications in both forests. The average increases induced by the addition of 50 and 100 kg N ha-1 year-1 were 36.5 and 24.9 kg N ha-1 year-1, respectively, in the mature forest, accounting for 73.0% and 24.9% of the annual amount of N added, and 14.2 and 16.8 kg N ha-1 year-1 in the disturbed forest, accounting for 28.4% and 16.8% of the added N. Great N leaching and a fast N leaching response to N additions in the mature forest might result from long-term N accumulation and high ambient N deposition load (greater than 30 kg N ha-1 year-1 over the past 15 years), whereas in the disturbed forest, it might result from the human disturbance and high ambient N deposition load. These results suggest that both disturbed and mature forests in the study region may be sensitive to increasing N deposition.  相似文献   

20.
土壤微生物生物氮与植物氮吸收的关系   总被引:13,自引:0,他引:13  
The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM),chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM). The N taken up by ryegrass on the soils was determined after a galsshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM,CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号