首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 142 毫秒
1.
试验研究了添加生物炭对砂壤土团聚体分布、稳定性及其碳、氮分布的影响,为生物炭的农业利用和土壤培肥提供理论依据。设置生物炭用量4个水平(0、10、20、30 t/hm2)、氮肥用量2个水平(0、150 kg/hm2),通过2年的田间定位试验,对土壤团聚体及其碳、氮含量进行分析。结果表明:不同处理团聚体分布均以>5、2~5 mm粒级团聚体为主,其中单施生物炭20 t/hm2时,>5、2~5 mm粒级团聚体占比最大,总占比为58%,与不添加生物炭相比,增幅为20%;施用生物炭20 t/hm2时土壤团聚体平均重量直径及几何重量直径增幅最为显著(P<0.05),与不施生物炭处理相比分别增加了17.6%和24.3%;有机碳和全氮变化趋势一致,添加生物炭后,土壤有机碳、氮含量均增加,不同粒级团聚体有机碳、氮含量均不同程度地升高,分别较对照显著提升27.9%和28.9%,<0.25 mm粒级团聚体有机碳、氮含量较高。添加生物炭显著增加土壤大团聚体含量,并提高了土壤团聚体稳定性;土壤碳、氮含量及各粒级土壤团聚体碳、氮含量均显著提升,提高了>5 mm粒级团聚体有机碳、氮的贡献率。在本试验条件下,当生物炭添加量为20 t/hm2时有利于北疆灌区麦田土壤培肥改良。  相似文献   

2.
  目的  通过大豆盆栽试验,研究了秸秆生物炭与磷肥添加对红壤团聚体稳定性、磷组分分布与植物磷吸收的影响。  方法  试验包括6个处理:P0(不施磷和生物炭)、P30(30 kg P hm?2,不施生物炭)、P90(90 kg P hm?2,不施生物炭)、BP0(不施磷,单施4%生物炭)、BP30(30 kg P hm?2,施4%生物炭)和BP90(90 kg P hm?2,施4%生物炭)。采用湿筛法分离得到粗大团聚体(> 2 mm)、细大团聚体(0.25 ~ 2 mm)和微团聚体(< 0.25 mm)并用连续浸提分级测定了不同团聚体中磷组分分布特征。  结果  ①与P0和P30相比,BP0和BP30处理显著促进粗大团聚体形成与稳定,同时促进大豆生长与磷吸收,且BP30处理增幅最大。②与不施生物炭相比,不同磷水平下添加生物炭均显著降低粗大团聚体全磷、总有机磷、NH4F-Po和NaOH-I-Po含量,同时增加细大团聚体HCl-Pi和NaOH-II-Pi含量与微团聚体总无机磷、HCl-Pi和NaOH-II-Pi含量。③植株磷吸收与粗大团聚体总有机磷、NaOH-I-Po和NaOH-II-Po显著负相关,但与微团聚体和细大团聚体NH4Cl-Pi、HCl-Pi和NaOH-II-Pi显著正相关。  结论  生物炭与低量磷肥配施可有效改善红壤团聚体结构与稳定性,同时促进大团聚体有机磷的活化与微团聚体无机磷的固持,保障作物磷素供应。  相似文献   

3.
生物炭和氮肥配施提高土团聚体稳定性及作物产量   总被引:1,自引:1,他引:0  
【目的】通过田间定位试验,探讨生物炭和氮肥配施对土耕层土壤水稳性团聚体组成、稳定性、有机碳土层分布及冬小麦–夏玉米轮作体系下产量的影响,为生物炭在关中地区农业生产中的应用提供科学依据。【方法】本试验设置4个生物炭水平和2个氮肥水平,生物炭水平分别为0、1000、5000、10000 kg/hm2,依次记为B0、B1、B2、B3;氮肥水平包括两季总氮量480 kg/hm2(NT) 和两季总氮量减半240 kg/hm2(NH),共组成8个处理。采集0—10 cm、10—20 cm土层土壤样品,利用TTF-100土壤团聚体分析仪湿筛获得5种粒级的团聚体 (> 2 mm、1~2 mm、0.5~1 mm、0.25~0.5 mm、< 0.25 mm),用 > 0.25 mm团聚体含量 (R0.25)、平均重量直径 (MWD)、几何重量直径 (GMD) 表示水稳性团聚体的的稳定性,并测定了不同粒级团聚体中有机碳的含量及小麦–玉米两季作物总产量。【结果】与不施生物炭 (B0NT、B0NH) 相比,施用生物炭的处理显著增加了 > 2 mm、1~2 mm粒级水稳性大团聚体的百分含量 (P < 0.05),两粒级增幅范围分别为3.5%~180.3%、9.4%~98.9%。施用生物炭10000 kg/hm2(B3NT、B3NH) 时,MWD、GMD和R0.25增幅最高,分别增加了12.5%~112.5%、25.0%~65.7%、20.0%~65.0%。施用生物炭显著提高了土壤各粒级水稳性团聚体有机碳含量,与不施生物炭处理相比,> 2 mm、1~2 mm、0.5~1 mm 和0.25~0.5 mm粒级团聚体有机碳含量增幅分别为6.3%~30.5%、0.2%~28.2%、0.2%~41.6%和4.6%~39.1%。与0—10 cm土层相比,10—20 cm土层氮肥减量降低了土壤团聚体的稳定性,而施用生物炭10000 kg/hm2(B3NH) 可改善土壤团聚体的稳定性,改变有机碳分布。在10—20 cm土层,与B0NT处理相比,B0NH处理土壤水稳性团聚体的R0.25、MWD、GMD显著下降,三者分别降低了79.2%、25.7%、30.0%,而B3NH与B3NT处理之间无显著差异。与B0NT相比,B0NH处理 < 0.25 mm粒级微团聚体对土壤有机碳分配比例显著增加了17.4%,而B3NH处理与B3NT相比,< 0.25 mm粒级微团聚体对土壤有机碳分配比例无显著差异。此外,施用生物炭显著提高作物总产量,B2NT、B3NT和B3NH处理下两季作物总产量较高,分别较B0NT提高了27.0%、23.6%、27.9%,且三个处理之间无显著差异。从各指标相关分析可知,水稳定大团聚体的GMD与土壤全土有机碳以及两季作物总产量之间有着显著的正相关关系。【结论】生物炭配施氮肥显著提高了土壤水稳性大团聚体含量和团聚体稳定性,且提高小麦—玉米两季作物总产量。减施氮肥有利于有机碳向大团聚体中分配,供试条件下,生物炭10000 kg/hm2配施氮肥240 kg/hm2对提高土耕层团聚体稳定性、土壤有机碳及两季作物总产量效果最佳。  相似文献   

4.
秸秆和生物炭还田对棕壤团聚体分布及有机碳含量的影响   总被引:4,自引:0,他引:4  
  【目的】  比较长期秸秆和生物炭还田后土壤团聚体的变化与差异,旨在探索棕壤适宜的改良方法。  【方法】  在辽宁沈阳棕壤上连续进行了6年的田间定位微区试验,种植制度为玉米连作,试验共设6个处理:不施肥 (CK)、单施氮磷钾 (NPK)、单施生物炭 (B)、生物炭与氮磷钾配施 (BNPK)、单施秸秆 (S)、秸秆与氮磷钾配施 (SNPK)。在玉米收获后,采集0—20和20—40 cm两土层土壤样品,采用Yoder湿筛法进行了团聚体分级和测定。  【结果】  与NPK相比,BNPK和SNPK处理显著提高了0—20和20—40 cm土层 > 1 mm、1~0.5 mm和 0.25~0.5 mm粒级团聚体含量占比,降低了0.25~0.053 mm粒级团聚体含量占比,SNPK处理提高大团聚体含量占比的效果显著高于BNPK。与NPK处理相比,BNPK和SNPK处理显著增加了团聚体平均重量直径 (MWD)、几何平均直径 (GMD) 和0.25 mm粒级团聚体含量 (R0.25),即增加了团聚体的稳定性,SNPK处理的团聚体MWD和GMD值又显著高于BNPK,R0.25值两处理间无显著差异 (0—20 cm土层)。随团聚体粒级减小,不同粒级团聚体有机碳含量随之减少,以 > 1 mm粒级团聚体有机碳含量最高。与CK相比,各施肥处理均增加了各粒级团聚体有机碳含量,BNPK处理对0—20 cm土层0.25~0.053 mm粒级团聚体有机碳含量影响最显著,有机碳含量增加了44.57%。  【结论】  长期秸秆和生物炭还田能够改变土壤团聚体的分布,有利于大团聚体的形成和土壤结构改善,可提高土壤团聚体有机碳含量和团聚体稳定性,增加作物产量;秸秆直接还田提高团聚体稳定性的效果优于生物炭还田,生物炭还田提高团聚体有机碳的效果方面优于秸秆直接还田。  相似文献   

5.
生物炭与氮肥配施改善土壤团聚体结构提高红枣产量   总被引:15,自引:6,他引:9  
探讨花生壳生物炭配施氮肥对华北平原枣区土壤机械稳定性和水稳性团聚体的分布、稳定性及红枣产量的影响,阐明土壤和枣树对生物炭与氮肥培肥效果的响应,为枣区土壤结构改良和合理培肥制度建立科学依据。通过3 a(2013—2015)田间定位试验,设置生物炭用量4个水平(0,2.5,5和10 t/hm2)、氮肥用量3个水平(300,450和600 kg/hm2),利用干、湿筛法得到不同粒级的土壤团聚体含量。结果表明:与对照相比,生物炭与氮肥配施对机械稳定性团聚体的平均质量直径(MWD,mean weight diameter)、几何平均直径(geometric mean diameter,GMD)和0.25 mm大团聚体质量分数无显著影响,但0.25 mm水稳性大团聚体含量则显著提高20.7%,水稳性团聚体的MWD和GMD较对照分别显著增加29.2%和27.2%。同时,各配施处理降低了土壤团聚体破坏率,最大降幅为27.1%。与对照相比,中、高用量的生物炭与氮肥配施显著提高土壤有机碳含量,且有机碳含量与MWD和GMD均达到了显著水平(P0.05)。生物炭施入土壤1 a后,随试验时间的推移,与氮肥的培肥效果越来越明显,红枣产量呈上升趋势。综合分析认为,生物炭与氮肥配施对枣区土壤水稳性大团聚体的形成、土壤结构及稳定性提升效果显著,有利于缓解枣区土壤质量退化问题和提高红枣产量。  相似文献   

6.
  目的  比较不同耕作培肥方式对土壤理化性质和小麦产量的影响,以解决砂姜黑土耕层浅薄、养分容量低的问题,实现小麦优质高产。  方法  田间试验(2018 ~ 2020年)采用裂区实验设计,旋耕和深耕为主区;5种培肥方式为副区,包括:单施化肥(CK),增施有机肥15 t hm?2(15M)、有机肥22.5 t hm?2(22.5M)、生物炭15 t hm?2(15B)和生物炭22.5 t hm?2(22.5B),分土层研究土壤理化指标和小麦产量的变化。  结果  深耕、施用生物炭和有机肥均显著提高0 ~ 10 cm 土壤pH值,深耕显著提高10 ~ 30 cm土壤含水率,降低10 ~ 30 cm土壤容重和紧实度,生物炭对土壤容重和紧实度的改善优于有机肥。深耕配合生物炭或有机肥显著提高10 ~ 30 cm土层有机质和全氮含量;高量有机肥对速效养分的提升效果最佳。旋耕增施有机肥显著增加小麦赤霉病病穗率;深耕显著降低赤霉病病情指数,深耕22.5M处理比旋耕22.5M处理降低52.6%。连续2年的产量表明,深耕显著提高小麦产量,深耕配合高量生物炭和有机肥处理分别比深耕CK处理显著增产18.3%和9.0%。结构方程模型分析表明,深耕和生物炭主要通过影响土壤物理性质促进小麦增产,有机肥显著改善土壤化学性质,但高量有机肥能促进赤霉病的发生。  结论  深耕配合高量生物炭或适量有机肥有效改良砂姜黑土障碍因素并增加小麦产量。  相似文献   

7.
  目的  为探究燥红土对不同类型生物炭及施入量的反应,对其基础理化特性及酶活性进行测定,以期为热带地区燥红土的改良提供理论支撑和依据。  方法  以燥红土为研究对象,设置水稻壳(A)、花生壳(B)两种生物炭类型,生物炭施用量设置为10、20、40和60 t hm?2,以不施生物炭为对照(CK),共计9个处理,27个小区。在生物炭施用一年后对0 ~ 30 cm土壤进行取样,用于土壤有机碳、全氮、有效磷、速效钾和含水量以及酶活性的测定。  结果  水稻壳生物炭和花生壳生物炭施用后燥红土养分含量和酶活性有显著改变,其中土壤养分含量和含水量在所有土层均随施用量的增加呈明显升高趋势, 60 t hm?2生物炭处理对燥红土有机碳、全氮、有效磷、速效钾和土壤含水量显著高于其他处理,分别比对照处理高56.84% ~ 140.22%、19.06% ~ 62.92%、26.57% ~ 54.57%、46.31% ~ 135.12%和27.95% ~ 55.28%;土壤蔗糖酶、酸性磷酸酶和过氧化氢酶活性随施用量增加都有不同程度升高,特别是60 t hm?2花生壳生物炭处理对土壤蔗糖酶活性提升尤为显著。土壤脲酶活性在10 ~ 20 cm和20 ~ 30 cm土层随生物炭施用量增加呈显著降低趋势。  结论  施用生物炭对燥红土养分含量、土壤含水量和酶活性有明显改善,可施入40 t hm?2以上的生物炭到0 ~ 30 cm土层作为燥红土改良的重要添加剂。  相似文献   

8.
为探究耕作方式、秸秆还田和生物炭添加结合对土壤团聚体粒径分布、团聚体养分特征、养分库储量及小麦-玉米周年产量的影响,本研究采用3因素2水平试验设计,分别为耕作方式:常规旋耕(CT),深翻耕作(DT);秸秆处理:秸秆还田(S)、秸秆不还田(NS);生物炭:生物炭添加(B)、无生物炭添加(NB),共8个处理。结果表明:无生物炭添加时,旋耕秸秆还田显著提高了0~15 cm土层团聚体稳定性及土壤养分库储量,而深耕秸秆还田显著改善了>15~30 cm土层土壤团粒组成,提升土壤肥力,促进作物增产。相关性分析表明,砂姜黑土中作物产量的提升更依赖于深层(>15~30 cm)土壤物理结构的改善和土壤肥力的提升。配施生物炭后如DT-S-B(深耕秸秆还田配施生物炭)较CT-NS-NB(旋耕秸秆不还田无生物炭)处理尤其使>15~30 cm土层团聚体稳定性显著增强,>2 mm粒级团聚体比例、重量平均直径和几何平均直径值分别增加165.88%、62.37%和119.81%,显著提高>2 mm粒级团聚体有机碳、全氮和全磷含量,提高了>2 mm粒级团聚体有机碳和养分固持能力,降低了<2 mm粒级团聚体有机碳和养分固持能力,使>15~30 cm土层土壤有机碳库储量、全氮、全磷和全钾库储量分别显著提升37.41%、38.99%、41.26%和9.84%,促使2年作物周年产量平均增加22.96%,但在深耕秸秆还田的基础上配施生物炭在短期内增产效果不显著。综上,深耕秸秆还田配施生物炭能够显著改善黄淮海南部砂姜黑土深层土壤团聚体粒径分布和稳定性,提升了土壤肥力和作物周年产量,保障了农田高效绿色可持续生产。  相似文献   

9.
  【目的】  生物炭还田已经成为培肥土壤的重要农艺措施之一,研究生物炭还田对黑土各粒径水稳性团聚体中有机碳的分配,以及对不同密度组分有机质化学结构的影响,以深化认识施用生物炭增加农田土壤固碳潜力的机理。  【方法】  选取中国科学院海伦农业生态实验站内长期定位试验中施用化肥(?BC)和化肥配施生物炭(+BC) 的两个处理,采集土壤样品以常规方法分析了有机质总量,并将土壤样品分离为>2 mm、2~0.25 mm、0.25~0.053 mm和 <0.053 mm 4个粒级水稳性团聚体,测定其中的有机碳含量。将土壤样品中的有机质分为游离态轻组(free light fraction, LF)、闭蓄态轻组(occluded light fraction, OF)和矿物结合态组(mineral-associated fraction, MF) 3个密度组分,利用元素分析仪和傅里叶红外光谱技术分析了有机碳含量和化学结构。  【结果】  与?BC处理相比,+BC处理的土壤有机质含量增加19.72%,密度组分中LF和OF有机质含量分别增加了73.50%和192.66%,团聚体>2 mm和2~0.25 mm两个粒级的有机质含量分别显著增加了12.54%和21.35%。土壤中除芳香族C=C和羰基C=O相对丰度分别减少了18.18%和21.95%以外,其他官能团均增加,?CH/C=C和?CH/C=O值分别增加66.67%和62.11%;在>2 mm团聚体中,脂肪族?CH的相对丰度增加了55.11%,芳香族C=C减少17.06%,致使>2 mm团聚体中的?CH/C=C和?CH/C=O值增加;在<0.25 mm粒级中,芳香族C=C相对丰度增加27.63%~49.83%,脂肪族?CH减少了16.58%~20.80%,致使?CH/C=C和?CH/C=O值下降。在>2 mm的团聚体中—CH/C=C和CH/C=O值的增幅最大。此外,与?BC相比,+BC处理各密度组分中脂肪族?CH和芳香族C=C相对丰度均增加,其中OF组分中增幅分别达125.74%和29.06%,?CH/C=C值增加了74.19%。  【结论】  施用生物炭增加了黑土有机质含量,促使土壤特别是大团聚体中的有机质结构趋于脂肪化,促进了微团聚体中有机质的稳定性。闭蓄态轻组中脂肪族?CH的相对丰度增幅最大,有利于促进有机质活性的增强,加快土壤有机质的周转更新。  相似文献   

10.
  目的  明确旱地红壤微生物活性及作物产量对花生壳及其生物炭的响应规律。  方法  本研究在江西旱地红壤区进行田间定位试验,根据“等碳量还田”原则设置7个处理。包括常规管理(CK),施用花生壳3000 kg hm?2(S1)、4500 kg hm?2(S2)、6000 kg hm?2(S3),施用花生壳生物炭1000 kg hm?2(BC1)、1500 kg hm?2(BC2)、2000 kg hm?2(BC3),各处理均种植红薯。通对红薯生育期内土壤基础呼吸强度、土壤微生物量碳、土壤酶活性的测定探讨花生壳及其生物炭对旱地红壤微生物活性及红薯产量的影响。  结果  施用花生壳及其生物炭均能提高土壤基础呼吸强度、土壤微生物量碳含量,花生壳及其生物炭的施用提高了土壤FDA水解酶和土壤脱氢酶活性,且均以苗期S2比CK增加最显著,增幅分别达54.78%和47.79%。花生壳及其生物炭的施用对土壤过氧化氢酶活性有促进作用,在块根形成初期S3增加最显著,达31.33%,土壤蔗糖酶活性以苗期S3增加最显著,达69.42%;施用花生壳及其等碳量生物炭均能提高红薯产量,红薯产量与土壤微生物量碳呈极显著正相关,与土壤基础呼吸强度呈显著正相关。  结论  适量的花生壳及其生物炭还田可以改善土壤肥力状况,增加红薯的产量。  相似文献   

11.
  【目的】  生物质炭作为一种新型的土壤改良材料,其增产效应已有很多报道。量化评估生物质炭对小麦产量和麦田土壤性状的影响,为生物质炭在小麦生产中应用推广奠定基础。  【方法】  本研究数据来源于知网、Web of Science和维普文献数据库,以“生物质炭”、“Biochar”和“小麦”为主要关键词检索文献,共获得国内外公开发表的59篇相关试验的文献和227组数据。采用整合分析方法 (meta-analysis),定量分析生物质炭在不同田间管理措施、不同土壤条件、不同生物质炭特性下对小麦产量的影响及麦田土壤性状对施用生物质炭的响应。  【结果】  我国施用生物质炭能使小麦产量平均提高11.7%。施用生物质炭的增产效应在质地疏松的壤土 (16.0%) 和6.5 ≤ pH < 7.5 (17.1%) 的田块最显著;不同原料生物质炭的增产效果存在一定差异,木本材质 (29.3%) > 玉米秸秆 (10.7%) > 小麦秸秆 (8.1%) > 水稻秸秆 (5.9%)。不同管理措施下施用生物质炭的增产效应具有差异,雨养区 (15.7%) > 灌溉区 (4.9%)。随氮肥施用量的增加,生物质炭的增产效应逐渐降低,施氮量为0 ≤ N < 50 kg/hm2时,增产17.9%。施用生物质炭对前四季小麦增产效应显著,第四季之后,增产效应不明显,第一季 (17.2%) > 第三季 (13.4%) > 第四季 (9.4%) > 第二季 (7.3%);生物质炭施用量为10~25 t/hm2时增产效应最大 (14.9%)。施用生物质炭对麦田土壤全氮、全磷、全钾、硝态氮、铵态氮、速效磷、速效钾、有机碳、pH、土壤含水量、C/N、微生物量碳含量均有显著提高,有机碳 (38.4%) 含量变化最大。  【结论】  在不同管理措施、土壤理化性状下,施用生物质炭能显著提高小麦产量,改善土壤理化性质,但对土壤微生物量氮 (SMBN) 影响不显著。生物质炭的增产效应随施用后时间的延长不断减弱,其产量效应持续时间为4季作物。小麦生产过程中,生物质炭最佳施用量为10~25 t/hm2。  相似文献   

12.
  【目的】  合理施氮是粮食高产、稳产的重要保证。研究不同施氮水平下作物产量的可持续指数以及土壤硝态氮年际迁移特征,对指导黄淮海地区冬小麦–玉米轮作体系下农田氮肥的合理施用具有重要意义。  【方法】  长期定位试验始建于2006年,设置10个施氮水平:0、60、120、180、240、300、360、420、500和600 kg/hm2。测定冬小麦和夏玉米产量及土壤剖面 (0—200 cm) 硝态氮含量的年际变化特征。  【结果】  施氮水平显著影响冬小麦–夏玉米轮作体系下作物产量,施肥年限以及施肥年限与施肥量间的交互作用对小麦、玉米产量也存在极显著影响。施N 0~240 kg/hm2的处理,小麦、玉米产量随施氮量的增加逐渐增加;施N 300~600 kg/hm2的处理作物产量基本稳定,处理间差异不显著 (P > 0.05)。施氮能显著提高冬小麦产量的可持续性指数 (P < 0.05),但对夏玉米产量的可持续指数影响较小。随着施氮量增加,土壤硝态氮含量呈现逐渐增加的趋势,且施N量低于300 kg/hm2时,0—200 cm土层硝态氮含量均处于较低水平,施氮量超过300 kg/hm2后,土壤硝态氮含量显著增加。另外,随着试验年限的延长,土壤硝态氮累积峰逐渐下移,2008、2011和2017年土壤硝态氮含量峰值分别在40—60 cm、80—120 cm和80—160 cm。  【结论】  黄淮海盐化潮土区,冬小麦–夏玉米轮作制度下氮合理用量在冬小麦上的阈值为240 kg/hm2、在夏玉米上的阈值为180 kg/hm2,在此氮肥用量下,长期施肥既可保证作物 (小麦、玉米) 稳产,又不会显著增加土壤硝态氮残留及向下迁移。  相似文献   

13.
【目的】土壤有机氮组成和有效性影响土壤肥力的高低。研究不同施氮量下土壤有机氮组分含量的变化规律,及其与冬小麦氮素吸收之间的关系,为科学开展氮肥减施提供理论依据。【方法】冬小麦–夏玉米轮作田间试验在河南温县进行,试验历经3季冬小麦和两季夏玉米。小麦设置5个施氮(N)量处理:300 kg/hm2(N300)、225 kg/hm2 (N225)、195 kg/hm2 (N195)、165 kg/hm2 (N165)、0 kg/hm2 (N0),从第2季冬小麦开始,调查冬小麦产量和吸氮量,小麦播种前和收获后测定0—20 cm土层土壤全氮、有机氮组分含量。【结果】实现冬小麦稳产的最低施氮量为165 kg/hm2,满足冬小麦对氮素需求的最低施氮量为195 kg/hm2。酸解氮(TNex)是土壤中主要的有机氮组分,占全氮的59.06%~92.26%。随着试验时间的延长,N165和N195处理降低了TNex在有机氮中的比例,而N0、N225和N300...  相似文献   

14.
【目的】采用15N示踪法,研究滴灌肥料氮与土壤氮素的转化和去向以及在土壤中的残留分布,为新疆滴灌春小麦氮肥优化管理提供科学依据。【方法】试验于2019年在石河子大学农学院试验站进行,供试春小麦材料为强筋型‘新春38’(XC38)和中筋型‘新春49’(XC49)。试验设7个施氮(N)水平:300、285、270、255、240、225和0 kg/hm2,分别记作N300、N285、N270、N255、N240、N225和N0处理。每个试验小区内,安装未封底的PVC管(直径11 cm,高65 cm),管内施用与该处理等量的15N标记尿素。于小麦成熟期,测定PVC管内植株样品与土壤样品中的15N丰度,同时在小区内测定产量,计算氮素利用效率。【结果】两品种春小麦吸收的氮素来自肥料的比例为30.49%~36.06%,对土壤氮的依赖程度在60%以上。随着氮肥施用量的降低,对土壤氮的依赖程度逐渐增加。15N标记氮肥在土壤中的总残留率为24.05%~31.60%,主要集中在0—40cm土层,土...  相似文献   

15.
生物炭配施氮肥改善表层土壤生物化学性状研究   总被引:4,自引:0,他引:4  
【目的】 探讨生物炭配施氮肥对土壤碳氮、生物学性质及春玉米产量的影响,阐明生物炭配施氮肥后,土壤碳氮含量及生化性质变化规律,旨在为合理培肥、改善土壤环境、增加春玉米产量提供科学依据。 【方法】 在内蒙古西部 (包头) 和东部 (通辽) 2个试验点进行大田试验,设生物炭用量0、8、16、24 t/hm2 4个水平 (分别记作C0、C8、C16、C24) ,设施氮量 0、150、300 kg/hm2 3个水平 (分别记作N0、N150、N300) ,于成熟期测产,并于收获后分3个土层 (0—10 cm、10—20 cm、20—40 cm) 测定土壤碳氮含量、微生物量及酶活性。 【结果】 生物炭和氮肥对2个试验点0—10 cm、10—20 cm和20—40 cm土层有机碳、碳氮比、微生物量及酶活性均有极显著影响 (P < 0.01) ,且两者交互作用极显著。3个土层有机碳含量以及0—10 cm和10—20 cm土层全氮含量在各施氮水平随生物炭施用量的增加而增加。施加生物炭和氮肥均能显著提高3个土层的微生物量碳、微生物量氮、蔗糖酶活性、脲酶活性以及总体酶活参数,且随炭、氮施入量的增加呈先增后减的趋势;施用生物炭后0—10 cm和10—20 cm土层的微生物量碳、微生物量氮以及蔗糖酶、脲酶活性均显著高于20—40 cm土层。生物炭配施氮肥可显著提高春玉米穗粒数、百粒重及产量,2试验点产量均以C 8N150最大,包头和通辽分别为15.51 t/hm2和16.43 t/hm2。通过相关分析可知,春玉米产量主要与0—10 cm和10—20 cm土层的微生物量及酶活性有关。 【结论】 适量生物炭配施氮肥能够增加土壤碳氮储量、微生物量和酶活性,改善土壤微生态环境。炭氮配施能够提高土壤肥力,减少氮肥用量,本试验中以8 t/hm2生物炭配施150 kg/hm2氮肥为最佳施肥量。   相似文献   

16.
  【目的】  探究不同量生物炭与氮肥配合施用对北方稻田土壤氮含量、植株茎蘖生长、产量构成因素和氮肥的当季效应及后效的影响,为合理利用生物炭提高粳稻产量和氮素利用率提供理论依据。  【方法】  水稻定位试验于2019—2020年在沈阳农业大学水稻研究所进行。试验设置3个施氮水平:N0 (不施氮肥对照)、N180 (减施氮肥,N 180 kg/hm2)、N225 (常规施氮,N 225 kg/hm2); 3个生物炭施用量:B0 (不施生物炭)、B15 (低施炭量,生物炭15 t/hm2)、B45 (高施炭量,生物炭45 t/hm2),共组合为9个处理。氮肥每年按照基肥∶蘖肥∶穗肥比例3.6∶2.4∶4施用,生物炭于2019年施入,之后不再施用。于移栽后5天起,定期调查水稻茎蘖动态、生长状况和氮素含量,在收获期测产。在水稻主要生育期取样测定土壤养分含量的变化。  【结果】  1)生物炭提高了粳稻分蘖盛期和孕穗期稻田土壤全氮含量和碱解氮含量,对灌浆期全氮含量无显著影响,但降低了碱解氮含量。同一施氮量下,B15和B45之间全氮和碱解氮含量均无显著差异(P < 0.05)。2)施氮条件下,施用生物炭显著降低了最高分蘖数,但显著提高了有效分蘖数和成穗率(P < 0.05),获得了较高的总颖花数。在同一施氮水平下,相较于无炭处理,生物炭的增产效果均表现为低炭量好于高炭量。其中N180B15处理比N180B0处理增产4.4%,N225B15处理比N225B0处理增产3.2%,而N180B45与N180B0、N225B45与N225B0处理的产量水平无显著差异。氮肥减施后(N180)产量显著低于常规施氮处理(N225),配合B15处理产量显著增加,达到了常规施氮条件下的产量水平(P < 0.05),而配合B45处理较配合B15处理降低了产量。3)生物炭对粳稻的氮素积累量影响表现出年际差异,施用生物炭的第一年(2019年),在N180水平下,粳稻分蘖盛期至灌浆期的氮素积累量B15处理显著高于B45处理;在N225水平下,B15和B45处理间无显著差异。在2020年,B15和B45处理之间无论氮肥水平高低,氮素积累量均无显著差异(P < 0.05)。B45处理在第一年会降低生物炭的有益效果,其不利作用在第二年消失。4)生物炭促进了粳稻对氮素的吸收,提高了氮素利用率。其中氮素吸收利用率、农学利用率和偏生产力随施炭量增加呈先升高后降低趋势,且在N180B15处理下达到最高,两年趋势一致。  【结论】  适量的生物炭与氮肥组合在提高稻田土壤肥力、促进粳稻分蘖成穗和颖花分化方面有一定的正向耦合作用。高生物炭用量在施用当季不利于水稻生长和氮素吸收,但其增产和增效的后效与适宜生物炭用量没有明显差异。因此,减施氮肥(施氮量180 kg/hm2)条件下配合施炭15 t/hm2较为适宜。  相似文献   

17.
生物质炭(biochar,BC)施用具有改良土壤、提高作物产量等效应。本文探究了生菜产量、品质和土壤性质等对化肥氮(N)减施和生物质炭施用1年后的响应,以期为珠三角地区露地蔬菜生产中化肥合理减量和生物质炭科学施用提供依据。通过在佛山市三水区开展田间小区试验,观测了常规施氮(N100%)、减氮20%(N80%)、减氮40%(N60%)、减氮40%+生物质炭10 t/hm2(N60%+BC10)和减氮40%+生物质炭20 t/hm2(N60%+BC20)处理下生菜产量、品质、叶片SPAD值及土壤养分等指标的变化。结果表明:(1)较N100%处理,N60%处理生菜产量显著降低13.5%。减氮40%条件下,配施10~20 t/hm2生物质炭可提高生菜产量9.5%~22.7%,与N100%处理产量相当,说明生物质炭施用对生菜产量具有显著提升效果。(2)氮肥减量和生物质炭施用对生菜单株鲜重、直径和水分含量等均无显著影响,而对叶片SPAD值在不同生育期有不同影响。减氮条件下施用生物质炭处理生菜的氮和磷吸收量提高,是其增产机理之一。(3...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号