首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Using Ells River, Alberta, Canada bed sediments, this study aims to determine (1) the erosion, transport, and deposition characteristics of cohesive bottom sediments, and (2) the influence of the microbial community in this regard.

Materials and methods

A 2-m annular flume was used to generate bed shear to assess cohesive sediment dynamics for eroded beds with consolidation/biostabilization periods of 1, 3, and 7 days. Additional optical particle sizing, image analysis, densitometry, and microbial analysis were employed to further the analysis with respect to bed erosion and eroded floc characteristics.

Results and discussion

Sediment dynamics can influence the benthic and planktonic community health within aquatic systems. The critical bed shear stress for erosion increased from 0.05 to 0.19 Pa (for 1- to 7-day runs). Consolidation (dry density) increased with time and depth and eroded biofilm biomass was observed to increase with time. The community structure of the eroded sediment did not change with time suggesting a stable well-established and highly selected community. Hydrocarbon-degrading bacteria were present within the microbial consortium. The sediment was highly hydrophobic (96 %) due to a high natural oil content which likely had a profound effect on sediment dynamics, flocculation, and sediment cohesion. Eroded sediment settled poorly, which will result in the long-range transport of associated contaminants.

Conclusions

The Ells River possesses some unique properties which should be considered when assessing contaminant source, fate, and effect. The most significant of these are small floc size, the hydrophobicity of the sediment, and the biological community as these were found to be influential in both the erosion and flocculation processes. It is important that any management strategies and operational assessments of reclamation strategies that may have implication on river health incorporate the sediment compartments (SS and bed sediment), biology, and the energy dynamics within the system in order to better predict the downstream flux of sediments.
  相似文献   

2.

Purpose

Incipient motion plays an instrumental role in understanding various aspects of sediment transport, such as river bed aggradation and degradation, channel design, bank erosion, scour around bridge piers, and water quality issues.

Materials and methods

Experiments were conducted to study the incipient motion of gravel particles in three types of bed material, i.e., gravels only, silt-gravel mixture, and clay-silt-gravel mixture. The clay content varied from 10 to 50% in the clay-silt-gravel mixture while silt and gravel were in equal proportion by weight. Samples were taken out from the prepared cohesive bed for the determination of their bulk density, unconfined compressive strength, and water content. The incipient motion was observed visually, which corresponded to the beginning of movement of gravel particles in the mixture. The shear stress corresponding to incipient motion was computed using measured flow depth and slope of water surface. The physical appearance of the top layer of cohesive bed was observed visually at the end of experiment.

Results and discussion

The effects of clay content, water content, unconfined compressive strength, and bulk density of the mixture on the critical shear stress were investigated using the data collected in this study on clay-silt-gravel mixture along with the data from previous studies. A relationship is proposed for the computation of critical shear stress of gravel particles in the cohesive mixtures. The physical appearance of the top surface of the bed for clay-silt-gravel mixture has also been investigated with varying percentages of clay content in the mixture.

Conclusions

High clay percentage significantly increased the critical shear stress. The presence of silt lowers the critical shear stress especially when there is low clay content (up to 20%) in the mixture. The clay content along with the bulk density was found to be the dominant parameters that affect the incipient motion of the gravel particles in the cohesive mixtures. The proposed relationship for critical shear stress was found to be in good agreement with the observed ones.
  相似文献   

3.

Purpose

Biofilm growth changes the sediment properties and the characteristics of the bed, which further influences the interactions between the flow and the sediment bed, such as the turbulence characteristics of the flow and the erosion response of the sediment to hydrodynamic forces. In this study, the effects of biofilm on the turbulence characteristics of the flow and bio-sediment suspension are investigated.

Materials and methods

Cohesive sediments were collected from the bottom of the Three Gorges Reservoir, which have a median size of less than 0.1 mm. Flume experiments were conducted for the erosion of the sediment bed with and without biofilm under the same flow rate. Acoustic Doppler Velocimetry (ADV) was used to measure the velocities along the depth, based on which the distribution of Reynolds shear stress, time-average velocity, turbulence intensities, turbulence kinetic energy flux and budgets, and bursting events of the flow were determined. Meanwhile, the biofilm effects on the physical characteristics of sediments, such as the diameter, density, and falling velocity, were summarized from previous studies. Then, the changes of the vertical distribution of suspended sediment concentration and the near-bed concentration were evaluated.

Results and discussion

After biofilm growth, the time-averaged velocity increases by approximately 6.7% under the low flow rate condition with a flat bed, and by more than 20% under the high flow rate condition with a deformed bed. The vertical distribution of the turbulence intensity becomes more uniform under the high flow rate condition. However, the changes of the turbulence kinetic energy flux and budgets due to biofilm are hardly observed by the scattered measurement data, and more experiments need to be conducted in the future.

Conclusions

Biofilm exerts an influence on the turbulence characteristics, mostly by affecting the deformation extent of the sediment bed. Meanwhile, the changes of the physical properties of sediments due to biofilm significantly influence the transport of suspended sediment.
  相似文献   

4.

Purpose

This paper presents the development of a turbid density current module (TDCM) for a one-dimensional quasi-steady reservoir sedimentation model suitable for long-term simulations and an example of its application.

Materials and methods

The module determines the plunging point of a density current based on the criterion of the densimetric Froude number. Following plunging, simulation continues in a supercritical regime as long as the energy of density flow and bed slope are sufficient to support transport in this mode, or until the dam is reached. A muddy pond is then formed. An adapted version of the theory of Toniolo et al. (2007) is used to compute water and sediment balance in a muddy pond. If the level of muddy pond exceeds the lowest level outlet, sediment is vented from the reservoir.

Results and discussion

The model was applied to one of the largest reservoirs in the world, the Nurek reservoir in Tajikistan. Historical data on bed levels and sediment inflow as well as a recent survey from 2015 were used to calibrate and validate the model. The model showed good results both in terms of modelled bed levels and composition of deposited sediment. For comparison purpose, the model was also calibrated without the TDCM module. However, the discrepancy between the observed and modelled data was significantly higher, confirming that the good match in the case of the TDCM module was not achieved solely by calibration, but rather by a more appropriate approach to modelling.

Conclusions

These results support the choice of using the model with TDCM for modelling a general pattern of long-term deposition in the Nurek reservoir, in which turbid density currents play an important role.
  相似文献   

5.

Purpose

Fine sediments are usually collected in situ and air-dried for adsorption experiments, which may lead to particle aggregation and thus have a significant effect on phosphorus (P) adsorption under dynamic conditions. The main purpose of this study was to investigate the changes of aggregates due to drying with shear stress and the effects on the adsorption of P onto air-dried sediments under different shear rates after re-wetting.

Materials and methods

Sediment samples were collected from an alluvial river. Fine wet sediments (<31 μm) were wet-sieved and air-dried, and some air-dried sediments were further sonicated and served as the control. The grain size distribution of the three sediment samples (wet, dried, and sonicated) was measured to evaluate the particle aggregation level. The P sorption capacity of wet and dried sediments was determined by batch equilibrium experiments. The change of aggregate size with shear stress was investigated for dried and sonicated sediments. Sorption equilibrium experiments were performed to investigate the effect of shear stress on the P sorption with and without change of particle aggregation level, respectively.

Results and discussion

Fine particles agglomerated into larger aggregates during the drying process, resulting in a significant increase in the aggregate size. The sorption capacity was lower in aggregated sediment than in original wet sediment. Aggregate size in dried sediment decreased with the increase of shear rate, leading to an increase in the surface area and available adsorption sites, whereas the particle size of sonicated sediment was hardly affected. Accordingly, the P sorption amount of dried sediment increased with increasing shear rate, whereas that of sonicated sediment showed no significant change with shear rate after all sediments were suspended. There was a significant curvilinear correlation between aggregate size and P sorption amount for dried sediments, thus indicating that the P sorption amount increased significantly with decreasing aggregate size.

Conclusions

Sediment aggregation is an important factor affecting P adsorption besides the amount of suspended sediments and the exchange between suspended and bed sediments under dynamic conditions. The P equilibrium adsorption amount increases with shear stress for air-dried sediment. The effect of particle aggregation on the amount of P sorbed onto sediments should not be ignored, and thus, more attention should be paid to the pretreatment of sediment samples in the sorption experiments under dynamic conditions.
  相似文献   

6.

Purpose

The particle-size distribution of runoff sediment is important in understanding, characterizing and modeling the transport behavior of sediment and sediment-associated chemicals. The objective of this study was to investigate the particle-size distribution of sediments eroded from three soils in China under natural rainfall.

Materials and methods

Each of the three soils was packed to a depth of 30 cm in a 20?×?2.1 m runoff plot. Sediments yielded in nine natural rainfall events were analyzed for their particle-size distribution prior to and following dispersion.

Results and discussion

The sediment size measured in the undispersed condition was always larger than the one determined after chemical dispersion, indicating that part of the sediment was eroded in aggregated form. The degree of sediment aggregation depended on the clay content and the organic matter content of the sources. The mean sediment size quantified by mean weight diameter linearly increased with sediment yield for the two soils with relatively high clay content. The rate of increase was greater in the undispersed condition than that in the dispersed condition for these two soils. Comparing sediments to the corresponding source soil, the results of mean weight diameter and enrichment ratio both revealed that aggregate-size distribution was more sensitive to soil erosion than the primary particle-size distribution. Small aggregates, rather than the primary particles, were selectively eroded in the rainfall events.

Conclusions

These findings support the use of both dispersed and undispersed sediment-size distributions for the characterization of sediment transport and the associated sediment-bound nutrients and contaminants.
  相似文献   

7.

Purpose

The low conductivity of sediments for mass and electron transport is the most severe limiting factor in sediment microbial fuel cells (SMFCs), so that sediment ameliorations yielded more remarkable effects than electrode improvements. The objective of this research was to enhance the electricity generation of SMFCs with amendments of biochar to freshwater sediments for conductivity enhancement.

Materials and methods

Laboratory-scale SMFCs were constructed and biochars were produced from coconut shells at different temperatures. Variations in the power output, electrode potential, internal resistance, total organic carbon (TOC) content, and microbial communities were measured.

Results and discussion

Amending with biochar reduced the charge transfer resistances of SMFCs and enriched the Firmicutes (mainly Fusibacter sp.) in the sediment, which improved the SMFC power generation by two- to tenfold and enhanced the TOC removal rate by 1.7- to fourfold relative to those without the amendment.

Conclusions

The results suggested that biochar amendment is a promising strategy to enhance SMFC power production, and the electrical conductivity of biochar should be considered important when interpreting the impact biochar has on the electrical performance of soil or freshwater sediment MFCs.
  相似文献   

8.

Purpose

A thorough understanding of mechanisms controlling sedimentation and erosion is vital for a proper assessment of the effectiveness of delta restoration. Only few field-based studies have been undertaken in freshwater tidal wetlands. Furthermore, studies that measured sediment deposition in newly created wetlands are also sparse. This paper aims to identify the factors controlling the sediment trapping of two newly created freshwater tidal wetlands.

Materials and methods

Two recently re-opened polder areas in the Biesbosch, The Netherlands are used as study area. Field measurements of water levels, flow velocities, and turbidity at both the in- and outlet of the areas were carried out to determine the sediment budgets and trapping efficiencies under varying conditions of river discharge, tide, and wind in the period 2014–2016.

Results and discussion

Short-term sediment fluxes of the two study areas varied due to river discharge, tide, and wind. A positive sediment budget and trapping efficiency was found for the first study area, which has a continuing supply of river water and sediment. Sediment was lost from the second study area which lies further from the river and had a lower sediment supply. The daily sediment budget is positively related to upstream river discharge, and in general, export takes place during ebb and import during flood. However, strong wind events overrule this pattern, and trapping efficiencies decrease for increasing wind strengths at mid-range river discharges and for the highest river discharges due to increased shear stress.

Conclusions

Delta restoration, based on sedimentation to compensate for sea-level rise and soil subsidence, could only be effective when there is a sufficient supply of water and sediment. Management to enhance the trapping efficiency of the incoming sediment should focus on directing sufficient river flow into the wetland, ensuring the supply of water and sediment within the system during a tidal cycle, creating sufficiently large residence time of water within the polder areas for sediment settling, and decreasing wave shear stress by the establishment of vegetation or topographic irregularities.
  相似文献   

9.

Purpose

Sediment transport and riverbed sedimentation were investigated in an alpine stream below a small hydropower reservoir desilted by a controlled sediment flushing (CSF) operation. The term “controlled” refers to the operational tasks implemented to mitigate the downstream environmental impact of the operation. The experimental dataset acquired before, during, and after the CSF was also used to carry out and calibrate a one-dimensional sediment transport model of the monitored event.

Materials and methods

The investigated reservoir is located in the central Italian Alps, and its original storage was 160,000 m3, about 30% filled by a mixture of sand and silt/clay before the CSF. Downstream sediment concentration was controlled by releasing clear water from upstream reservoirs and regulating the work of earth-moving equipment in the emptied reservoir. A 3.6-km-long reach with average slope of 0.015 was monitored: concentration and grain size of suspended sediment were measured during the CSF and the riverbed alteration was evaluated by volumetric sampling and measurements of the deposits’ thickness. Sedimentation and River Hydraulics—One Dimensional (SRH-1D) was used to simulate sediment transport during the monitored CSF. Model parameters were calibrated by comparing the computed and the observed amount of sediment deposited along the study reach.

Results and discussion

Sediment flushing was carried out in October 2010 for 3 days. Ca. 16,000 m3 of sediment were evacuated, representing approximately 30% silt/clay and 70% sand. 2.4 Mm3 of clear water was released to reduce sediment concentration and increase transport capacity downstream. About 3000 m3 of sand was deposited in the study reach after the CSF, with maximum height up to 0.2 m. Although the riverbed before the CSF was simply set as mono-granular, after calibrating the parameters, good agreement was achieved between the depositional pattern computed by SRH-1D and the one observed, both in terms of deposit thickness and grain size of deposited sediment. The sensitivity analysis revealed a major role of the parameters controlling bed mixing processes in affecting the simulated deposition after the CSF.

Conclusions

Sediment below 0.1 mm in diameter was not detected in river deposits after the flushing: the effects on river biota associated with substrate clogging by very fine sediment were therefore minimized. After proper calibration, 1-D sediment transport modeling can effectively support the planning of CSF operations: to minimize the downstream environmental effects, concurrently achieving acceptable flushing efficiency, the analyzed scenarios as well as the model outputs need to be carefully evaluated from a multidisciplinary perspective.
  相似文献   

10.

Purpose

Zebra mussels (Dreissena polymorpha) alter the transport dynamics and fate of particulate matter in aquatic systems by intercepting, retaining, and recycling suspended materials. This study examines the effect of particle processing by dressenids on the nature (grain size distribution, settling velocity, porosity  and density) and transport properties (critical shear stress for erosion, erosion rates, and bed stability) of suspended particulate matter in lakes.

Materials and methods

The bed stability, erosion rate, and critical shear stress for erosion of dreissenid biodeposits were measured in an annular flume. The particle size distribution, settling rate, density, and porosity were measured to characterize the physical nature of the biodeposits. Materials studied in the flume include (1) a combination of biodeposits and surface sediments collected from dreissenid beds and (2) biodeposits harvested in a weir box populated with dreissenids.

Results and discussion

The settling rates of both biodeposit/sediment mixtures and pure biodeposits were lower than natural sediment in lacustrine environments. Erosion characteristics and transport properties of biodeposits were strongly influenced by bed age and the presence of mussels. Bed stability increased after 7 days, with a τcrit of 0.26 Pa compared to the 2- and 14-day consolidation periods (τcrit?=?0.13 and 0.15 Pa), respectively. The observed changes in bed stability with bed age will modify the transfer of particulate materials to the offshore profundal zone as well as the rates and magnitudes of sediment-associated nutrients in the near shore zone.

Conclusions

Biostabilization of surficial lake-bottom sediments impacted by mussel biodeposits may increase bed stability and reduce the export of particulate matter to the offshore environment. Further, well-developed communities of dreissedid mussels have an armoring effect on deposited sediment, which reduces remobilization of sediment and biodeposits. However, once eroded, the dreissedid modified deposits will likely be transported further due to their low-settling velocity.
  相似文献   

11.

Purpose

The critical shear stress of cohesive and mixed cohesive/non-cohesive sediments is affected by multiple interacting physical, chemical and biological parameters. There are various mathematical approaches in the scientific literature for computing critical shear stress. However, processes that influence sediment stability are still not fully understood, and available formulas differ considerably. These discrepancies in the literature arise from random system behaviour (natural variability of the sediments), different definitions of the critical shear stress, different measurement techniques and different model frameworks (scope of the parameters, undisturbed versus artificial sediment samples). While analytical approaches fail to address the involved uncertainties, fuzzy logic-based models integrate uncertainty and imprecision.

Materials and methods

With this in mind, a data-driven neuro-fuzzy model (ANFIS) was used to determine the critical shear stress based on sediment characteristics such as wet bulk density and grain size distribution. In order to select model predictors systematically, an automated stepwise regression algorithm was applied. The database for this analysis consisted of 447 measurements of the critical shear stress originating from 64 undisturbed sediment samples.

Results and discussion

The study identified clay content as the primarily controlling variable for erosion resistance. Depending on the characteristics of the sampling location, the bulk density was also selected as a model predictor. In comparison to analytical models that are available in the scientific literature, the fuzzy model achieved higher correlation coefficients between measured and predicted data.

Conclusions

The neuro-fuzzy-model includes uncertainties of input variables and their interactions directly. Thus, it provides a reliable method for the prediction of erosion thresholds of cohesive/non-cohesive mixtures. It was also shown that this approach requires fewer measured variables as well as fewer assumptions than the models it was compared to.
  相似文献   

12.
13.
14.

Purpose

Cohesive sediment is able to flocculate and create flocs, which are larger than individual particles and less dense. The phenomenon of flocculation has an important role in sediment transport processes such as settling, deposition and erosion. In this study, laboratory experiments were performed to investigate the effect of key hydrodynamic parameters such as suspended sediment concentration and salinity on floc size and settling velocity. Results were compared with previous laboratory and field studies at different estuaries.

Materials and methods

Experimental tests were conducted in a 1-L glass beaker of 11-cm diameter using suspended sediment samples from the Severn Estuary. A particle image velocimetry system and image processing routine were used to measure the floc size distribution and settling velocity.

Results and discussion

The settling velocity was found to range from 0.2 to 1.2 mm s?1. Settling velocity changed in the case of increasing suspended sediment concentration and was controlled by the salinity. The faster settling velocity occurred when sediment concentration is higher or the salinity is lower than 2.5. On the other hand, at salinities higher than 20, in addition to increasing SSC, it was found that the situation was reversed, i.e. the lower the sediment concentration, the faster the settling velocity.

Conclusions

Sediment flocculation is enhanced with increasing sediment concentration but not with increasing salinity.
  相似文献   

15.
16.

Purpose

Investigations of geochemical characteristics of sediments of the Zrmanja River estuary were done in order to determine the natural and anthropogenic factors influencing sediment composition in this area. For that purpose, spatial and temporal distribution of major and trace elements in the sediments and surrounding soils was studied.

Materials and methods

Sediment and soil samples, including one marl sample, were collected at 28 locations. All samples were subjected to total digestion and subsequently analysed by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for total concentration of 20 elements (Ag, Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Rb, Sb, Sn, Sr, Ti and Y). Obtained concentrations and their normalized counterparts were used for assessment of factors influencing sedimentation in the study area.

Results and discussion

The results of the analysis showed that the composition of sediments of the Zrmanja River estuary is primarily determined by the composition of bedrock, existing hydrodynamic conditions and the relative isolation of the studied basin. Nevertheless, anthropogenic influences were observed as well. The composition of the Zrmanja River sediments reflects the impact of the ex-alumina factory “Jadral” and transfer by wind of the material from its immediate surroundings to the water system of the Zrmanja River. In addition, sedimentation in the Zrmanja River was found to be influenced by the construction of reservoirs and the HE “Velebit”, hydroelectric power plant located in the Zrmanja watershed.

Conclusions

The geochemical composition of recent sediments of the Zrmanja River estuary is controlled primarily by natural factors, although the influence of anthropogenic activities is also evident.
  相似文献   

17.

Purpose

Rivers in low plains in the subtropical regions of China, where the population is dense and economies are active and well-developed, might be a large terrestrial carbon pool. This present study of the Sanyang wetlands in Wenzhou, southeastern China, aims to quantitatively estimate the volume of sediments in this region’s polluted river systems and their carbon storage.

Materials and methods

The bathymetry of river sections were surveyed using an echo sounder equipped with a differential GPS. An underwater digital elevation model (DEM) was then developed using the anisotropic ordinary Kriging method. Sediment samples were collected and analyzed for carbon content and sediment properties. Carbon storage in sediments was calculated using bathymetric and sediment analysis data.

Results and discussion

The studied rivers have been receiving organic pollutants from local residences and industries for decades. Results from a river network of 1.2 km2 revealed a total carbon storage of 46.7 million kg in the sediments which had a volume of 1.4 million m3, with the upper 20 cm depth of sediments contributing about one third of this carbon storage.

Conclusions

The present work demonstrated that GIS technologies can be used to create digital river sediment surfaces and assess sediment amounts as well as determine the spatial distribution of sediments and their components. This could provide further insight into river restoration planning and other options from a carbon-balance perspective.
  相似文献   

18.

Purpose

The purpose of the current study was to present a 3D computational fluid dynamics (CFD) model that can be used to predict long-term (11 years) bed changes in a reservoir due to sedimentation and dredging and that can be done with a reasonable computational time (18 h) on a desktop computer.

Materials and methods

The numerical model solved the Navier-Stokes equations on a 3D non-orthogonal unstructured grid to find the water velocities and turbulence. The convection-diffusion equation for suspended sediment transport was solved to find the sediment deposition pattern. Bed changes were computed and used to adjust the grid over time. Thereby, bed elevations over time were computed. The effect of dredging was also included in the model, and how this affected the bed elevation changes. The main feature of the numerical model enabling a reasonable computational time was implicit numerical methods giving the possibility to use long time steps.

Results and discussion

The results were compared with annually measured bed elevation changes in the reservoir over 11 years. This gave 11 figures of bed elevation changes, due to the combined effect of sedimentation and dredging. Comparing the annually computed and measured bed changes, there was a fair agreement for most of the years. The main deposition patterns were reproduced. The amount of sediments removed in three dredging campaigns were also computed numerically and compared with the measured values. Parameter tests were done for the grid size, fall velocity of the sediments, cohesion, and sediment transport formula. The deviation between computed and measured dredged sediment volumes was less than 16% for all these four parameters/formulas.

Conclusions

The 3D CFD numerical model was able to compute water flow, sediment transport, and bed elevation changes in a hydropower reservoir over a time period of 11 years. Field measurements showed reasonable agreement with the computed bed elevation changes. The results were most sensitive to the sediment particle fall velocity and cohesion of the bed material.
  相似文献   

19.

Purpose

The Three Gorges Dam project is one of the biggest projects in the world. The water level fluctuation zone (WLFZ) was created with impoundment. The purpose of the current study is to investigate the ecotoxicological potential of the sediment extracts from the WLFZ and propose future WLFZ monitoring for early detection of environmental changes brought about by pollution.

Materials and methods

The investigation was performed by using cell-based in vitro bioassays to determine acute cytotoxicity (neutral red retention assay) and mechanism-specific aryl hydrocarbon receptor (AhR)-mediated activity (7-ethoxyresorufin-O-deethylase (EROD) induction assay) of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells (RTL-W1).

Results and discussion

Results showed that the cytotoxicity and AhR-mediated toxicity potential of the sediment extracts from the WLFZ in the Three Gorges Reservoir (TGR) were moderate of level compared with the ecotoxicity of sediments from other river systems. However, according to a sediment classification system in Germany, sediments from some individual sites in the WLFZ showed strong toxicity. Compared to the results from the Yangtze River in our previous study, more attention should be paid to the aryl hydrocarbon receptor inducers in the WLFZ in TGR.

Conclusions

The in vitro bioassays used in this study may serve as a valuable tool to predict the potential ecological hazards of the organic pollutants in the WLFZ to the aquatic organisms in some extent.
  相似文献   

20.

Purpose

Rivers feeding into the Loskop Dam, South Africa, pass through coal mining and heavily industrialised areas. Previous studies investigating mass mortalities of crocodile and fish in the river system, revealed the presence of organic compounds, including polycyclic aromatic hydrocarbons (PAHs), in their tissues.

Materials and methods

Samples were collected from nine sites within the dam in winter and summer. Liquid-liquid and microwave-assisted extraction was used for preconcentrating PAHs from water and sediment samples, respectively. Extracts were analysed by gas chromatography-mass spectrometry in the selected ion monitoring mode to determine the presence and levels of the 16 United States Environmental Protection Agency (US EPA)-priority PAHs.

Results and discussion

Significant levels of PAHs were found in both water and sediment samples. Concentrations were higher in sediments than in water, as well as in samples collected in winter. Levels of PAHs in sediments were generally higher than those reported by many researchers for other water bodies in industrialised areas. Zebrafish embryos were used to assess potential risks associated with the water and sediment, and to determine the effects of PAHs on aquatic life. Embryos, exposed to intact water and sediment samples, as well as to diluted sediment extracts, were monitored for 120 h post fertilisation. Sediment proved more toxic to zebrafish embryos than water, causing delayed embryo development and malformations.

Conclusions

These findings are alarming as they indicate that this water system is under stress. These findings can be typical of any water system situated in a coal mining and industrial region.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号