首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
Experiments on proton dissociation from the surfaces of goethite, amorphous Al oxide, kaolinite and latosol were carried out, showing amphoteric behavior with reactions of proton dissociation-association on the surfaces and buffering capacity in such a sequence as amorphous Al oxide>latosol>kaolinite>goethite. Dissociation constants of surface proton, pKsa, are significantly correlated with surface charge density, which has been proved with an electrochemical model. The intrinsic constants of proton dissociation, Ksa(int), gained by extrapolation to zero charge conditions of plots of pKsa against ao, could be used to estimate the acidity strength of variable charge surfaces. The value of pKse(int) is 8.08 for goethite, 1.2 for morphous Al oxide, 6.62 for kaolinite and 5.32 for latosol.  相似文献   

2.
The Taihu Lake region in East China has become prone to soil acidification, which changes heavy metals such as copper(Cu) in soil into water-soluble species and increases the mobility and contamination risks of heavy metals in the biological environment. In this study, the kinetics of Cu2+sorption by the bulk soil and the aggregate size fractions of an acidic paddy soil collected from the Taihu Lake region, the effects of temperature on Cu2+sorption, and the p H changes of the solution were investigated by static sorption and magnetic stirring. The aggregate size fractions were prepared by low-energy ultrasonic dispersing and freeze-drying. The total sorption amounts of the bulk soil and the aggregate size fractions for Cu2+followed a descending order of clay > coarse sand > bulk soil > silt> sand, corresponding to those of organic matter content, free iron oxide content, free aluminum oxide content, and cation exchange capacity. The kinetic sorption curves of Cu2+by the bulk soil and the aggregates, which were divided into two stages(rapid and slow sequentially), were well fitted by the first-order equation, the diffusion equation, and the Elovich equation, showing significant correlations(P < 0.05). Specific and non-specific sorption dominated in the fast and slow stages, respectively, and the former was predominant throughout the sorption process. The specific sorption accelerated and the non-specific sorption decelerated with rising temperature. The p H of the solution decreased significantly during the specific sorption and remained unchanged or increased slightly during the non-specific sorption. When the specific sorption terminated, the p H of the solution was minimized nearly simultaneously.The sorption progress of Cu2+by the bulk soil significantly preceded that by the aggregates. Therefore, heavy metal contamination may be another factor reducing soil p H and metal sorption forms should be taken into consideration in studies of mitigating soil heavy metal pollution or determining environmental capacity of heavy metal in soil.  相似文献   

3.
土壤组分对广东省酸性水稻土磷吸附参数的影响   总被引:9,自引:2,他引:7  
Soil components affecting phosphate sorption parameters were studied using acid paddy soils derived from basalt, granite, sand-shale and the Pearl River Delta sediments, respectively, in Guangdong Province.For each soil, seven 2.50 g subsamples were equilibrated with 50 mL 0.02 mol L-1 (pH=7.0) of KCl containing 0, 5, 10, 15, 25, 50 and 100 ng P kg-1, respectively, in order to derive P sorption parameters (P sorption maximum, P sorption intensity factor and maximum buffer capacity) by Langmuir isotherm equation. It was shown that the main soil components influencing phosphate sorption maximum (Xm) included soil clay, pH,amorphous iron oxide (Feo) and amorphous aluminum oxide (Alo), with their effects in the order of Alo >Feo > pH > clay. Among these components, pH had a negative effect, and the others had a positive effect.Organic matter (OM) was the only soil component influencing P sorption intensity factor (K). The main components influencing maximum phosphate buffer capacity (MBC) consisted of soil clay, OM, pH, Feo and Alo, with their effects in the order of Alo > OM > pH > Feo > clay. Path analysis indicated that among the components with positive effects on maximum phosphate buffer capacity (MBC), the effect was in the order of Alo > Feo > Clay, while among the components with negative effects, OM > pH. OM played an important role in mobilizing phosphate in acid paddy soils mainly through decreasing the sorption intensity of phosphate by soil particles.  相似文献   

4.
铁氧化物与土壤表面电荷性质的关系   总被引:4,自引:0,他引:4  
Shao  Z. C.  Wang  W. J. 《土壤圈》1991,1(1):29-39
The relationship between iron oxides and surface charge characteristics in variable charge soils (latosol and red earth) was studied in following three ways.(1)Remove free iron oxides (Fed) and amorphous iron oxides (Feo) from the soils with sodium dithionite and acid ammonium oxalate solution respectively.(2) Add 2% glucose (on the basis of air-dry soil weight) to soils and incubate under submerged condition to activate iron oxides,and then the mixtures are dehydrated and air-dried to age iron oxides.(3) Precipitate various crystalline forms of iron oxides onto kaolinite.The results showed that free iron oxides (Fed) were the chief carrier of variable positive charges.Of which crystalline iron oxides (Fed-Feo) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges,and did little influence on negative charges.Whereas the amorphous iron oxides (Feo),which presented mainly fas a coating with a large specific surface area,not only had positive charges,but also blocked the negative charge sites in soils.Submerged incubation activated iron oxides in the soils,and increased the amount of amorphous iron oxides and the degree of activation of iron oxide,which resulted in the increase of positive and negative charges of soils.Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide,and also led to the decrease of positive and negative charges.Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges.Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges.Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.  相似文献   

5.
The clay mineral association,oxides of clay fraction and surface charge properties of 7 soils,which are developed from granite,located at different altitudesof the Tianbao Mountains were studied.Results indicate that with the increase in altitude,1) the weathering process and desilicification of soil clay minerals became weaker,whereas the leaching depotassication and the formation process of hydroxy-aluminum interlayer got stronger;2)the contents of amorphous and complex aluminum and iron,and the activity of aluminum and iron oxides for soil clay fraction increased;and 3) the amount of variable negarive charge,anion exchange capacity and the values of PZC and PZNC also increased.The activity of aluminum and iron oxides,the accumulation of aluminum,and surface charge characteristics and their relation to clay oxides of the vertical zone soils were observed and recorded.  相似文献   

6.
The Zhongdian swamp meadow in Zhongdian, China is well known as “Shangri-la”, where the peat has never been studied for its potential to interact with pollutants. Humic acid (HA) was extracted from Zhongdian peat using two methods, namely sodium pyrophosphate extraction (SPE) and dilute base extraction (DBE), and characterized for its functional groups and sorption property. The HAs extracted by both methods contained several active functional groups and had large external specific surface areas. The adsorption mechanism of methylene blue onto HAs was interpreted as Langmuir sorption. SPE-HA showed higher sorption capacity because of its larger specific surface area, whereas the extraction yield of DBE-HA was twice that of SPE-HA. Kinetics modeling indicated that the sorption of methylene blue was a two-component first order reaction. The component with the higher rate constant also showed higher sorption capacity. No pH effect was observed for methylene blue sorption on HA in our experimental design, and the sorption decreased as the temperature increased.  相似文献   

7.
The phosphate adsorption and surface charge characteristics of the tropical and subtropical soils derived from different parent materials in China were determined, and their relations to soil mineralogy were analysed. The results showed that all soil phosphate adsorption curves were well fitted by Freundlich equation and Langmuir equation. The maximum buffering capacity of P ranged from 66 to 9 880 mg kg-1, with an increasing order of purple soil, skeletal soil, red soil, lateritic red soil, yellow soil and latosol; and the highest value was 149 times the lowest value, which indicated great differences among these soils in phosphate adsorption and supplying characteristics. The pH0 (zero point of charge) values obtained by salt titration-potential titration varied from 3.03 to 5.49, and the highest value was found in the latosol derived from basalt whereas the lowest value was found in the purple soil. The correlation analysis indicated that the main minerals responsible for phosphate adsorption in the soils were gibbsite, amorphous iron oxide and kaolinite; and the pH0 was mainly controlled by kaolinite, gibbsite and oxides.  相似文献   

8.
Effect of Electrolytes on Surface Charge Characteristics of Red Soils   总被引:1,自引:0,他引:1  
The zero point of charge (ZPC) and the remaining charge σp at ZPC are two important parameters characterizing surface charge of red soils.Fourteen red soil samples of different soil type and parent material were treated with dithionite-citrate-dicarbonate (DCB) and Na2CO3 respectively.ZPC and σp of the samples in three indifferent electrolytes (NaCl,Na2SO4,and NaH2PO4) were determined.Kaolinite was used as reference.The results showed that ZPC of red soils was affected by the composition of parent materials and clay minerals and in significantly positive correlation with the content of total iron oxide (Fet),free iron oxide (Fed),amorphous iron oxide (Feo),aluminum oxide (Alo) and clay,but it was negatively correlated with the content of total silica (Sit).The σp of red soils was also markedly influenced by mineral components.Organic components were also contributing factor to the value of σp.The surface charges of red soils were evidently affected by the constitution of the electrolytes.Specific adsorption of anions in the electrolytes tended to make the ZPC of red soils shift to a higher pH value and to increase positive surface charges of the soils,thus leading to change of the σp value and decrease of the remaining net negative charges,even to the soils becoming net positive charge carriers.The effect of phosphate anion was greater than that of sulfate ion.  相似文献   

9.
R. MOREAU  J. P&#;TARD 《土壤圈》2004,14(4):409-423
Highly weathered soils are distributed in the humid and wet-dry tropics, as well as in the humid subtropics. As a result of strong weathering, these soils are characterized by low activity clays, which develop variable surface charge and related specific properties. Surface reactions regarding base exchange and soil acidification, heavy metal sorption and mobility, and phosphorus sorption and availability of the tropical highly weathered soils are reviewed in this paper. Factors controlling surface reactivity towards cations and anions, including ion exchange and specific adsorption processes, are discussed with consideration on practical implications for rational management of these soils. Organic matter content and pH value are major basic factors that should be controlled through appropriate agricultural practices, in order to optimise favorable effects of colloid surface properties on soil fertility and environmental quality.  相似文献   

10.
Potassium (K) and nitrogen (N) are essential nutrients for plants. Adsorption and desorption in soils affect K+ and NH + 4 availabilities to plants and can be affected by the interaction between the electrical double layers on oppositely charged particles because the interaction can decrease the surface charge density of the particles by neutralization of positive and negative charges. We studied the effect of iron (Fe)/aluminum (Al) hydroxides on desorption of K+ and NH + 4 from soils and kaolinite and proposed desorption mechanisms based on the overlapping of diffuse layers between negatively charged soils and mineral particles and the positively charged Fe/Al hydroxide particles. Our results indicated that the overlapping of diffuse layers of electrical double layers between positively charged Fe/Al hydroxides, as amorphous Al(OH) 3 or Fe(OH) 3 , and negatively charged surfaces from an Ultisol, an Alfisol, and a kaolinite standard caused the effective negative surface charge density on the soils and kaolinite to become less negative. Thus the adsorption affinity of these negatively charged surfaces for K+ and NH + 4 declined as a result of the incorporation of the Fe/Al hydroxides. Consequently, the release of exchangeable K+ and NH +4 from the surfaces of the soils and kaolinite increased with the amount of the Fe/Al hydroxides added. The greater the positive charge on the surfaces of Fe/Al hydroxides, the stronger was the interactive effect between the hydroxides and soils or kaolinite, and thus the more release of K+ and NH + 4 . A decrease in pH led to increased positive surface charge on the Fe/Al hydroxides and enhanced interactive effects between the hydroxides and soils/kaolinite. As a result, more K+ and NH + 4 were desorbed from the soils and kaolinite. This study suggests that the interaction between oppositely charged particles of variable charge soils can enhance the mobility of K+ and NH + 4 in the soils and thus increase their leaching loss.  相似文献   

11.
Abstract

In nineteen surface horizons of red Mediterranean soils from various locations of Greece, phosphorus (P) sorption experiments were conducted and the sorption characteristics were studied in relation to soil properties. Phosphate sorption data were fitted both to the Langmuir and Freundlich equations. From these equations, the following P sorption parameters were determined from the Freundlich equation, X = ACn, the parameters A (the phosphate sorbed at C = 1 mg P/L), n (the P sorption intensity), the P sorption index (PS = X/log C) and maximum P sorption (Xmfr). From the Langmuir equation, C/X = 1/KXm + C/Xm, the parameters K (showing the bonding energy), maximum P sorption (Xmla), the quantity of P adsorbed at a standard concentration of 0.2 mg P/L (P0.2), and P maximum buffering capacity (PMBC). The Freundlich parameter A was strongly correlated to the clay and sesquioxides ("free”; iron and aluminum oxides and amorphous iron oxides) content. Seventy‐four percent of the variance of this parameter was explained by clay and “free”; iron (Fe) content. The Freundlich parameter n was significantly correlated with pH and amorphous iron oxides content, while 52% of its variance was explained by amorphous Fe and dithionite extrac‐table aluminum (Al). The P sorption maxima calculated from the Freundlich equation were in general lower than those calculated by the Langmuir equation. Both these parameters were strongly correlated with clay and more slightly with sesquioxides content. About 50% of their variance was explained by clay content of the soils. The P sorption index was strongly correlated with the clay content and less strongly with dithionite‐extractable Fe and Al. The P‐buffering capacity calculated from the data of Langmuir equation was also strongly correlated with these two parameters. In addition, clay content and dithionite‐extractable Fe and Al were well correlated to the amounts of P required to obtain an equilibrium concentration of 0.2 mg P/L while 61% of the variation of this parameter was explained by the clay and the dithionite‐extractable Fe content. From these findings, it seems that for the red Mediterranean soils from Greece, P sorption is affected by clay content and iron and aluminum oxide contents.  相似文献   

12.
Sorption and desorption characteristics of four organic phosphates (OPs) with different molecular sizes and structures (glycerophosphate, GP; glucose‐6‐phosphate, G6P; adenosine triphosphate, ATP; myo‐inositol hexakisphosphate, IHP) and inorganic phosphate (Pi) on three aluminium (Al) (oxyhydr)oxides (amorphous Al(OH)3, boehmite and α‐Al2O3) were investigated. The maximum sorption amounts of OPs and Pi increased with decreasing crystallinity of the minerals on a per mass basis: α‐Al2O3 < boehmite < amorphous Al(OH)3. With an exception of IHP sorption on amorphous Al(OH)3, the maximum surface area‐based sorption densities increased with decreasing molecular weight (MW) of OPs and Pi: IHP < ATP < G6P < GP < Pi. Despite having the largest MW, IHP had greater sorption amounts on amorphous Al(OH)3 than the other OPs because of the transformation of surface complexes to surface precipitates. Sorption kinetics of OPs was first a rapid sorption followed by a long and slow sorption process. Of the three Al (oxyhydr)oxides, amorphous Al(OH)3 had the greatest first rapid sorption density and initial sorption rate of OPs within 5 minutes, both factors decreasing with increasing MW of OPs. The initial desorption percentages of OPs by KCl generally increased with decreasing MW of OPs, whereas the maximum desorption percentages of OPs by citrate were four to five times those achieved with KCl. Overall, strong specific sorption of OPs occurs on the surface of Al (oxyhydr)oxides, and molecular structure and size of OPs, as well as crystallinity and crystal structure of the minerals, are the key factors affecting the interfacial reactions and environmental behaviour of OPs.  相似文献   

13.
Abstract

Poly(ethylene oxide) impacts on soil physical properties are thought to be a function of its adsorption by the soil material. The objective of the present paper is to evaluate the importance of microchemical surface composition of soil colloids on PEO adsorption. The microchemical surface composition of soil colloids was characterized using scanning electron microscopy (SEM) equipped with energy‐dispersive x‐ray analysis (EDAX). Results obtained from batch adsorption tests indicate that a correlation between the atomic ratio of Si:(Al+Fe) on soil colloids surface and PEO sorption capacity exist, where those soil colloids with larger value of Si:(Al+Fe) ratio are able to sorb PEO more efficiently. This correlation allows us to predict that the PEO sorption capacity for soil colloids decrease with progressively increasing degrees of soil weathering.  相似文献   

14.
土层性质对铜和铅在土壤中保持和迁移的影响   总被引:1,自引:0,他引:1  
The mobility and bioavailability of heavy metals in soils is largely governed by sorption and desorption phenomena.Cu2+ and Pb2+ are among the most potentially toxic heavy metals and they are present,often concomitantly,in many polluting spills and in agrochemicals.The objective was to assess and compare the competitive sorption and desorption capacities and sorption hysteresis of Cu2+ and Pb2+,as well as their migration through the profiles of four natural soils:a Humic Umbrisol,an Umbric Cambisol,an Endoleptic Luvisol and a Humic Cambisol.In all horizons Pb2+ was invariably sorbed and retained to a greater extent than Cu2+.The sorption and retention of Cu2+ were most in?uenced by pH,e?ective cation exchange capacity(CECe) and Mn oxide content.On the other hand,the fixation capacity of Pb2+ was most in?uenced by pH,CECe,and Mn oxide and organic matter contents.pH and CECe were the individual soil properties most markedly in?uencing Cu2+ and Pb2+ sorption and retention.In all the horizons Pb2+ exhibited greater hysteresis than Cu2+.In each soil the hysteresis in the A horizon was greater than that in the B horizon,except in the Bt horizon of the Endoleptic Luvisol,due to its high pH and vermiculite content.Based on migration indices,Pb2+ was less mobile than Cu2+ in the studied soils.  相似文献   

15.
-  Dedicated to Prof. Dr. Ulrich Förstner on his 65th birthdayGoal, Scope and Background   Goethite (&#945;-FeOOH) as the most frequently occurring iron oxide in the environment plays a significant role in the binding of inorganic pollutants. Accordingly, synthetic goethite is used for the purification of contaminated water. Goethite crystals can be prepared in different shape as porous and non-porous forms. The mineral can also be modified by partial substitution of structural Fe+3 for different foreign elements. The biggest possible substituent known so far is Cd+2 which causes a strong expansion of the unit-cell parameters. An incorporation of Pb+4 generates a permanent positive charge. Goethites with these morphological and structural modifications were selected for sorption experiments with Co2+, Ni2+, Zn2+, Cd2+, Pb2+, and arsenate. It was intended to demonstrate the potential of mineral modification for improving sorption properties.Methods   Batch sorption studies were carried out combining each mineral with a single element at different pH and reaction times. Cations were investigated at a single initial concentration only while arsenate was tested over a range of concentrations in order to establish sorption isotherms. The sorption step was followed by an extraction step to characterize time dependent immobilization reactions.Results and Discussion   A time dependent increase of trace metal and arsenate sorption is attributed to a migration of ions into pores of star-shaped goethite and to a binding by specific sorption sites at the surface. The migration into pores is related to the size of adsorbing cations. The almost identical sorption behaviour of Ni2+ and Co2+ on pure goethite is contrasted by a strong preference of Co over Ni on Cd-goethite. Expansion of the unit-cell dimensions in Cd+2 substituted goethite generates highly specific binding sites at the surface. These are accessible to Co and Zn only. A permanent positive charge in Pb+4 substituted goethite reduces the binding of cations and doubles the sorption capacity for arsenate. Pb-goethite also contains a limited portion of highly specific sites which can only be accessed by Zn2+. Immobilization takes place even after a short contact time of 16 hours. This process results in a growing fraction of non-extractable metals and arsenate with reaction time.Conclusions   Pores and foreign elements in the goethite structure greatly affect the reactivity of the mineral and the ability to immobilize inorganic pollutants. A possible mechanisms for the preferred sorption of Co and Zn by Cd-goethite is seen in the ability of these metal ions to adopt a smaller size: Co by oxidation of Co2+ to Co3+ and Zn by tetrahedral coordination of Zn2+. This kind of binding can be viewed as structural incorporation. The binding properties of modified goethites can well be characterized by sorption tests including an array of elements with different ionic size and charge.Recommendation and Outlook   There is considerable potential for designing goethite modifications with improved surface reactivity for specific purposes such as water purification and possibly catalysis of reactions.  相似文献   

16.
Abstract

Selenite adsorption by a variety of oxides consisting of iron (Fe), aluminum (Al), titanium (Ti), manganes (Mn), and silicon (Si), and by two humic acids were investigated in order to grasp selenite behavior and fixation mechanisms in soil. It was found that selenite was apparently adsorbed even by the Mn oxides on which surface negative charge was dominant in normal pH range (pH <4). No selenite adsorption was observed in the silicon dioxide (SiO2) and the two humic acids. A sequential extraction of adsorbed selenite with competitive anions showed the differences of binding force or stability of adsorbed selenite among the minerals. While the goethite fixed selenite strongly, selenite adsorbed on the Mn oxide was easily released to the liquid phase with other anions, such as phosphate. Each mineral had its inherent characteristic in ligand exchange reactions accompanied with selenite sorption. Selenite sorption by the Mn and the Ti oxides resulted in large increase of surface negative charge, while only a little increase in the Fe and Al oxides. Proton consumption with selenite sorption was extremely smaller for the Mn oxide than for the others.  相似文献   

17.
The hydrous oxides of Mn, Fe, and Al avidly sorbed Sb from μM Sb(OH), solutions, with uptake levelling off as initial Sb concentration increased. Capacity values decreased along the sequence MnOOH > Al(OH)3 > FeOOH. The amount sorbed by each substrate decreased gradually at pH values > 6. Addition of 0.4M CH3COONa to the aqueous phase (to minimise retention of weakly bound Sb) had little effect on MnOOH uptake capacity (~160 mmol, kg?1 at pH < 7) but retention dropped rapidly at higher pH. With the other two substrates (pH 6–7) the calculated capacity values for specific Sb sorption were ~ 45 mmol kg?1 FeOOH and ~ 33 mmol kg? Al(OH)3; about a third of the total capacity values. On these substrates specific Sb sorption tended to peak in the pH 7 to 8 region. The pH response pattern was modified using Sb tartrate sorbate solutions. Factors influencing Sb sorption included substrate surface charge, chemical form of Sb and surface interactions. Formation of a sparingly soluble metal coating was indicated by the uptake plateaus observed when increasing amounts of solid were added to Sb solutions containing acetate.  相似文献   

18.
Abstract

The sorption of Cu and Zn on soils, as a function of pH, is important to an understanding of their mobility in the soil solution and their availability for plant nutrition. Copper and Zn sorption as a function of the pH were measured for six B horizons of two Orthic Humic Gleysols, two Orthic Humo‐Ferric Podzols, one Orthic Dystric Brunisol and one Orthic Sombric Brunisol. The results show that: 1) for the same amount of metal in solution and the same pH, more Cu is sorbed than Zn and 2) there is a maximum of sorption at or just above pH 5.00 and a large decrease as pH decreases.

During the pH‐dependent sorption of Cu and Zn on six B horizons of Quebec soils, it was found that ions were released into solution thus altering the charge generated by the soil at low pH and the sorption behavior of Cu and Zn. The solid phase most likely to control the level of ions in solution is believed to be the amorphous and oxide forms of Al and Fe. The dissolution of these metal oxide or hydrous oxide materials also releases cations adsorbed on, or occluded in, the amorphous material.  相似文献   

19.
HU GUO-SONG 《土壤圈》1994,4(2):153-164
The study results of the effects of temperature and ionic strength on the adsorption kinetics of Pb2+ and Cu2+ by latosol, red soil and kaolinite coated with Mn oxide showed that Pbr" and Cur" adsorption by all samples, as a whole, increased with raising temperature. Temperature also increased both values of Xm (the amount of ion adsorbed at equilibrium) and k (kinetics constant) of Pb2+ and Cu2+ The activation energies of Pb2+ adsorption were kaolin-Mn>red soil>goethite and those of Cu2+ were latosol>red soil>kaolin-Mn>goethite. For a given single sample the activation energy of Cu2+ was greater than that of Pb2+. Raising ionic strength decreased the adsorption of Pb2+ and Cu2+ by latosol, red soil and kaolinite coated with Mn oxide but increased Pb2+ and Cu2+ adsorption by goethite. The contrary results could be explained by the different changes in ion forms of Pb2+ or Cu2+ and in surface charge characteristics of latosol, red soil, kaolin-Mn and goethite. Increasiclg supporting electrolyte concentration in-creased Xm and k in goethite systems but decreased and k in kaolin-Mn systems. All the timedependent data fitted the surface secondorder equation very well.]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号