首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because forest width is thought to be the most relevant metric to ecological communities, it has persisted as the dominant paradigm and focus of management recommendations for riparian forest conservation. Consequently, managers may overlook important effects of the surrounding landscape matrix. We determined if characteristics of the landscape matrix, particularly the amount of urban development surrounding a forest, were better predictors of bird communities than forest width. We sampled breeding-bird communities 3 times each June 2001-2004 in 33 riparian forest sites (69-565 m wide) in Ohio, USA. We examined if bird community structure and composition were more closely associated with forest width or the amount of urban development within 1 km of each forest using canonical correlation analysis. Results indicate that the landscape matrix surrounding these relatively large forest tracts explained >94% of the variation in bird communities compared to <6% explained by forest width. Numbers of Neotropical migrants were negatively associated with urbanization in the landscapes (r = −0.43), whereas residents (r = 0.57) and short-distance migrants (r = 0.41) were positively associated with urbanization. Similar patterns persisted at the individual species level, particularly for Neotropical migrants as 76% of species in this guild were negatively related to urban development. Our findings suggest that the traditional approach to conserving riparian forests is not sufficient and that explicit consideration of the surrounding landscape matrix also should be a key component in conservation efforts.  相似文献   

2.
Unprecedented deforestation is currently underway in Southeast Asia. Since this trend is likely to continue, it is critical to determine the value of human-modified habitats (e.g., mixed-rural habitat) for conserving the regional native forest avifauna. The impacts of ongoing deforestation on the highly endemic avifauna (33%) of Sulawesi (Indonesia) are poorly understood. We sampled birds in primary and secondary forests in the Lore Lindu National Park in central Sulawesi, as well as the surrounding plantation and mixed-rural habitats. Species richness, species density and population density of forest birds showed a consistent decreasing trend in the following order: primary forests > secondary forests > mixed-rural habitat > plantations. Although primary forests contained the highest proportion (85%) of a total of 34 forest species recorded from our point count surveys, 40-yr old secondary forests and the mixed-rural habitat showed high conservation potential, containing 82% and 76% of the forest species, respectively. Plantations recorded only 32% of the forest bird species. Fifteen forest species had the highest abundance in primary forests, while two species had higher abundance outside primary forests. Our simulations revealed that all forest birds that were sensitive to native tree cover could be found in areas with at least 20% continuous native tree cover. Our study shows that although primary forests have the highest conservation value for forest avifauna, the potential of degraded habitats, such as secondary forests and the mixed-rural habitat, for conserving forest species can be enhanced with appropriate land use and management decisions.  相似文献   

3.
While urban areas are increasingly recognized as having potential value for biodiversity conservation, the relationship between biodiversity and the structure and configuration of the urban landscape is poorly understood. In this study we surveyed birds in 39 remnant patches of native vegetation of various sizes (range 1-107 ha) embedded in the suburban matrix in Melbourne, Australia. The total richness of species within remnants was strongly associated with the size of remnants. Remnant-reliant species displayed a much stronger response to remnant area than matrix-tolerant species indicating the importance of large remnants in maintaining representative bird assemblages. Large remnants are important for other ecological groups of species including migratory species, ground foraging birds and canopy foraging birds. Other landscape (e.g. amount of riparian vegetation) and structural components (e.g. shrub cover) of remnants have a lesser role in determining the richness of individual remnants. This research provides conservation managers and planners with a hierarchical process to reserve design and management in order to conserve the highest richness of native species within urban areas. First of all, conservation efforts should preferentially focus on the retention of larger remnants of native vegetation. Second, where possible, riparian vegetation should be included within reserves or, where it is already present, should be carefully managed to ensure its integrity. Third, efforts should be focused at maintaining appropriate habitat and vegetation structure and complexity.  相似文献   

4.
Understanding how urban land-use structure contributes to the abundance and diversity of riparian woody species can inform management and conservation efforts. Yet, previous studies have focused on broad-scale (e.g., urban to exurban) land-use types and have not examined more local-scale changes in land use (e.g., the variation within “urban”), which could be important in urban areas. In this paper we examine how local-scale characteristics or fine-scale urban heterogeneity affect(s) the diversity, composition, and structure of temperate woody riparian vegetation communities in the highly urbanized area of Cincinnati, Ohio, USA. We use an information-theoretic approach to compare vegetation models and canonical correspondence analyses to compare species responses to urban variables. We found that urban riparian areas can harbor a high diversity of native canopy and shrub species (38 and 41, respectively); however, native and exotic woody plant species responded differently to urbanization. Exotic canopy species increased with the level of urbanization while native canopy and understory species declined. Understory species diversity displayed a greater response to urbanization than did canopy diversity, suggesting temporal lags in canopy response to disturbances associated with present and recent land-use changes. Certain native and exotic woody species represent ecological indicators of different levels of urbanization. Native species characteristic of pre-European settlement conditions were restricted to the wide riparian forests with little urban encroachment. Several native early-successional species appear tolerant to urbanization. Two exotic species, the tree Ailanthus altissima and the shrub Lonicera maackii, were the most abundant and ubiquitous woody species and appear to exploit urban disturbances. These exotic species invasions have the potential to modify forest composition and ecological function of urban riparian systems. In addition, altered hydrology may be a contributing factor as canopy and understory stem density of high-moisture-requiring species decreased with an increase in impervious surface and grass cover and with proximity to roads and railroads. In the face of urbanization, maintaining wide riparian forests and limiting building, road and railroad development within these areas may help reduce the invasion of exotic species and benefit hydrological function in temperate riparian areas.  相似文献   

5.
We examined data on bird and reptile assemblages in a plantation landscape in southern New South Wales, south-eastern Australia, for evidence of threshold responses to the amount of native eucalypt vegetation in circular areas of 2000 and/or 1000 m around field survey sites. These circular areas contained varying proportions of native Eucalyptus and exotic radiata pine Pinus radiata forest thereby providing a basis for examining potential threshold effects in relation to the area of native vegetation cover. For bird species richness or the probability of detection of individual bird species we found no empirical evidence of a threshold response to the area of native vegetation cover, or any other potential explanatory variables. All relationships were characterised by considerable variability in the response data. “Broken-stick” relationships which involved sudden change points did not fit the response data better than smooth relationships obtained from generalised additive or linear models. As with birds, there was no evidence that a threshold model between lizard richness and the amount of native vegetation within 1000 m described the relationship any better than a smooth, continuous or other type of relationship. Several related factors may explain our results. An important one is that species-specific responses to landscape conditions mean that marked thresholds will not be seen for an aggregate measure like species richness at a given value for a given landscape variable. Another is that factors other than the amount of native vegetation may significantly influence underlying patterns of species occurrence. This highlights a need to be aware of the potential effects of various ecological processes, even when a substantial amount of native vegetation cover remains.Our findings do not rule out the possibility of the existence of threshold relationships. However, irrespective of the choice of measure of predictor variable (e.g., the amount of native vegetation cover), it will often be difficult to detect and estimate threshold responses due to high inherent variability - a characteristic of the vast majority of ecological datasets. Furthermore, even if it is possible to estimate functional (threshold) forms and although they might be useful from an explanatory perspective, in most instances they are likely to be of limited value in a predictive sense. This calls into question the practical significance of the threshold concept.  相似文献   

6.
North American beavers (Castor canadensis) were introduced into southern South America in 1946. Since that time, their populations have greatly expanded. In their native range, beavers shape riparian ecosystems by selectively feeding on particular plant species, increasing herbaceous richness and creating a distinct plant community. To test their effects as exotic engineers on sub-Antarctic vegetation, we quantified beaver impacts on tree canopy cover and seedling abundance and composition, as well as their impacts on herbaceous species richness, abundance and composition on Navarino Island, Cape Horn County, Chile (55°S). Beavers significantly reduced forest canopy up to 30 m away from streams, essentially eliminating riparian forests. The tree seedling bank was greatly reduced and seedling species composition was changed by suppressing Nothofagus betuloides and Nothofagus pumilio, but allowing Nothofagus antarctica. Herbaceous richness and abundance almost doubled in meadows. However, unlike beaver effects on North American herbaceous plant communities, much of this richness was due to invasion by exotic plants, and beaver modifications of the meadow vegetation assemblage did not result in a significantly different community, compared to forests. Overall, 42% of plant species were shared between both habitat types. Our results indicate that, as predicted from North American studies, beaver-engineering increased local herbaceous richness. Unlike in their native range, though, they did not create a unique plant community in sub-Antarctic landscapes. Plus, the elimination of Nothofagus forests and their seedling bank and the creation of invasion pathways for exotic plants together threaten one of the world’s most pristine temperate forest ecosystems.  相似文献   

7.
Riparian zones are important for the many ecosystem services they supply. In settled areas, the vegetation of such zones is shaped by human land-use; this often creates conditions under which alien plant species thrive. Alien plants have been shown to induce large-scale changes in riparian habitats, and they pose a major threat to the continued provision of key ecosystem services. We used direct gradient analysis to assess correlations between land-use and the composition of vegetation along a riparian river corridor in the highly transformed landscape surrounding Stellenbosch in South Africa’s Western Cape Province. Vegetation plots were sampled along the entire length of the river from headwaters to estuary (ca. 40 km). Plant community composition was analyzed in relation to land-use data collected in the field, and additional land-use variables computed from digital land-cover data. Patterns of plant community structure were found to be directly related to land-use, with measures of cover, richness, and diversity differing significantly among land-use types. Portions of the riparian zone adjacent to agricultural land had the greatest level of alien plant cover, while areas bordered by urban land maintained the highest alien species richness. Areas adjacent to grazing and natural lands showed intermediate and low levels of invasion, respectively. Several native species were found to persist in areas with high abundance and diversity of invasive alien plants, suggesting that they will be valuable focal species for future restoration attempts. Due to the level of human-mediated change in many areas of the riparian zone, restoration to historic conditions over most of the river is not considered feasible. These areas should be recognized as examples of novel ecosystems, and management efforts should focus on restoring or creating desirable ecosystem functions, rather than on achieving assemblages comprising only native species.  相似文献   

8.
The invasive, non-native herb, giant knotweed (Polygonum sachalinense), is becoming increasingly common in riparian corridors throughout North America and Europe. Despite its prevalence, there has been limited study of its ecological impacts. We investigated the effects of knotweed invasion on the abundance and diversity of forest understory plants, and the quantity and nutrient quality of leaf-litter inputs, in riparian forests in western Washington, USA. Among 39 sampling locations, knotweed stem density ranged from 0 to 8.8 m−2. Richness and abundance (cover or density) of native herbs, shrubs, and juvenile trees (?3 m tall) were negatively correlated with knotweed density. Where knotweed was present (>5.3 stems m−2), litter mass of native species was reduced by 70%. Carbon:nitrogen ratio of knotweed litter was 52:1, a value 38-58% higher than that of native woody species (red alder [Alnus rubra] and willow [Salix spp.]). Resorption of foliar N prior to leaf drop was 76% in knotweed but only 5-33% among native woody species. By displacing native species and reducing nutrient quality of litter inputs, knotweed invasion has the potential to cause long-term changes in the structure and functioning of riparian forests and adjacent aquatic habitats.  相似文献   

9.
Woodpeckers (family Picidae) show promise as indicators of avian diversity in forests because their populations can be reliably monitored, and their foraging and nesting activities can positively influence the abundance and richness of other forest birds. A correlation between woodpecker richness and richness of forest birds is known to exist at the landscape scale, but uncertainty remains whether this correlation occurs at the smaller stand-level spatial scales where forest management activities take place. We used data collected under a diverse range of forest types, harvest treatments, and forest health conditions during a long-term study of bird communities in interior British Columbia, Canada, to examine two basic questions: (1) at the level of individual forest stands, is woodpecker richness correlated with bird richness (measured as richness of all other bird species)? and (2) do woodpecker richness and bird richness have similar habitat correlates? Bird richness was positively correlated with woodpecker richness (β = 0.59, SE = 0.22, 95% CI = [0.14 1.03]). Richness of both woodpeckers and all other birds were positively correlated with tree species richness and negatively correlated with density of pines, and the effect for forest harvest type was similar for both measures of avian richness (uncut < partial harvest < clearcut with reserves). The effect of density of lodgepole pines killed by mountain pine beetles differed between the two richness measures, being positive for woodpecker richness and negative for forest bird richness. We conclude that the richness of woodpeckers is indeed correlated with the richness of other birds at the stand-level, and can serve as a reliable indicator of overall bird richness in most forest stands and conditions, except during insect outbreaks when differential responses by woodpeckers and the rest of the avian community may decouple the relationship between bird richness and woodpecker richness.  相似文献   

10.
Over the past few decades, the montane forests of Peninsula Malaysia have been severely impacted by the cultivation of exotic crops and urban sprawl. To guide conservation initiatives, montane bird communities were studied to determine their response along a disturbance gradient with the aim of identifying key factors influencing their distribution. Habitat types surveyed included primary and secondary montane forests, a tea plantation, rural, and urban areas in Cameron Highlands and Fraser’s Hill. Response variables included species richness and density quantified via point counts and mistnet surveys. Explanatory variables measured were related to vegetation structure, food abundance and land-use cover. Estimated ‘true’ species richness was higher for pristine and minimally disturbed sites, lower in tea plantation and lowest in heavily developed town centres. Nonmetric multidimensional scaling revealed that both vegetation structure (e.g. canopy density) and land-use cover (e.g. proportion of forest cover) influence species distribution; certain invasive lowland birds were tolerant of extreme development and native montane birds, in general, endured only slight habitat disturbances. A simulation indicated that montane forest dependant species richness started to decline when more than 20% of the canopy cover was lost. Less than a third of the species richness remained when more than 40% of the canopy cover was cleared. The logistic regression model suggested that sensitive species nested lower, were restricted to montane habitats and foraged in mid or high canopy. The dominance of lowland invasives in highly developed urban sites reveals that homogenisation of bird communities can occur even at higher altitudes (>1400 m a.s.l.). The results indicated that native montane birds communities are sensitive to habitat loss and degradation. Thus, any development in the highlands must proceed with minimal disturbance to montane forests, of which, keeping the canopy cover intact should be a crucial consideration.  相似文献   

11.
Japan’s only native crayfish species Cambaroides japonicus has been declining dramatically in the past few decades. For the purpose of conservation planning, twenty-two coastal streams were surveyed to investigate summer distributions of crayfish in relation to stream and riparian environment. Classification and regression trees were used to predict the occurrence and abundance of crayfish. The classification tree model with stream variables as predictors showed that crayfish would occur in swift or high gradient streams (correct classification rate = 91%). Within those streams, however, crayfish only inhabited depositional microhabitats, in which the areas are limited in availability. Crayfish were not found in gentle, low gradient streams containing abundant depositional microhabitats. This paradoxical distribution pattern was attributed to availability of boulder substrates in swift or high gradient streams. The regression tree model indicated that crayfish abundance was determined primarily by the percentage of boulder substrates and the presence of fish (observed vs. predicted r = 0.64).The classification tree model using only riparian variables indicated that the total woody plant (mainly broadleaf species) density followed by the percentage of early successional species such as alder and willow determined the splits of the tree model (correct classification rate = 95%). A leaf processing experiment on 10 riparian plant species suggested that crayfish preferred high nitrogen (or low C/N) leaves.These results suggest that swift or high gradient fishless streams associated with abundant cover in dense broadleaf forest serve conservation areas for this endangered crayfish, and that consideration of riparian composition may facilitate conservation efforts.  相似文献   

12.
Agricultural landscapes with spatial and temporal variations interact with each other to affect the existing biodiversity. Though rice fields provide important habitats for birds all over the world, studies so far have rarely explored the effects of landscape heterogeneity on bird species in rice paddy areas. This study investigated the effects of habitat cover and landscape variables on the species richness and the abundance of birds in rice paddy areas in Japan. Data on bird occurrence and the environment were collected at 32 grid squares (1 × 1 km) in the Tone River basin. The richness and the abundance of agricultural wetland species were particularly high in landscapes with large areas of rice fields in summer, when rice fields were irrigated, but in those with large areas of open water in winter, when rice fields were drained. It is important to maintain a combination of rice fields and open water to satisfy multiple habitat requirements by agricultural wetland species throughout the year. Grassland species were positively associated with a rich diversity of land cover including fallow fields and open water, indicating the importance of a simultaneous existence of multiple landscape elements. Forest cover in landscapes positively affected edge species and woodland species. Since forest cover had a relatively strong correlation with edge density, the responses of bird species to changes in forest cover and edge density need to be explored further. This study illustrates the importance of spatial and temporal landscape complementation for bird species in rice paddy areas.  相似文献   

13.
Termite mounds form islands of fertility in savanna landscapes and create foraging hotspots for herbivores, but the magnitude and spatial extent of these influences is unknown. We mapped terrain, termite mound and woody vegetation three-dimensional (3-D) structure at 56 cm resolution across a large-scale (254 ha), long-term (34 years) herbivore exclusion experiment in the Kruger National Park, with the Carnegie Airborne Observatory (CAO). We compared vegetation 3-D structure in areas protected from herbivores with those accessible to herbivores, both on termite mounds and in the landscape matrix between termite mounds. Termite mound density was 1.1 ha−1 across the study area and mound size did not differ between protected and accessible areas. Woody vegetation canopy cover was ∼100% greater on protected than accessible mounds, but was only ∼20% greater in the protected inter-mound matrix when compared to the accessible matrix. Woody canopy height class distributions differed significantly between protected and accessible areas, with the tallest vegetation (>10 m) occurring on protected termite mounds. The impacts of herbivore browsing were evident at distances of up to 20 m from termite mound centres. Spatial analysis of mound distribution revealed that the sphere of termite mound influence constitutes ∼20% of the total landscape. Termite influences on herbivore browsing operate at scales much larger than the spatial extent of their mound building activities.  相似文献   

14.
The effects of grazing on the richness of understorey plant communities are predicted to vary along gradients of resources and tree cover. In temperate Australia livestock management has involved phosphorus addition and tree removal but little research has examined how the effects of grazing on plant species richness may vary with these management regimes. Patterns of understorey plant species richness were examined in 519, 0.09 ha quadrats in grazed pastures and remnant grassy forests and woodlands in southern Australia. Sheep grazing was the primary land use and sites varied widely in grazing frequency and density, tree cover and phosphorus fertiliser history. Using an information theoretic approach the available data provides strong evidence that the effect of grazing on total species richness varies according to available phosphorus and tree cover. Intermittent grazing and no grazing were associated with high total and native plant richness, but only at low phosphorus concentrations. Phosphorus was strongly negatively correlated with richness, particularly at low grazing frequency. Total species richness was positively correlated with tree cover except under frequent grazing at high stocking rates, suggesting that heavy grazing eliminates spatial and temporal heterogeneity imposed by trees. Native plant species richness was negatively correlated with a history of cultivation, positively correlated with tree cover and varied according to landscape position and geological substrate. Frequent high density grazing, particularly when associated with clearing, cultivation and fertiliser addition, was associated with the persistence of very few native plant species. In contrast, the richness of exotic plant species was relatively invariant and performance of the best model was low. While several studies have highlighted the importance of the grazed and cleared matrix for the conservation of native plant species, this benefit may be limited in landscapes where intensive grazing management systems dominate. Strong evidence for interactions between grazing, phosphorus and tree cover suggest that failure to consider other land use practices associated with grazing management systems could lead to erroneous conclusions regarding vegetation responses to livestock grazing.  相似文献   

15.
The factors that influence the invasion of natural habitats by nonnative plants remain poorly understood. We investigated abiotic, biotic, and human influences on the distribution and abundance of nonnative species in coastal upland habitats of southern New England and adjacent New York, US. We censused vegetation and sampled soils in 776, 20 × 20 m plots in natural areas and constructed a spatially referenced GIS database of the region that included land-use history, distance from roads, and surficial geology. Our results indicate that the modern distribution of nonnative plants is influenced by multiple, interdependent current and historical factors. Glaciolacustrine landforms had greater nonnative species richness and cover than beach-dune, moraine, and glacial outwash sand plain landforms. Extant open-canopied areas (i.e., grasslands, dunes, heather barrens, and old fields) harbored significantly greater nonnative species richness and cover than closed-canopy forests, heathlands, and shrublands. Additionally, soil calcium levels and native species richness were positively associated with nonnative species richness. Sites that were cultivated historically or experienced other soil disturbance had higher nonnative species richness than areas without soil disturbance. Overall, abiotic, biotic and historical land use affected levels of nonnative species richness whereas nonnative cover was largely associated with abiotic conditions, particularly soil characteristics. Because many rare coastal sandplain plants reach their greatest abundance on extant open-canopied habitats, efforts to restore native plants will involve tradeoffs between the benefits of expanded habitat for these species and increased risk of invasion by nonnative species.  相似文献   

16.
We compared species richness and abundance of birds between five patches under selective Alnus exploitation and five patches that have not been harvested for at least 10 years prior to our study, during the early dry season (April-July 2001), in Cotapata National Park. Using “point counts” we recorded birds and their distribution in two (<1.5 m and >1.5 m) forest layers. Simultaneously we evaluated the floristic structure (size [dbh] distribution, basal area, tree density, tree height, and vegetation cover) and composition (diversity) on three transects placed within each Alnus patch. Both bird diversity and vegetation cover were significantly higher in not presently used patches but only for the higher layer of the forest, whereas plant diversity was higher in presently used patches. Lack of differences between the two types of Alnus patches in any of the vegetation parameters measured in the lower layer was coupled with an indistinct avifauna. Small changes in habitat characteristics following a perturbation like selective logging have the potential to affect richness and abundance of birds, at least within the habitats directly affected by the perturbation.  相似文献   

17.
Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments isolated by volcanic activity 153 years ago in Hawaii to examine how long-term fragmentation, as well as fragment size and structural features affect the richness of native and exotic bird species. The total number of bird species increased rapidly with forest fragment size, with most of the native species pool found in patches <3 ha. Smaller fragments were dominated by native bird species with several exotic bird species found only in the largest fragments, suggesting that exotic bird species in this landscape show greater area-sensitivity than native species. We used airborne scanning light detection and ranging (LiDAR) to assess whether fragment area was correlated with estimates of fragment vegetation volume as well as measures of tree height. Fragment area was highly correlated with vegetation volume, maximum tree height, and canopy height heterogeneity, and these variables were strong predictors of bird richness, demonstrating that remote sensing can provide key insights into the relationship between fragment structural attributes and biodiversity indicators. Overall, this work demonstrates the value of conserving small remnant mid-elevation forest patches for native birds in Hawaii. This work also provides insight into how newly created forest patches might be used by native and exotic bird species in Hawaii.  相似文献   

18.
Habitat remnants on urban green-space areas (i.e. parks, gardens and golf courses) sometimes provide refuge to urban-avoiding wildlife, leading some to suggest these areas may play a role in wildlife conservation if they are appropriately designed and managed. The high densities observed on some green-space areas may however be attributed to external influences. Localised efforts to enhance the habitat value of urban green-space areas may therefore have little more than a cosmetic effect. This study investigated environmental factors influencing bird, reptile, mammal and amphibian diversity on Australian golf courses to assess the efficacy of small-scale conservation efforts. Abundance and species richness did not simply reflect local habitat qualities but were instead, partly determined by the nature of the surrounding landscape (i.e. the area of adjacent built land, native vegetation and the number of connecting streams). Vertebrate abundance and species richness were however, also associated with on-site habitat characteristics, increasing with the area of native vegetation (all vertebrates), foliage height diversity and native grass cover (birds), tree density, native grass cover and the number of hollows (mammals), woody debris, patch width and canopy cover (reptiles), waterbody heterogeneity and aquatic vegetation complexity (frogs). Localised conservation efforts on small land types can benefit urban-avoiding wildlife. Urban green-space areas can provide refuge to urban-avoiding vertebrates provided combined efforts are made at patch (management), local (design) and landscape (planning) scales.  相似文献   

19.
Many studies have reported increased numbers of certain synanthropic species in urbanizing landscapes, but few have evaluated if urban habitats constitute ecological traps for these species. The Northern cardinal (Cardinalis cardinalis) was used as a model species to evaluate if urban riparian forests might act as ecological traps for understory-nesting birds. Cardinals were surveyed within 2-ha riparian forest plots within rural (n = 6) and urban (n = 6) landscapes in Ohio USA during breeding and non-breeding seasons 2003-2005. Cues used by cardinals to select habitats were identified based on measurements surrounding 219 nests and in 106 randomly-located plots and 96 systematically-located plots. Productivity of 161 cardinal pairs and survival of 180 adults were monitored from late March-September, 2003-2005. Cardinals were 1.7× (in the breeding season) to nearly 4× (in non-breeding season) more abundant in urban than rural forests, and the results suggest that these differences in abundance stemmed from urban-associated changes in habitat and microclimate features used by cardinals to select habitats. Most notably, cardinals were strongly associated with dense understory vegetation and warmer minimum January temperatures, both of which were promoted as urban development increased within the landscapes surrounding riparian forests. Although other studies suggest mismatches between the habitat cues used by cardinals and how those features affect nesting success (e.g., higher nest predation in exotic shrubs), these results provide no evidence that urban forests were acting as ecological traps for cardinals. Instead, cardinals in urban and rural forests had similar numbers of nesting attempts, young fledged over the breeding season, and apparent annual survival rates. Thus, these findings do not support for the idea that urban forests in central Ohio represent ecological traps for synanthropic understory birds.  相似文献   

20.
Forest management policies in Mediterranean areas have traditionally encouraged land cover changes, with the establishment of tree cover (Aleppo pine) in natural or degraded ecosystems for soil conservation purposes: to reduce soil erosion and to increase the vegetation structure. In order to evaluate the usefulness of these management policies on reduced erosion in semi-arid landscapes, we compared 5 vegetation cover types (bare soil, dry grassland, shrublands, afforested dry grasslands and afforested thorn shrublands), monitored in 15 hydrological plots (8 × 2 m), in the Ventós catchment (Alicante, SE Spain), over 4 years (1996 to 1999). Each cover type represented a different dominant patch of the vegetation mosaic on the north-facing slopes of this catchment. The results showed that runoff coefficients of vegetated plots were less than 1% of the precipitation volume; whereas runoff in denuded areas was nearly 4%. Soil losses in vegetation plots averaged 0.04 Mg ha− 1 year− 1 and increased 40-fold in open-land plots. The evaluation of these forest management policies, in contrast with the natural vegetation communities, suggests that: (1) thorn shrublands and dry grassland communities with vegetation cover could control runoff and sediment yield as effectively as Aleppo pine afforestation in these communities, and (2) afforestation with a pine stratum improved the stand's vertical structure resulting in pluri-stratified communities, but reduced the species richness and plant diversity in the understorey of the plantations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号