首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 938 毫秒
1.
Topographical threshold conditions (s ≥ k a −b), expressed by local slope (s) and drainage area (a), have been widely used to predict gully incision locations. However, little attention has gone to the variation of the thresholds over time. Rainfall variability and changing land use or vegetation cover can potentially lead to important shifts in established thresholds. In this study, we determine topographic thresholds for gullies forming under olive groves and herbaceous crops between 1956 and 2013 in a catchment in Southern Spain. For ten different time periods, we then analysed the impact of rainfall, land use and vegetation cover on the variation of these thresholds. The results show similar topographic thresholds for olive groves and herbaceous crops. However, important variations were found over time. Rainfall indexes, in particular rainy day normal, were generally best correlated. Finally, although overall no effect of land use was obtained, the results did show a significant effect of vegetation cover, but mainly in those years where rainfall was low. This seems to indicate that during years with high rainfall, topographic thresholds are primarily controlled by rainfall, while vegetation cover seems to exert a secondary control. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Gbris   . Kertsz  L. Zmb 《CATENA》2003,50(2-4):151-164
Gully erosion can be widely observed on cultivated hillslopes in Hungary. Loose sediments covering two thirds of the total area of the country are prone to gully erosion.A detailed study of gully formation was carried out in the Rakaca catchment (58 km2), northeastern Hungary. The objectives include (1) a detailed survey of the present gullies, (2) an explanation of differences in gully distribution within the catchment, (3) clarification of the role of influencing factors like slope gradient, vegetation cover and soil type and (4) a study of changes of gully distribution and development in time over the last 200 years based on the comparison of topographic maps.The present gully distribution was first surveyed by applying 1:10 000 topographic maps and aerial photographs. The total length of the network is 70.9 km, i.e. 1.22 km/km2. Distribution inhomogeneities within the catchment can well be explained by differences in slope gradient and vegetation cover.The rate of increase of the gully length per unit area (1 km2) calculated for different time periods shows the following trends: (1) until 1860, when more than 50% of the catchment was forested, it was 5 m year−1 km−2; (2) between 1860 and 1920, when forest area dropped to almost 25% and agricultural land use was extended to slopes steeper than 25%, it still remained at roughly 5 m year−1 km−2; (3) after 1920, with 24–25% forest cover and with the extension of farming activity to the steepest slopes, it reached 10 m year−1 km−2.It could be shown that gully erosion on cultivated slopes leads to the development of gully systems in 50–60 years even if slope gradient is below 12%.To prevent further development of gully systems, it is suggested that at least 30% of the area should be forested and slopes steeper than 17% should not be cultivated at all.  相似文献   

3.
定西于家山黄土洞穴的分布特征与侵蚀临界研究   总被引:1,自引:0,他引:1  
黄土洞穴与滑坡、沟蚀等侵蚀过程联系紧密并加剧了黄土高原的水土流失程度,但目前黄土洞穴发育的分布特征与侵蚀临界暂未明晰。利用无人机获得了研究区高分辨率影像与数字表面模型,基于影像标识了黄土洞穴并统计了其土地利用类型与洞穴直径,利用标识点在数字表面模型上提取了黄土洞穴的坡度、坡向、曲率和汇水面积等地形数据并分析了黄土洞穴的分布特征。结果表明,黄土洞穴直径大多4 m。黄土洞穴在耕地上发育较少,多发育于牧草地区域流水汇聚的凹形坡,且在阴坡更为发育。同时,黄土洞穴坡度正切值范围集中于0.4~1.0,汇水面积一般不超过3 000 m~2。依托统计的坡度正切值与汇水面积数据绘制了黄土洞穴的侵蚀临界图并对比了黄土洞穴与浅沟、切沟的侵蚀临界。黄土洞穴的侵蚀临界边界分别为SA~(0.150)=0.368与SA~(0.135)=7.580,分布较广且覆盖了浅沟与切沟的侵蚀临界。浅沟、切沟的演化与黄土洞穴的发育有关,黄土洞穴通过连通与坍塌促进了浅沟、切沟的发育、转换与扩展,并因此加剧了黄土高原的水土流失。研究量化了黄土洞穴发育的分布特征,建立了黄土洞穴与浅沟、切沟的联系并深化了对黄土洞穴侵蚀过程的认识。  相似文献   

4.
沟头发生侵蚀的地形临界模型可有效预测侵蚀沟的形成条件,浅层滑坡失稳形成的洼地也是沟头形成的方式之一。为探究浅层滑坡临界起动模型的特点,以甘肃省天水市小陇山林区的降雨型浅层滑坡为研究对象,运用汇水面积-坡度关系,构建临界起动模型,与黄土高原典型侵蚀沟(浅沟、切沟)的临界起动模型进行对比分析,并探讨土地利用类型、植被类型和土壤质地对该模型的影响。结果表明:(1)浅层滑坡临界起动模型为S=3.50As-0.34,其侵蚀阈值为3.50,大于黄土高原典型浅沟(0.96)和切沟(1.54)的侵蚀阈值。研究区浅层滑坡一般发生于土层较薄的陡坡地带,其平均坡度(S=1.26)大于浅沟(S=0.35)与切沟(S=0.46),单位汇水面积(A=89.08 m2/m)小于浅沟(A=920.93 m2/m)和切沟(A=1 129.82 m2/m)。(2)汇水面积与坡度平方的乘积(AS2)代表了沟头产生侵蚀的能量指标值。研究区浅层滑坡AS2值在269.1~5 703.2 m2,平均值为1 772.97 m2,黄土高原浅沟AS2值在4.74~892.66 m2,切沟在41~814 m2,启动能量值方面,浅沟<切沟<浅层滑坡。(3)土地利用类型、植被类型和土壤质地通过影响土壤的抗冲力、渗透性和黏粒含量,从而对浅层滑坡的起动难易程度产生影响。在不同的土地利用方式中,农地最易发生侵蚀,其次是林地。油松林附近浅层滑坡的抗侵蚀能力高于日本落叶松林。研究结果为探究浅层滑坡的起动条件提供理论依据。  相似文献   

5.
Water erosion in the hilly areas of west China is the main process contributing to the overall sediment of the Yellow River and the Yangtze River. The impact of gully erosion in total sediment output has been mostly neglected. Our objective was to assess the sediment production and sediment sources at both the hillslope and catchment scales in the Yangjuangou reservoir catchment of the Chinese Loess Plateau, northwest China. Distribution patterns in sediment production caused by water erosion on hills and gully slopes under different land use types were assessed using the fallout 137Cs technique. The total sediment production from the catchment was estimated by using the sediment record in a reservoir. Sediment sources and dominant water erosion processes were determined by comparing 137Cs activities and 210Pb/137Cs ratios in surface soils and sub-surface soils with those of sediment deposits from the reservoir at the outlet of the catchment. Results indicated that landscape location had the most significant impact on sediment production for cultivated hillslopes, followed by the terraced hillslope, and the least for the vegetated hillslope. Sediment production increased in the following order: top>upper>lower>middle for the cultivated hillslope, and top>lower>upper>middle for the terraced hillslope. The mean value of sediment production declined by 49% for the terraced hillslope and by 80% for the vegetated hillslope compared with the cultivated hillslope. Vegetated gully slope reduced the sediment production by 38% compared with the cultivated gully slope. These data demonstrate the effectiveness of terracing and perennial vegetation cover in controlling sediment delivery at a hillslope scale. Averaged 137Cs activities and 210Pb/137Cs ratios in the 0–5 cm surface soil (2.22–4.70 Bq kg−1 and 20.70–22.07, respectively) and in the 5–30 cm subsoil (2.60 Bq kg−1 and 28.57, respectively) on the cultivated hills and gully slopes were close to those of the deposited sediment in the reservoir (3.37 Bq kg−1 and 29.08, respectively). These results suggest that the main sediment sources in the catchment were from the surface soil and subsoil on the cultivated slopes, and that gully erosion is the dominant water erosion process contributing sediment in the study area. Changes in land use types can greatly affect sediment production from gully erosion. An increase in grassland and forestland by 42%, and a corresponding decrease in farmland by 46%, reduced sediment production by 31% in the catchment.  相似文献   

6.
冲沟侵蚀是金沙江干热河谷土壤流失的重要原因,造成严重的土地退化,威胁区域农业发展和粮食安全。探究冲沟的形态发育特征明确其侵蚀速率,对于冲沟侵蚀量化评估和土地保护等具有重要意义。为摸清冲沟发育演变规律,该研究选取元谋干热河谷金雷国家水土保持科技示范园区附近沟谷地貌流域为研究区,选择35条冲沟,通过无人机遥感影像提取冲沟形态参数,分析形态特征,并结合高分遥感影像计算冲沟侵蚀速率。结果表明:1)研究区冲沟直线长度、顶宽、底宽、深度的范围分别为25.21~180.43 、10.76~51.76、3.56~26.85、1.22~11.92 m;面积、体积的范围分别为257.50~8987.88 m2、142.64~19479.25 m3。冲沟形态参数差异性较大,长度在发育过程中受坡面限制小于其他地区。2)冲沟底部宽度和顶部宽度比值(BW/TW)的范围为0.24~0.59,冲沟主要为“V型”和“V~U型”;冲沟顶部宽度和深度比值(TW/D)的范围为2.56~26.29,均值为6.04,横向侵蚀速率远大于下切侵蚀速率。3)2015—2022年,35条冲沟中,19条长度明显增长,冲沟溯源侵蚀速率为0.02~1.10 m/a(均值0.34 m/a);27条宽度明显增长,冲沟横向侵蚀速率为0.07~1.10m/a(均值0.36 m/a);29条面积和体积明显增长,冲沟面积增长速率为1.64~105.40 m2/a(均值23.44 m2/a);冲沟体积侵蚀速率为1.26~339.42 m3/a(均值51.21 m3/a)。冲沟横向侵蚀速率大于溯源侵蚀速率,在面积和体积增长中贡献较大。研究结果可为金沙江干热河谷地区大尺度冲沟的发育演变规律和侵蚀定量评估提供方法和依据。  相似文献   

7.
Linear erosion (LE), including rilling and gullying, has been identified as the major problem for sustainable agriculture in steepland areas. It causes severe environmental, economic, and social impacts. This issue is even more crucial in those areas undergoing rapid changes in land use, as for example northern Laos, and may dramatically affect soil conservation. Despite an increasing interest in the sloping lands of tropical areas, field evaluations of LE are still infrequent. Furthermore, the controlling environmental factors of topography, land use, climate and soils at the catchment level are seldom analysed. Our main objective was to quantify the spatial and temporal variations of LE at the catchment level and at a yearly basis. The study was conducted in a 0.62 km2 watershed of Laos (Luang Prabang province) representative of the slash and burn systems of sloping lands. Linear erosion was monitored from 2001 to 2003 within 9 sub-catchments of differing surface areas, topographic characteristics and land use. The length, depth and width of the linear erosion features were recorded every 5-m from their headcuts to their outlets in order to estimate the total catchment LE. 52 linear features, mainly rills, were formed or developed within the study area with a mean erosion rate of 1.3 Mg ha− 1 y− 1. LE rates ranged between 0.1 Mg ha− 1 y− 1 in 2003 to 2.4 Mg ha− 1 y− 1 in 2001. LE features mostly occurred within croplands where erosion rates reached 18 Mg ha− 1 y− 1. In 2001 and 2002 there was a significant correlation between LE and the proportion of the catchment area under crops (r = 0.88 and r = 0.69, respectively). However this was not the case in 2003 when few rills developed. In 2002 only, LE correlated well with the catchment surface area, the mean slope gradient and the sub-catchment perimeter confirming the non-constancy of LE landscape relation under varying rainstorm conditions. A linear regression model for LE prediction at the catchment level, generated from 2001 data, was able to explain 78% of LE variance for the 9 sub-catchments. However, this model was unable to predict accurately LE for 2002 and 2003 (ME > 5 Mg ha− 1 y− 1). This method for quantifying the linear erosion at the catchment level and some of its controlling factors can also be used for prediction over larger areas since topography and land use data, closely correlated with LE, are easily accessible.  相似文献   

8.
剖析黄土高原水蚀风蚀交错区小流域不同土地利用/覆被类型的演变方向和程度,是认识该区侵蚀环境演变趋势,评价区域水土流失动态的重要基础性工作.通过收集黄土高原水蚀风蚀交错区典型代表流域——神木县六道沟流域1990、1995、2002年土地利用信息和2010年遥感影像,结合近期实地调查结果,分析该区耕地、林草地和工矿用地等主要土地利用类型在流域内分布格局的变化态势.结果表明:1)1990-2010年,流域林草地面积占总面积比例由35.74%增加到62.79%,耕地面积比例从33.87%锐减至7.61%,坡耕地和旱梯田向林草地大量转移,耕作区域向沟缘线以下沟谷地转移和集中,沟缘线以下耕地面积占耕地总面积比例由13.82%上升至74.04%,工矿用地作业面积由0.28 hm2扩展到14.89 hm2,煤矿开采趋于活跃;2)就影响侵蚀环境演变的流域下垫面条件而言,地表覆被,尤其沟缘线以上坡面植被显著改善,但煤矿开采活动的活跃,一方面对流域内林草生长及土地利用方式存在着极大影响,另一方面,对侵蚀环境的人为恶化起着巨大的促进作用.  相似文献   

9.
Annual soil losses in southern Italy can exceed 100–150 t ha− 1 year− 1. Where erosion on agricultural land is particularly severe, land use change and afforestation are frequently seen as the most appropriate means of reducing erosion risk. However, the overall effectiveness of afforestation in reducing soil erosion remains uncertain, due to the poor development of the forest cover in some areas, leading to significant areas with sparse tree cover, and the erosional impact of forest harvesting, which commonly involves clearcutting. The study reported here addresses this uncertainty and focuses on two small catchments (W2 and W3) located in Calabria, southern Italy, for which measurements of suspended sediment yield are available. Both the catchments originally supported a rangeland vegetation cover and they were planted with eucalyptus trees in 1968. Currently, only catchment W3 supports a continuous forest cover. In catchment W2 the forest cover is discontinuous and there is a significant area of the catchment (ca. 20%) where the tree cover is sparse and the vegetation cover is dominated by natural grasses. Two additional erosion plots were established within catchment W2 in 1991, in order to explore the effect of the density of the tree cover on soil erosion. Information on the sediment yields from the two catchments and the plots for 10 storm events that occurred during the period December 2005–December 2006 and associated information on the 137Cs and excess 210Pb of the sediment, have been used to investigate the effectiveness of afforestation in reducing sediment mobilisation and net soil loss from the catchments involved. The results demonstrate that the areas of greatest soil loss are associated with the slopes where the tree cover is discontinuous, and that forest harvesting by clearcutting causes significant short-term increases in sediment mobilisation and sediment yield. These findings, which are consistent with previous work undertaken within the same area, emphasize the importance of vegetation cover density in influencing rates of soil loss in the study catchments. The study also provided a useful demonstration of the potential for using measurements of the 137Cs and 210Pbex content of sediment, in combination with more traditional sediment monitoring, to investigate sediment sources and to compare the sediment dynamics of catchments subjected to different land management practices.  相似文献   

10.
东北黑土区沟道侵蚀现状及其防治对策   总被引:2,自引:1,他引:2       下载免费PDF全文
沟道侵蚀是土地退化最严重的表现形式,东北黑土区是中国除黄土高原外沟道侵蚀最为严重的区域,沟道侵蚀严重威胁东北区域农业生产和生态环境。该研究基于多年的研究积累,结合国家侵蚀沟治理专项调查和国家重点研发计划项目研究成果以及已有文献,系统总结归纳了东北黑土区沟道侵蚀特征、发展演变趋势及其危害;梳理出现有侵蚀沟治理措施的成功经验及失败教训,凝练提出区域侵蚀沟防治目标及4种主要侵蚀沟治理模式,并给出了适用范围及条件;同时提出了新时代东北黑土区侵蚀沟防治对策建议。该研究为区域现代农业发展和生态文明建设决策以及沟道侵蚀治理工程的实施提供了科技支撑。  相似文献   

11.
Soil erosion such as sheet erosion is frequently encountered in subalpine grassland in the Urseren Valley (Swiss Central Alps). Erosion damages have increased enormously in this region during the last 50 y, most likely due to changes in land‐use practices and due to the impact of climatic changes. In order to estimate the effect of vegetation characteristics on surface runoff and sediment loss, we irrigated 22 pasture plots of 1 m2 during 1 h at an intense rain rate of 50 mm h–1 in two field campaigns using a portable rain simulator. The rain‐simulation plots differed in plant composition (herb versus grass dominance) and land‐use intensity but not in plant cover (>90%) nor in soil conditions. Prior to the second rain‐simulation campaign, aboveground vegetation was clipped in order to simulate intense grazing. The generated surface runoffs, sediment loss, relative water retention in the aboveground vegetation, and changes in soil moisture were quantified. Runoff coefficient varied between 0.1% and 25%, and sediment loss ranged between 0 and 0.053 g m–2. Thus, high infiltration rates and full vegetation cover resulted in very low erosion rates even under such extreme rain events. Surface runoff did not differ significantly between herb‐ and grass‐dominated plots. However, clipping had a notable effect on surface runoff in the test plots under different land‐use intensity. In plots without or with intensive use, surface runoff decreased after clipping whereas in extensively used plots, surface runoff increased after the clipping. This opposite effect was mainly explained by higher necromass and litter presence at the extensively used plots after the clipping treatment. The results obtained here contribute to a better understanding of the importance of vegetation characteristics on surface‐runoff formation, thus, on soil‐erosion control. Overall, we delineate vegetation parameters to be crucial in soil‐erosion control which are directly modified by the land‐use management.  相似文献   

12.
《CATENA》2001,45(2):123-161
A method based on dendrochronology to estimate gully erosion rates was developed as an alternative of traditional methods for assessing medium-term gully retreat rates, such as field monitoring of headcuts or aerial-photo interpretation of gully retreat. The method makes use of trees or parts of a tree affected by gully erosion revealing information on the history of the erosion process by datable deviations of their normal growth pattern, hence defined as ‘datable objects’. These include roots exposed by erosion; browsing scars made by ungulates on exposed roots or on above-ground parts of fallen trees; exposed and dead root ends; root suckers; stems, branches and leading shoots of fallen trees; and a sequence of trees within a gully. The method is based on the differentiation between three main conditions depending on the relation between the dynamics of the datable object (part of the tree) and the development of the gully. The first condition implies that the datable object was created before erosion of the gully volume to be dated, e.g. exposed tree roots. According to the second condition, the datable object developed as an immediate consequence of the erosion event, e.g. growth reactions of a fallen tree. The third condition implies that the datable object was created some time after the erosion event took place, e.g. trees colonising the gully bed. Each principle has consequences for the accuracy and the correct interpretation of the estimated erosion rate, i.e. whether the true erosion rate is underestimated, exact or overestimated. In spite of methodological limitations and dendrochronological dating problems, the method was successfully applied in southeast Spain. Conservative estimations of gully-head retreat rate resulted in an average medium-term (3–46 years) value of 6 m3 year−1 (n=9). For gully sidewall processes, the average minimum erosion rate per unit sidewall length amounted 0.1 m3 year−1 m−1 (n=9). A strong correlation was found between the headcut retreat rate (vm(ortho), m3 year−1) and the drainage–basin area (A, m2) of the gullies, expressed by vm(ortho)=0.02A0.57 (R2=0.93, n=9). Comparing the findings from this study with those obtained by short-term headcut retreat monitoring suggests a high reliability of the estimated retreat rates, supporting the applicability of the developed dendrochronological method.  相似文献   

13.
《CATENA》2005,60(2):165-180
We adapted a digital image analysis procedure to extract multispectral data from sequential colour air photos of a Lake Huron sand dune system and then classify land cover into water, sand, and vegetation. We isolated portions containing individual blowouts from georeferenced land cover maps of the dune system in 1973 and 1998 and overlaid the sequential images using geographic information systems (GIS). This allowed us to quantify changes in blowouts over the 25-year period. Net change in land cover (m2) within each blowout was expressed as the difference between retrogression (bare areas created by erosion or burial of existing vegetation) and colonization (vegetation patches created by plant establishment on bare areas). The analysis procedure produced maps with an overall accuracy of ≥90% for land cover classification within blowouts. The individual blowouts fell along a continuum of activity, varying from significant retrogression (+748 m2) to significant colonization (−1148 m2). Overall, sand movement in all sampled blowouts produced 3991 m2 (17.9% of the blowout area in 1998) of bare sand patches that replaced formerly existing patches of vegetation. Colonization of bare areas over the 25-year period was 4127 m2 or 18.5% of the 1998 blowout area. Retrogression and colonization are natural cooccurring processes in coastal dune systems, and the technique described here represents a new tool for the study of temporal and spatial vegetation dynamics in blowouts.  相似文献   

14.
以黄土丘陵区典型侵蚀沟道为对象,基于沟道剖面有机碳和137Cs数据,采用碳库重分布模型估算了典型沟道侵蚀诱发的CO2通量,并通过检验模型预测效率、解析影响因子,提出了模型校正的思路。结果表明:(1)在长期侵蚀作用下,沟道侵蚀区和沉积区均表现为剧烈的侵蚀效应,侵蚀区侵蚀速率介于30.99~46.44 mm/a,沉积区侵蚀速率介于34.20~37.88 mm/a,沉积区土壤流失速率略小于侵蚀区;(2)碳库重分布模型估算显示,侵蚀区与沉积区均表现为较强烈的碳源效应,侵蚀区CO2通量介于18.41~28.44 g/(m2·a),沉积区CO2通量介于22.19~29.25 g/(m2·a);(3)侵蚀部位、土壤容重、有机碳含量、侵蚀量、沟道平均坡度、植被地上部与地下部生物量共同解释了碳库重分布模型预测效率的变异特征(R2=0.68),其中侵蚀部位、侵蚀量、有机碳含量、土壤容重、植被地下部对预测效率有强驱动效应;(4)引入被忽略的植被新输入有机碳库参数,有望校正碳库重分布模型,提升模型预测效率。该研究结果明确了碳库重分布模型在沟道侵蚀区相比沉积区有更高的CO2通量预测效率,为进一步提高模型的预测精度,可以考虑引入植被输入有机碳库作为校正参数。  相似文献   

15.
Catchment scale sediment budgeting models are increasingly being used to target remediation works aimed at controlling erosion and improving water quality. Gully erosion is often a major sediment source and needs to be accounted for in such models in a manner consistent with the scale of analysis and available data. Using 130 measurements of gully cross-sectional area and 45 measurements of gully wall sediment texture, the variability in gully dimensions and particle size distribution for the Lake Burragorang catchment in Australia is examined. The distribution of gully cross-sectional area measurements is log-normally distributed and modelling indicates a representative value of 23 m2 be used in catchment sediment budgeting applications. The proportion of gully eroded sediment contributing to the bedload budget (defined as particles > 63 μm diameter) of a river link is approximately half, though may be higher in igneous landscapes. A continental scale spatially distributed subsoil texture dataset provided limited capacity to predict the finer scale spatial variation in the proportion of sediment contributing to bedload from gully erosion within the Lake Burragorang catchment.  相似文献   

16.
This paper reports on a field study conducted in Kilie catchment, East Shoa Zone, Ethiopia to assess the rate of soil erosion by employing a soil loss prediction model (Universal Soil Loss Equation) integrated with in remote sensing and geographical information systems (RS/GIS), environment and gully measurement techniques. The final soil erosion risk map was produced after multiplication of the six factors involved in the USLE and RS/GIS. Gully measurement showed that the erosion rate is higher for the upland areas than the lowlands due to inappropriate soil and water conservation measures, free grazing by animals and conversion of hillside areas into farmlands. About 97·04 per cent of the study catchment falls within a range of 0–10 t ha−1 yr−1 sheet/rill erosion rate. We found that 2·17 per cent of the study area in the uplands has a soil erosion rate falling between 10 and 20 t ha−1 yr−1. About 0·8 per cent of the study area in the uplands is hit by severe sheet/rill erosion rate within the range of 20–60 t ha−1 yr−1. Gully erosion extent in the study area was evaluated through gully measurement and quantification methods. Gully density of 67 m ha−1 was recorded in the catchment. The gully to plot area ratio was found to be 0·14 on average. Hence, in the upland areas, sustainable land management practices are required in order to reduce the rate of soil erosion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Y. Avni   《CATENA》2005,63(2-3):185
Gully incision has been eroding the alluvial sediments and loess soils deposited and developed along the valleys in the arid and semiarid regions of Israel. This phenomenon is critical in the arid regions of the Negev Highlands where the agricultural fields, the main floral biomass and the areas which have the highest grazing value, are limited to narrow valleys filled with redeposited loessial sediments. The headcut migration and gully development in the region were studied between 1990 and 2001 in three representative drainage basins (Zipporim, Revivim and Sekher). During flood events, the runoff penetrates the alluvial cover of the valleys, forming vertical headcuts, which gradually retreat up the valley. The runoff is channeled into narrow gullies, preventing the floodwater from spreading over the whole width of the valley. The change in irrigation efficiency along the valleys is reflected in a sharp estimated drop of 70–90% in the floral biomass, causing the reduction of the range value by 83–99%. During the monitoring time interval (1990–2001), the linear gully retreat in the study area ranged between 12.3 and 250 m an average rate of 1.12–22.7 m year− 1 for each gully head. The process is accompanied by erosion of soil, which has high agricultural and range value. The total soil losses in these sites ranged between 800 and 9000 m3 at an average rate of 81–818 m3 year− 1 for each gully head, which is equivalent to 121–1227 Mg year− 1. During the monitoring period, approximately 0.11–0.87 ha of land lost its agricultural and range value in each basin under study, at an average rate of 0.01–0.079 ha year− 1. Since the Byzantine period (1400 BP), approximately 6.5 ha, which is 10% of the land that had high agricultural and range value in the Zipporim valley, lost its value due to gully erosion. No recovery effects of the gully channels were found in the nearby region. The soil erosion is generated by a long-term natural dynamic change in the soil / rock ratio evolving within the drainage basins through time since the termination of the last glacial phase. The loessic sediments, originally deposited within the drainage basins during the late Pleistocene glacial stage, are being removed under the present Holocene climate in several erosion stages. This ongoing phenomenon is causing degradation of soil and biomass and is severely reducing the agricultural and range potential of the region. These parameters indicate that an ongoing process of desertification is active in the arid environment of the Negev Highlands, and is advancing in proportion to the headcut retreat rates in the region. The soil erosion and headcut retreat have been active in the Negev Highlands for the last few millennia. If these processes continue in the future, the Negev Highlands region will lose its agricultural potential within a few millennia. However, the fact that the ancient inhabitants of the region implemented successful long-term land conservation techniques already 3000 years ago, implies that a sustainable land management policy can be adapted to the Negev Highlands, as well as to other semi-arid regions in the Middle East.  相似文献   

18.
Recent research has shown a lack of long-term monitoring for detailed analysis of gully erosion response to climate characteristics. Measures carried out from 1995 to 2007 in a wheat-cultivated area in Raddusa (Sicily, Italy), represent one of the longest series of field data on ephemeral gully, EG, erosion. The data set collected in a surface area of almost 80 ha, permits analysis of the influence of rainfall on EG formation and development. Ephemeral gullies formed in the study area were measured on a yearly scale with a Post-Processing Differential GPS for length and with a steel tape for the width and depth of transversal sections. Ephemeral gully formation was observed for 8 years out of 12, which corresponds to a return period of 1.5 years. The measurements show strong temporal variability in EG erosion, in agreement with the rainfall characteristics. The total eroded volumes ranged between 0 and ca. 800 m3 year−1, with a mean of ca. 420 m3 year−1, corresponding to ca. 0.6 kg m−2 year−1. Ephemeral gully erosion in the study area is directly and mainly controlled by rainfall events. An antecedent rainfall index, the maximum value of 3-days rainfall (Hmax3_d), is the rain parameter which best accounts for EG erosion. This index is used here as a simple surrogate for soil water content. An Hmax3_d threshold of 51 mm was observed for EG formation. The return period of the Hmax3_d threshold is almost the same as the return period for EG formation. Although a mean of seven erosive rain events were recorded in a year, EG formation and development generally occur during a single erosive event, similarly to other semiarid environments. The most critical period is that comprised between October and January, when the soil is wetter and the vegetation cover is scarce. Empirical models for EG eroded volume estimation were obtained using the data set collected at this site. A simple power-type equation is proposed to estimate the eroded volumes using Hmax3_d as an independent variable. This equation shows an R2 equal to 0.67 and a standard error of estimation of 0.79.  相似文献   

19.
Aerial photographs taken in 1976 and 1989 and a field survey in 1999 showed that land use in a 900-ha catchment in the southern part of the Ecuadorian Andes is highly dynamic. Over 23 years, ca. 83 ha of arable land was abandoned and ca. 70 ha was taken into agricultural production. Changes in land use were not spatially homogeneous. Parcels on unstable geologic formations and close to village centres were preferably set-aside. Land taken into cultivation was preferably located on gently sloping areas close to newly built sites and arterial roads. The area with bush vegetation increased by regeneration of natural vegetation on fields set-aside in the late 1970s and early 1980s. There was a complex interaction between water erosion and environmental change in the study area. Land taken into production was levelled for furrow irrigation: this led to a net reduction in the area susceptible to water erosion. However, one quarter of the area affected only by sheet and rill erosion 23 years ago has since become incised by deep gullies. This increase in gully density was related to inadequate construction and management of irrigation infrastructure, rather than to change in vegetation cover and/or soil erodibility caused by agricultural practices. This factor is often overlooked in studies of the effects of environmental change on geomorphologic processes.  相似文献   

20.
This study was aimed at assessing the causes of the gully erosion and its effects on the agricultural lands in the arid region of southeastern Iran. In this study, we have used geologic maps in scales of 1:50,000 and 1:250,000, aerial photographs on a scale of 1:20,000, field observation, and GPS (global positioning system). Three soil samples were taken from 25, 50, and 75% of the gully length at each location and analyzed for pH, electrical conductivity (EC), exchangeable sodium percentage (ESP), sodium absorption ratio (SAR), cation exchange capacity (CEC), calcium (Ca), and soil texture. The causes of gully erosion, its effects on agricultural lands, characteristics of the gullies, soil depth, and vegetation of each area were evaluated. The results show that several parameters, including poor rangeland vegetation cover, overgrazing, human activities, intensive and short-period rainfall, improper land use, improper irrigation design, improper discharge of water in the channels, and soil characteristics influence the gully erosion. Gully erosion causes severe damage to agricultural lands, including soil loss, increase in surface runoff, lower soil water-holding capacity, lower quality and quantity of water, lower groundwater table, and lower agricultural production. It increased migration from villages to cities and increased socioeconomic problems and poverty. It also caused substantial damages to construction sites such as bridges, roads, and settlements as well as rivers and reservoirs and increased sediment concentration in rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号