首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为评价红壤旱地长期不同施肥方式下土壤肥力水平,基于1986年建立的江西进贤红壤旱地玉米定位试验,选用土壤pH值、有机质含量、有效磷含量、速效钾含量、阳离子交换量5个指标,采用模糊数学和主成分分析方法,评价和比较了连续施肥30年后不同施肥模式下红壤旱地土壤综合肥力水平。结果表明,数据球形假设检验KMO值为0.73,Bartlett值为127.98,Sig0.01,可以进行主成分分析。土壤肥力综合指数(SNI)以氮磷钾配施猪粪处理最高(0.94),单施猪粪次之(0.92),单施氮肥最低(0.42)。因此,红壤旱地施用有机肥或有机无机肥配施是维持和提高土壤肥力水平的重要措施。  相似文献   

2.
红壤一般偏酸且铁铝富集,磷与铁、铝形成Fe-P、Al-P,降低了红壤磷的有效性。施磷提高红壤供磷能力,但是未被作物利用的磷积累在土壤中,对水体环境构成威胁。研究红壤磷素状况对于提高作物产量和保护环境具有重要意义。已有很多关于红壤磷素状况方面的报道,但是很少将红壤磷素状况与水体磷进行关联分析。在典型红壤区江西省余江县布点采集了旱地和水田土样各54份,周边水样24份,分析了土壤有效磷(Olsen-P和Bray-P)含量、水溶性磷(CaCl2-P)含量和水样总磷含量。结果表明,以Olsen-P为指标,11%的旱地和39%的水田土壤缺磷,61%的旱地和39%的水田土壤磷适合作物生长,11%的旱地和11%的水田土壤处于高磷状态。以Bray-P为指标,11%的旱地和33%的水田土壤缺磷,6%的旱地和33%的水田土壤磷适合作物生长,77%的旱地和6%的水田土壤处于高磷状态。Olsen-P、Bray-P与CaCl2-P三者之间具有极显著相关关系,对Olsen-P与Ca Cl2-P、Bray-P与CaCl2-P分别进行回归分析,求得土壤磷流失突变点的Olsen-P和Bray-P含量分别为56.31和118.4 mg·kg-1。依据这两个标准,水田土壤有效磷均未超过磷流失突变点,旱地土壤Olsen-P和Bray-P超过突变点的样品比例分别为50%和33%。水田周边排水沟渠水的总磷含量均低于《地表水环境质量标准》Ⅱ类水标准。总之,调查的红壤区水田土壤整体较为缺磷、磷流失风险低,旱地土壤有效磷含量和磷流失风险都较高。  相似文献   

3.
红壤旱地的肥力现状及施肥和利用方式的影响   总被引:25,自引:1,他引:25  
红壤旱地是我国南方亚热带地区十分重要的土壤类型,其酸性较强,pH值一般在6.0以下、交换性酸含量在4.4 cmol(+)kg-1以上;且土壤有机质含量较低,普通旱地含量通常在20g kg-1以下;养分含量不高,全氮和全磷含量通常在1.0g kg-1左右、速效磷含量一般在10mg kg-1甚至5mg kg-1以下、速效钾含量大多低于100mg kg-1。施肥是影响红壤旱地肥力的重要因素之一,有机无机肥配合施用有利于红壤肥力的提高;而利用方式对红壤旱地肥力的影响主要通过施肥和作物对养分的吸收利用。根据红壤旱地的肥力现状及该地区农业发展的需要,提出了应加强养分平衡与流失规律、土壤性质调控与改良、高效利用与管理模式以及长期定位监测等方面的研究。  相似文献   

4.
长期定位施肥对土壤腐殖质含量的影响   总被引:22,自引:1,他引:22  
以潮土、旱地红壤和红壤性水稻土为研究对象,探讨了长期施肥对土壤腐殖质含量的影响。结果表明,长期施用NPK化肥、有机肥或有机无机肥配施均能提高潮土、旱地红壤和红壤性水稻土耕层的有机质、腐殖质和活性腐殖质含量,其中胡敏酸、富里酸也相应地增加,但以有机无机肥配施的效果最好。施有机肥或有机无机肥配施还能提高土壤腐殖质的胡/富比值。施肥对土壤有机质的影响不仅局限于土壤耕层(0-20m),而且影响耕层地下层次,但以0-60cm土层的效果显著,且以潮土的效果明显。  相似文献   

5.
长期施肥对旱地红壤磷素饱和度的影响   总被引:1,自引:0,他引:1  
磷素饱和度(Degree of phosphorus saturation, DPS)能够有效评估土壤磷素的流失潜能及地表水磷富营养化问题,可用于评价土壤磷素环境风险。DPS值通常由酸性草酸铵提取态磷(Pox)与提取态铁铝(Feox, Alox)的摩尔质量比除以校正常数(Corrected constant,α)计算得到,而α是通过建立土壤饱和吸磷量与影响土壤磷吸附的土壤特征值间的相关关系而计算得到的数值;α的取值大小(常取0.5)会直接影响到DPS的准确估算。因此,本文以中国科学院红壤生态实验站(28°04′~28°37′N,116°41′~117°09′E)为依托,以长期施肥(1988~2014年)的旱地红壤为研究材料,通过两种计算方法得到了土壤的DPS值,分析了校正常数α=0.5在长期施肥的旱地红壤DPS计算中的适用性,并确定了长期施肥旱地红壤DPS计算中α的适用性阈值。研究结果表明:校正常数α=0.5虽适用于长期施肥旱地红壤DPS的估算,但易导致旱地红壤DPS的过高估算;对比计算发现,长期施肥旱地红壤DPS计算时,校正常数α的最适取值范围为0.71~0.81。但是,不同环境背景下旱地红壤DPS计算公式中校正常数α的适应性阈值仍需进一步校正与验证,从而提高红壤区土壤磷素环境风险评估的准确性。  相似文献   

6.
不同施肥条件下红壤旱地磷素形态及有效性分析   总被引:14,自引:0,他引:14  
磷素是红壤地区农业生产的最重要的限制因素,因此红壤磷素形态与转化问题的研究,对红壤地区农业生产具有重要意义。用Hedley方法对不同施肥条件下红壤旱地土壤磷素形态进行了研究,结果表明:施磷肥能明显增加红壤各形态无机磷含量和大多数形态有机磷含量;红壤中,对植物最有效的树脂磷和碳酸氢钠磷含量很少,铁铝结合态磷和残留磷含量很多;对有效磷(Bray磷)贡献最大的磷素形态是碳酸氢钠无机磷、铁铝结合态无机磷和存在于土壤团聚体内表面的有机磷。这对于了解不同施肥条件对红壤旱地磷素有效性的影响、探索磷素消长规律、指导红壤旱地磷素管理等都有一定的理论和实践意义。  相似文献   

7.
长期不同施肥对红壤旱地肥力的影响   总被引:15,自引:0,他引:15  
通过长期不同施肥对红壤旱地肥力影响的定位研究,发现施肥耕作18年后,施用有机肥料不但增加了土壤可培养细菌、真菌和放线菌的数量,而且也增加了功能性微生物的数量;秸秆还田抑制真菌的生长,对反硝化细菌、好气性纤维素分解菌和好气性自生固氮菌的生长也没有促进作用。长期施肥耕作可提高土壤养分含量,其效果以有机肥料与化学肥料配合施用最为显著,长期施用化学氮磷钾肥料,导致土壤盐基饱和度下降、土壤pH下降1.1个单位,土壤酸化。在红壤地区旱地现有生产水平下,长期单施有机肥料可以保持土壤肥力稳定和逐步提高。  相似文献   

8.
丘陵红壤耕作利用过程中土壤肥力的演变和预测   总被引:13,自引:1,他引:13  
孙波  王兴祥  张桃林 《土壤学报》2002,39(6):836-843
通过区域尺度上两个时段的定位采样 ,结合田块尺度上的长期试验 ,研究了耕作利用变化对我国中亚热带低丘红壤区土壤肥力演变的影响。分析了土壤肥力演变的驱动力 ,建立了土壤养分变化与养分平衡间的相关预测模型。对比分析表明 ,丘陵红壤肥力的变化与养分平衡量的变化趋势一致。在保持荒地和水田利用方式时 ,土壤有机质含量显著降低 ;旱地系统中速效磷和速效钾含量增加 ,但在不施肥的针阔混交林中却下降 ;荒地开垦为水田后 ,土壤肥力有增加趋势。旱坡地红壤全氮和速效钾的变化量与氮、钾的平衡量的显著相关 ,而土壤速效磷与磷的平衡量间相关不显著 ,其原因是没有考虑磷的固定和矿化。  相似文献   

9.
长期施肥对红壤磷素持续供应能力的影响   总被引:6,自引:0,他引:6  
以长期施肥(始于1988年)的旱地红壤为研究材料,通过对历史数据的统计与分析,讨论了红壤全磷累积量与有效供磷量之间的相互关系,同时,通过有效磷的连续提取实验研究了红壤的持续供磷能力。研究结果表明:在长期施肥的过程中约有76.9%~86.8%的磷素积累在旱地红壤中,有效磷水平是红壤磷素肥力高低的直观表现,随着土壤全磷累积量的增大而增加;土壤磷素的纯盈余量又决定着全磷与有效磷的供应水平。由连续提取实验结果可以初步推测,如果现在减少或停止施用磷肥,红壤现有的供磷水平至少可以满足3~4季作物的磷素需求。因此,应在兼顾土壤磷素的农业效应和环境安全的前提下,建立新的施肥制度,使磷素资源的利用更加合理化。  相似文献   

10.
长期施肥红壤性稻田和旱地土壤有机碳积累差异   总被引:1,自引:1,他引:0  
  【目的】  提高土壤有机碳水平对提升农田生产力有重要意义。基于长期定位施肥试验,比较施肥影响下相同成土母质发育的红壤性稻田和旱地土壤的总有机碳 (TOC) 及其组分的积累差异,以深入理解红壤有机碳的固持及稳定机制。  【方法】  稻田和旱地长期施肥试验分别始于1981和1986年,包含CK (不施肥对照)、NPK (施氮磷钾化肥) 和NPKM (有机无机肥配施) 3个处理,在2017年晚稻和晚玉米收获后,采集两个试验上述处理的耕层 (0—20 cm) 土样,通过硫酸水解法分离土壤活性与惰性有机碳,测定并计算土壤中TOC及其组分的含量及储量,并利用Jenny模型拟合试验期间耕层土壤TOC含量的变化动态,估算土壤固碳潜力。  【结果】  与CK相比,长期施肥可提高稻田和旱地土壤各有机碳组分的含量,且NPKM处理的效果优于NPK处理。相比于稻田土壤,施肥对旱地土壤各有机碳组分含量的提升更加明显。NPK和NPKM处理下,旱地土壤活性有机碳组分Ⅰ、活性有机碳组分Ⅱ、惰性有机碳含量的增幅分别是稻田土壤的2.7、2.7、5.8倍和2.0、1.4和2.5倍。不论施肥与否,稻田土壤TOC的固存量和固存潜力均显著高于旱地土壤。施肥促进土壤固碳,在稻田和旱地土壤上,NPKM处理的TOC固存量分别是NPK处理的1.7和25.5倍,TOC固存潜力则分别是NPK处理的1.4和5.8倍。长期不同施肥均显著提高稻田和旱地土壤年均碳投入量,线性拟合方程表明,随碳投入量增加,土壤活性有机碳储量的累积对稻田、旱地土壤TOC储量累积的贡献率分别达64.7%、44.6%。不同处理间稻田与旱地土壤活性有机碳 (包括活性有机碳组分Ⅰ与活性有机碳组分Ⅱ) 含量的差异可解释其TOC含量差异的52.9%~60.0%。  【结论】  与施氮磷钾化肥相比,有机无机肥配施可更好的促进土壤固碳,且在旱地土壤上的促进作用比在稻田土壤上更为明显。与稻田土壤相比,旱地土壤各有机碳组分含量的变化对长期施肥的响应更敏感,且在施氮磷钾化肥条件下表现更为明显。红壤性稻田和旱地土壤TOC积累的主要贡献组分分别为活性有机碳和惰性有机碳。红壤植稻虽有利于有机碳固持,但红壤性稻田土壤的活性碳占比较高,可能易因不当管理而发生损失。  相似文献   

11.
利用组件式地理信息系统技术(Component Geographic Information System,ComGIS),在Visual Basic环境下嵌入ArcGIS Engine,结合数据库技术、专家系统技术,针对典型冀东山麓平原区——河北省唐山市丰南区开发了县域测土配方施肥专家决策支持系统。在管理丰南区基础地理、土壤、农业经济等信息的基础上,分析了丰南区土壤养分的空间变异,通过离散化技术生成了土壤养分三维空间数据,基于会员和非会员两种形式进行了县域尺度测土配方施肥指导。  相似文献   

12.
The conversion factor, kK, for estimation of microbial biomass potassium (K) by the chloroform-fumigation extraction method was determined for some arable soils: upland field soils under different fertilization conditions, an upland field soil under a greenhouse condition, and a paddy field soil under a flooded condition. The kK value varied with land utilization (paddy or upland) or fertilization (chemical or organic fertilizer). Value of kK was different between paddy field soil (0.28–0.38) and upland field soil (0.41–0.73). This study indicates that the value could be useful for the estimation of microbial biomass K in soil by the chloroform-fumigation extraction method and further investigation of the amounts of biomass K in different types of soils under conditions with varied field managements will be necessary.  相似文献   

13.
采用静态箱法和田间小区试验,研究了常规稻田和覆膜旱种稻田水稻全生育期CH4的排放规律,探讨了温度和水分与稻田CH4排放的关系。结果表明:覆膜旱种稻田的甲烷排放量明显低于常规水田的排放量,常规水田的甲烷累计排放通量为20.38g/m2,覆膜旱种稻田为2.46g/m2,水稻覆膜旱种后甲烷排放量降低了88%。常规水田CH4排放峰期持续了35d,覆膜旱种稻田CH4排放峰期为25d,两者在CH4排放高峰期的排放量分别占整个生育期累计排放量的72%和97%。覆膜旱作稻田CH4排放量降低,主要表现在最大排放峰值降低和排放峰持续时间缩短。土壤温度(5cm处)和水分与水稻生育期稻田甲烷的排放有显著正相关。CH4排放通量大于1.0mg·m-2·h-1主要集中在土壤质量含水率高于36.25%的区域,在土壤质量含水率小于36.25%时,常规稻田和覆膜旱种稻田都只有少量CH4排放。  相似文献   

14.
  【目的】  研究中国农田土壤有机碳(SOC)密度时空变化特征及其主要驱动因素,为土壤肥力提升、固碳减排和粮食安全提供理论依据。  【方法】  基于1988至2019年农业农村部全国农田监测数据(1298个点位),分析水田、旱地和水旱轮作下SOC密度时空变化特征,利用方程拟合和提升回归树模型探究气候、施肥和土壤属性对SOC密度变化的影响。  【结果】  1988―2019年全国农田表层(0―20 cm) SOC密度平均为35.13 t/hm2,不同土地利用方式下表现为水田>水旱轮作>旱地,水田和水旱轮作较旱地分别高53.2%和24.9%。SOC密度随监测时间的延长呈先降低后增加的趋势,其中水田、旱地和水旱轮作分别在2000、1998和2004年之前呈下降趋势,之后呈上升趋势。不同利用方式水田SOC密度随监测时间的变化趋势在东北地区逐渐增加,华南地区逐渐降低,西南和长江中游地区则先降低后增加,转折点分别在1995和2002年;旱地SOC密度的变化趋势在西北、华北和华南地区逐渐增加,东北、长江中游和长江下游地区先降低后增加,转折点分别在2008、2004和2004年;水旱轮作下SOC密度的变化趋势在长江中游、下游地区先降低后增加,转折点分别在2001和2013年,在西南地区呈先上升后微弱下降趋势,转折点在2012年。提升回归树结果显示,水田SOC密度后期上升阶段最重要的解释变量在西南、东北和华南区是年均温,在长江中游和下游分别是钾肥用量和土壤速效钾含量;旱地SOC密度后期上升阶段最重要的解释变量在东北为年均温,华北和华南为年均降雨,长江中游、下游区为氮肥,西北为有效磷;水旱轮作SOC密度后期上升阶段最重要的解释变量,在西南、长江中、下游地区分别为年均降雨、有效磷、氮肥。  【结论】  1988―2019年全国农田表层SOC密度除华南水田外,整体上呈先降低后增加,水田、旱地和水旱轮作土壤的转折点分别在2000、1998和2004年,旱地SOC密度的提升快于水田和水旱轮作。影响表土SOC密度提升的主要因素,东北和西南地区水田和旱地为年均温,长江中、下游地区水田为钾肥投入和土壤速效钾含量,旱地为氮肥投入;华南地区水田为年均温,旱地为年降雨量;华北和西北地区旱地为年均降雨和土壤有效磷含量;西南和长江中游水旱轮作区为土壤有效磷含量,而长江下游为土壤速效钾含量。  相似文献   

15.
近30年中国主要农田土壤pH时空演变及其驱动因素   总被引:5,自引:0,他引:5  
  【目的】  研究中国农田土壤pH时空变化特征及其主要的驱动因素,为土壤酸化阻控、土壤质量提升和土地可持续利用提供理论基础。  【方法】  基于农业农村部布置在全国主要农田区域的耕地质量监测点数据 (950个),分析旱地、水旱轮作、水田等不同土地利用类型下土壤pH时空变化特征,并利用提升回归树模型探究影响土壤pH变化的主要驱动因素。  【结果】  就全国而言,土壤pH及其变异系数表现为旱地 (6.74 ± 1.19和17.63%) > 水旱轮作 (6.54 ± 0.93和14.26%) > 水田 (5.80 ± 0.81和13.95%),其中华南地区农田土壤pH表现为水田 (5.74 ± 0.79) 大于水旱轮作 (5.47 ± 0.56) 和旱地 (5.45 ± 0.91)。从监测初期 (Ⅰ阶段,1988—2000) 到监测中期 (Ⅱ阶段,2001—2010),旱地和水田土壤pH整体上随时间呈降低趋势,下降速率分别为0.065和0.054/年 (P < 0.01),而水旱轮作土壤pH无显著变化;从Ⅱ到Ⅲ阶段 (2001—2018),旱地和水旱轮作土壤pH整体上随时间呈上升趋势,上升速率分别为0.022和0.016/年 (P < 0.05),而水田土壤pH无显著变化。东北、华北、西南、长江中下游地区的旱地土壤pH随时间均呈线性下降趋势 (P < 0.05),而华南地区从Ⅱ到Ⅲ阶段呈线性上升趋势 (P < 0.01);西南、长江中游和华南地区水田土壤pH从Ⅰ到Ⅲ阶段呈线性下降趋势 (P < 0.01),而东北、西南和长江下游地区pH从Ⅱ到Ⅲ阶段呈上升趋势 (P < 0.01);西南地区水旱轮作土壤pH从Ⅰ到Ⅲ阶段呈线性下降趋势 (P < 0.01),而华北、长江下游和华南地区pH从Ⅱ到Ⅲ阶段呈上升趋势 (P < 0.05)。通过Pearson和提升回归树分析发现,年均降雨量是造成土壤pH空间尺度上差异的最主要因素,其次是土壤质地、容重和有机质含量。此外,在旱地土壤上长期的氮肥投入和在水田和水旱轮作土壤上钾肥的投入对pH变化的影响较大。  【结论】  整体而言,我国旱地和水田土壤pH从监测初期到中期呈快速下降趋势,而旱地和水旱轮作土壤pH从监测中期到2018年呈缓慢增加趋势。东北地区的旱地土壤pH呈持续下降趋势,需要引起重视。氮肥在旱地和钾肥在水田上的施用导致土壤pH的降低,今后应优化水肥运筹,通过改善土壤容重和有机质进而有效调控土壤pH。  相似文献   

16.
水田土壤反硝化势(soil denitrification potential,SDP)往往高于旱地土壤,但施肥对水田和旱地SDP的影响差异往往基于不同气候条件下的不同土壤类型获取,其准确性可能受外界条件干扰.以发育自同一母质的相邻水田和旱地长期试验为平台,比较不同施肥模式下水田和旱地SDP的变化及其与功能基因(nar...  相似文献   

17.
大量研究证明稻田土壤比旱地土壤更具固碳潜力,但至今对稻田土壤固碳机制的认识尚不甚清楚。本研究于2007年利用两个开垦年代相似,近20多年分别一直种植双季稻和双季玉米的长期定位试验,来比较不同种植模式下土壤有机碳及其组分的差异。结果表明,水田土壤总有机碳和总氮的浓度分别是旱地的2.2倍和2.5倍。与试验前相比,水稻种植显著提高了土壤有机碳的含量,增幅达到30.8%,而旱地的前后差异不显著。在所有团聚体粒径水平上,水田有机碳的浓度均显著高于旱地。其中53~250μm微团聚体相差最大,水田是旱地的近3倍。水田微团聚体保护碳(iPOM_m)在土壤中的浓度是旱地的4.2倍,微团聚体保护碳在总有机碳中的比重也显著高于旱地,达到25.5%,是旱地的2倍。水田和旱地iPOM_m组分碳的差异能够解释其总有机碳差异的42.8%。上述结果可以增强我们对稻田土壤固碳机制的了解,为稻田土壤碳管理提供理论依据。  相似文献   

18.
Three Andosols (used as grassland, upland field, and paddy field) and two Gray Lowland soils (used as upland field and paddy field) were examined to study the role of organic matter in the stabilization of soil aggregates. It was found that prolonged use of Andosols as grassland or as upland field enabled to maintain a higher level of soil organic carbon than use as paddy field. However, paddy soil exhibited a greater aggregate stability (determined by wet-sieving procedure) than soil under upland field or grassland management. Comparison between two Gray Lowland soils also showed that aggregates in the paddy soil were more stable than in the upland field soil. Among organic constituents examined (such as sodium pyrophosphate (SPP)-extractable organic matter and carbohydrates), only the contents of hot water (HW)-extractable carbohydrates of the soils were significantly correlated with aggregate stability. Paddy soils which showed a greater aggregate stability contained a larger amount of HW -extractable carbohydrates in the soils, and a larger amount of HW -extractable carbohydrates regardless of the size of their aggregates compared with other soils. These findings suggest that HW -extractable carbohydrates which represents easily decomposable organic materials may be of special importance for the stabilization of aggregates in the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号