首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
陆地生态系统碳循环对土地利用变化的响应   总被引:3,自引:0,他引:3  
陆地生态系统碳循环在全球碳循环中占有重要地位,而土地利用变化是估测陆地生态系统碳储存与释放的最大不确定性因素。植被和土壤是陆地生态系统的两大碳库,是碳循环中的两个重要纽带,土地利用变化影响陆地生态系统土壤和植被碳的固定、积累与释放,从而影响整个碳循环过程。本文主要从土壤和植被碳库的角度出发,综述了近年来土地利用变化对陆地生态系统碳循环的影响及其机理,以及研究方法进展,着重分析了模型在此方面的应用;并提出了未来研究方向的展望。  相似文献   

2.
农田土壤有机碳固存的主要影响因子及其稳定机制   总被引:10,自引:2,他引:8  
农田生态系统作为陆地生态系统的重要组成部分,在陆地生态系统碳循环过程中发挥重要作用。明确影响农田土壤有机截获的主要因素及土壤固碳的稳定机制,有助于控制和加强农田土壤碳库的固碳潜力,以及正确评价农业生产对全球气候变化的影响。因此,本文综合论述了影响农田土壤碳含量的自然和人为因素,详细阐述了土壤碳固定的物理、化学和生物稳定机制。并总结了已有研究的不足,对今后土壤固碳研究中的热点问题进行了展望。认为从土壤微生物学角度出发,深入研究微生物在土壤有机碳循环中的作用机制,并将地上部和地下部生态系统联系起来探讨土壤碳素稳定性机制更具有重要的意义。  相似文献   

3.
农田土壤有机碳库是全球碳循环的重要组成部分,其积累和分解直接影响陆地生态系统碳贮藏与全球碳平衡。土壤团聚体是土壤结构的物质基础和土壤肥力的重要载体,也是土壤有机碳的固定场所。稳定~(13)C同位素示踪技术是研究土壤碳动态变化的有效手段,能够揭示新输入碳在土壤及团聚体中赋存状态、周转过程以及微生物的调节机制。本文主要归纳与阐述了稳定~(13)C同位素示踪技术在农田土壤有机碳循环及土壤团聚体固碳机理方面的研究进展,提出~(13)C同位素示踪技术在未来土壤碳循环和固碳机制方面的主要研究方向。  相似文献   

4.
火干扰对森林生态系统土壤有机碳影响研究进展   总被引:1,自引:0,他引:1  
森林生态系统土壤有机碳作为陆地碳循环研究的重要内容,在全球变化和全球碳收支的研究中占据了重要地位。火干扰能改变森林生态系统中土壤与大气的碳素交换,是森林生态系统碳循环的重要影响因子。为此,加强火干扰下森林生态系统土壤有机碳循环研究,了解火干扰与森林生态系统土壤有机碳循环之间的交互关系,有助于揭示火干扰下土壤碳库动态机理。本研究简要综述了火干扰对森林生态系统土壤有机碳影响研究进展,探讨了不同强度林火对土壤有机碳的影响,分析了其产生机理;阐述了火干扰不同时间后土壤有机碳变化、火干扰对不同土层土壤有机碳的影响,并分析了其原因。最后讨论了火干扰对森林土壤有机碳影响研究中存在的相关问题,提出了在今后研究中应关注的问题,并对未来的研究方向进行了展望。  相似文献   

5.
氮磷输入对湿地生态系统碳蓄积的影响   总被引:2,自引:0,他引:2  
湿地生态系统在全球碳循环中有着举足轻重的作用。由于湿地垦殖、农业化施用等人类活动和全球变暖、大气氮沉降的增多等自然因素的综合作用,大量氮磷营养物质进入湿地,这必将对湿地生态系统碳蓄积产生影响。本文综述了外源氮磷输入对湿地土壤碳库、植被碳库和枯落物分解的影响以及湿地生态系统碳循环的模型研究,并对以后发展趋势进行了预测。  相似文献   

6.
森林生态系统碳蓄积与碳循环   总被引:4,自引:0,他引:4  
通过系统论述森林生态系统碳蓄积与碳循环的研究方法、森林生态系统碳蓄积与碳循环过程的时空特征以及森林与大气间碳交换的环境响应机制,发现:生物量法是研究碳蓄积的经典方法,而涡度相关法侧重于碳交换的过程与机制研究;森林生态系统在低纬度地区表现为碳源,而在中高纬度地区表现为碳汇,随着演替过程的进展,森林碳蓄积逐渐增大,直到顶级群落表现为相对碳平衡状态;辐射、温度和水分状况等环境因子通过对森林生态系统光合生产力(光合生产力)和生态系统呼吸的影响决定净生态系统碳收支的环境响应。同时指出我国森林生态系统碳蓄积和碳循环研究存在的问题和发展前景。  相似文献   

7.
《土壤与作物》2015,(1):19-26
大气CO2浓度的升高通过植物-土壤-微生物的相互作用对陆地生态系统中最大碳库土壤的稳定性产生重要影响。大气CO2浓度升高,影响许多植物生长发育过程,进而影响土壤有机碳输入量。与此同时,土壤微生物的群落与功能也会随之发生变化,参与土壤碳的转化,深刻影响陆地生态系统的碳循环。文章分析了大气CO2浓度升高影响农田土壤碳循的有关过程,包括高CO2浓度条件下,作物地下部分的生长响应,以及向土壤中输入作物光合有机物量和质的变化,探讨了土壤碳库对大气CO2浓度升高反馈的土壤微生物作用机制,进一步解析了土壤微生物群落结构在土壤碳与大气CO2浓度之间的相互作用,提出研究土壤有机碳转化的土壤微生物作用机制是预测全球气候变化条件下的农田土壤碳循环规律的关键。图1,参79。  相似文献   

8.
农田土壤长期受到人类干预,与自然土壤相比,其与大气之间的碳交换强度更大。以辽宁省农田生态系统为研究对象,采用生态系统碳循环模型-CENTURY模型模拟辽宁省农田耕层土壤有机碳(0~20 cm)在1951~2005年的动态变化,并以2005年大量样点的分析结果为基础,估算有机碳储量。研究表明:全省2005年农田耕层土壤有机碳密度平均为2.66kg m-2,其中辽东山区辽中南平原区辽西低山丘陵区,全省农田耕层土壤碳储量为112.15 Tg;CENTURY模型模拟的农田土壤有机碳与实测值有较好的一致性。  相似文献   

9.
由于果树经济效益高,关中平原地区广泛推广农田转为果园。为明确关中平原地区农田转变为果园后土壤有机碳(SOC)组分含量及土壤碳库指数的差异,采用了野外调查和室内分析的方法,探究了关中平原地区农田生态系统中果园和农田的土壤碳组分及碳库管理指数的变化。结果表明,在0~20、20~60、60~100 cm土层中,果园土壤活性有机碳(LOC)含量较农田分别增加了33.91%、49.95%和35.37%;与农田相比,果园显著增加了20~60和60~100 cm土层LOC/SOC值,提高了深层土壤碳库活性,促进了土壤有机碳的利用;在0~100 cm土层的垂直梯度上果园和农田LOC含量均随土层深度增加而减少,土壤总有机碳含量无显著差异;果园的碳库指数(CPI)和碳库管理指数(CPMI)均大于农田,增幅分别达6.12%和72.72%。相关分析表明,土壤有机碳组分、碳库活度、碳库管理指数与土壤主要肥力因子如有效磷、速效钾相关性密切,可以作为该地区农田生态系统土壤肥力的主要监测因子。研究表明,关中平原土地利用方式从农田转变为果园,将有效活化深层土壤的固有碳库,促进有机碳的分解与利用,土壤性能向良性发展。  相似文献   

10.
土壤有机碳是陆地碳库的重要组成部分,土地利用/覆被变化及土地管理通过影响土壤有机碳储量、组分、时空分布,进而影响全球碳循环和全球气候变化,是当前的研究热点。土地利用变化对土壤有机碳影响的研究已有很多,但基于文献计量视角的分析报道较少。以Web of Science数据库和CNKI数据库为数据源,通过文献计量学方法和Citespace软件平台,分析了1991~2014年土地利用变化与管理对土壤有机碳影响的研究进展及热点。研究表明:森林、草地、农田等土地利用类型及土地利用变化与管理对土壤有机碳的影响是研究的重点;森林、草地生态系统主要通过土地利用变化(林地转化为次生林、草地、耕地;草地过渡放牧或转化为耕地)影响土壤有机碳变化;农田主要通过土地管理(退耕还林还草、耕作方式、施肥等)来影响土壤有机碳变化;土壤有机碳变化研究选取的指标越来越具体化,模型多样化,但土壤有机碳模型研究还未成体系,土壤有机碳变化趋势预测是未来研究的重点。  相似文献   

11.
Carbon(C) is a key constitutive element in living organisms(plants, microbes, animals, and humans). Carbon is also a basic component of agriculture because it plays a dynamic role in crop growth, development, nutrient cycling, soil fertility, and other agricultural features. The presence of C enhances soil physical, chemical, and biological properties. The C cycle supports all life on the Earth by transferring C between living organisms and the environment. The global climate is changing, and th...  相似文献   

12.
通过对299个国家级耕地土壤监测点20余年数据的统计分析,评价了我国农田表土有机碳含量变化情况和固碳潜力。结果表明,全国约80%试验点有机碳年平均相对增长率(Average relative annual increment,ARAI)在-1.5%~7.5%。中国农田表土有机碳含量整体呈上升趋势。东北、华北等6个地理区域分析得出,华北、华东、西南农田表土有机碳含量显著增加;华东地区有机碳增加的农田面积占全国农田比例最大,东北最小。旱地和水田有机碳含量增加显著;水田有机碳增加的试验点所占比例大于旱地;对ARAI与初始有机碳含量进行相关分析得出,我国旱地和水田有机碳潜在储存能力估计值分别为17.2和27.7g·kg^-1。农田土壤类型中水稻土和褐土有机碳含量增加显著;黑土有机碳含量下降样本所占比例最高。对我国各典型种植制度分析得出,双季稻、麦-稻、麦-玉、单季小麦种植制度下农田有机碳有了显著增加;麦玉轮作较其他种植制度的农田有机碳年平均相对增长率高。  相似文献   

13.
农业生产对石灰性土壤无机碳库损失的影响   总被引:1,自引:0,他引:1  
一般认为,土壤无机碳(SIC)周转缓慢,在全球农田碳循环及应对气候变化等方面的作用有限。近年来越来越多的证据表明,土壤无机碳转化速率也较快,在土壤肥力、碳库转化和调节大气二氧化碳浓度方面的作用不容小觑。总结了国内外关于农田无机碳方面的研究进展,强调无机碳在农田土壤固碳、缓冲土壤pH等方面具有重要作用;农业生产特别是氮肥大量施用导致我国一些地区农田无机碳消耗,加速土壤酸化,增加了作物重金属污染风险,影响了农田土壤健康。认为我国“秦岭-淮河”南北分界区非石灰性土壤与石灰性过渡区、山东半岛棕壤与潮土过渡区、东北黑土与黑钙土过渡区等区域SIC含量相对较低、降水量相对较高,长期大量施用氮肥会导致农田表层SIC发生损失,属SIC损失敏感区。提出应进一步研究的问题,包括:查明农业生产特别是施用氮肥对土壤无机碳去向的影响,研究土壤有机碳-二氧化碳-钙离子-无机碳相互作用机理及对氮肥的响应,在全球碳循环及土壤碳收支平衡研究中,应考虑人类活动特别是农业生产对土壤无机碳库的影响。建议定期监测我国无机碳损失敏感区农田土壤无机碳含量,合理施肥以减少土壤无机碳损失。  相似文献   

14.
We evaluated the suitability of the Rothamsted Carbon (RothC) model for long-term experiments on Japanese non-volcanic upland soils using 6 long-term experimental data sets: 2 Brown Lowland Soils, 2 Yellow Soils, 1 Gray Lowland Soil, and 1 Brown Forest Soil. The predicted changes in the content of soil carbon with time were very close to the observed values in almost all the treatments at all the 6 sites. These 6 sites were distributed from North to South across Japan and included a variety of climatic conditions, soil textures, and land management practices. We therefore concluded that the RothC model adequately simulated changes in the soil carbon content with time in Japanese non-volcanic upland soils.  相似文献   

15.
卢孟雅  丁雪丽 《土壤》2024,56(1):10-18
稻田土壤碳循环是我国陆地生态系统碳循环的重要组成部分。促进稻田生态系统碳的固定及稳定对减缓全球气候变化起着不容忽视的作用。微生物主导的有机碳转化过程是土壤碳循环研究的核心,微生物同化代谢介导的细胞残体迭代积累在土壤有机碳长期截获和稳定过程中发挥重要作用。与旱地土壤相比,关于稻田土壤中微生物残体积累动态对外源有机物质如作物秸秆输入的响应及主要影响因子的认识还相对有限,对微生物通过同化作用参与土壤固碳的过程和机制尚缺乏系统认识。基于此,本文介绍了微生物残体对土壤有机碳库形成和积累的重要性及评价指标,重点探讨了秸秆还田对稻田土壤微生物残体积累动态以及外源秸秆碳形成细胞残体转化过程的影响,分析了影响微生物残体积累转化的主要气候因素和土壤因素,最后提出了未来应借助先进的光谱和高分辨率成像技术并结合同位素示踪对微生物残体的稳定性与机理开展更为深入的研究。  相似文献   

16.
森林土壤有机碳库组分定量化研究   总被引:1,自引:0,他引:1  
用一级动力学方程研究了贵州省黎平县森林土壤活性、缓效性和惰效性有机碳库的变化及分解速率,模拟结果表明:各土壤剖面的土壤活性碳库一般占总有机碳的0.5%~7.6%,平均驻留时间(M ean Residue Tim e,MRT)为41~64天;缓效性碳库占总有机碳的45%~71%,平均驻留时间为3~30年;采用酸水解法测定惰效性碳库的库容,一般占总有机碳的20%~50%。活性碳库的变化规律为混交林>阔叶林>针叶林,缓效性碳库中混交林最大,其它两种林分规律不明显;不同林龄的杉木(8年,16年,40年),非活性碳库(缓效性碳库和惰效性碳库之和)的含量变化规律为40年>16年>8年,说明40年生的杉木下土壤固碳能力比8年和16年的强;16年的又比8年的强。  相似文献   

17.
Agricultural soils contain large amounts of nitrogen (N), but only a small fraction is readily available to plants. Despite several methods developed to estimate the bioavailability of N, there is no consensus on which extraction methods to use, and which N pools are critically important. In this study, we measured six soil N pools from 20 farms, which were part of a multi-year soil carbon sequestration on-farm experiment (Carbon action, 2019–2023). The aim was to quantify the N pools and to evaluate if farming practices that aim to build soil carbon pools, also build bioavailable N pools. We also aimed to test if the smaller and rapidly changing N pools could serve as an indicator for the slower change in soil organic matter. The measured N pools decreased in size, when moving from total N (7700 ± 1500 kg/ha) to slowly cycling (Illinois Soil Nitrogen Test ISNT-N: 1063 ± 220 kg/ha, autoclave citrate-extracted ACE protein N: 633 ± 440 kg/ha), water-soluble organic N (50 ± 17 kg/ha), potentially mineralizable N (33 ± 13 kg/ha) and finally readily plant available inorganic pools (nitrate and ammonium, total: 14 ± 8 kg/ha). In total, the measured pools covered only 18%–44% of total N, indicating a large unidentified N pool, which is either tightly bound to soil mineral fraction and not easily extractable or is bound to undecomposed plant residues and not hydrolysed by the methods. Of the large N pools (ISNT-N, ACE protein and unidentified residual N), clay, carbon (C) and C:Clay ratios explained most of the variability (R2 = .90–.93), leaving a minor part of the variation to the management effect. A pairwise comparison of carbon farming and control plots concluded that farming practices had a small (3%–5%) but statistically significant (p < .05) effect on soil total N and ISNT-N pools, and a moderate and significant effect (18%, p < .01) on potentially mineralizable N. The large variation in protein N, water-soluble organic N and inorganic N reduced statistical significance, although individual C sequestration practices had large effects (−30% to +50%). In conclusion, carbon sequestration practices can build both slowly cycling N pools (ISNT) and increase the mineralisation rate of these pools to release plant available forms, resulting in an additional benefit to agriculture through reduced fertilizer application needs.  相似文献   

18.
Soil organic carbon (SOC) sequestration in response to long-term fertilizer management practices under jute-rice-wheat agro-ecosystem in alluvial soils was studied using a modeling approach. Fertilizer management practices included nitrogen (N), phosphorus (P) and potassium (K) fertilization, manure application, and root-stubble retention of all three crops. Soil carbon (C) model RothC was used to simulate the critical C input rates needed to maintain initial soil C level in long timescale (44 years). SOC change was significantly influenced by the long-term fertilizer management practices and the edaphic variable of initial SOC content. The effects of fertilizer combination “100%NPK+FYM” on SOC changes were most significant over “100%NPK” fertilization. If the 100% NPK fertilizer along with manure applied with stubble and roots retention of all crops, alluvial soils of such agro-ecosystem would act as a net C sink, and the average SOC density kept increasing from 18.18 Mg ha?1 during 1972 to the current average of ~22 Mg ha?1 during 2065 s. On an average, the critical C input was estimated to be 5.30 Mg C ha?1 yr?1, depending on local soil and climatic conditions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content. Such information will provide a baseline for assessing soil C dynamics under potential changes in fertilizer and crop residues management practices, and thus enable development of management strategies for effectively mitigating climate change through soil C sequestration.  相似文献   

19.
Plants capture atmospheric carbon dioxide (CO2) for carbon (C) assimilation through photosynthesis, with the photosynthates stored as plant biomass (above- and below-ground plant parts). The C stored as living biomass is a short-term C sequestration strategy, whereas soil organic carbon (SOC) is a long-term C sequestration strategy. In this regard, plant roots are the primary route of C entry into the SOC pool. Through establishing a recalcitrant SOC pool, long-term sequestration can potentially offset the C losses caused by soil degradation in industrial and pre-industrial eras. Over the next 50–100 years, implementing effective agricultural practices could sequester 80–130 GT (109) C as SOC. Carbon, as the primary elemental component of soil organic matter, plays a significant role in shaping the soil’s physical, chemical, and biological properties, ultimately influencing soil biomass productivity. By enhancing crop productivity and biomass production, farmers can increase C sequestration, creating a positive feedback loop that contributes to overall C sequestration. Carbon sequestration has numerous co-benefits, including climate change mitigation, ecosystem health, food security, and farm profitability. Adopting conservation agriculture and site-specific practices and developing crop and pasture genotypes with high yields and C sequestration potential should significantly improve crop productivity and C sequestration simultaneously. This opinion article delves into the nexus between photosynthesis and soil C sequestration, highlighting its significance in enhancing farm productivity while mitigating climate change.  相似文献   

20.
 Soil organic matter (SOM) represents a major pool of carbon within the biosphere. It is estimated at about 1400 Pg globally, which is roughly twice that in atmospheric CO2. The soil can act as both a source and a sink for carbon and nutrients. Changes in agricultural land use and climate can lead to changes in the amount of carbon held in soils, thus, affecting the fluxes of CO2 to and from the atmosphere. Some agricultural management practices will lead to a net sequestration of carbon in the soil. Regional estimates of the carbon sequestration potential of these practices are crucial if policy makers are to plan future land uses to reduce national CO2 emissions. In Europe, carbon sequestration potential has previously been estimated using data from the Global Change and Terrestrial Ecosystems Soil Organic Matter Network (GCTE SOMNET). Linear relationships between management practices and yearly changes in soil organic carbon were developed and used to estimate changes in the total carbon stock of European soils. To refine these semi-quantitative estimates, the local soil type, meteorological conditions and land use must also be taken into account. To this end, we have modified the Rothamsted Carbon Model, so that it can be used in a predictive manner, with SOMNET data. The data is then adjusted for local conditions using Geographical Information Systems databases. In this paper, we describe how these developments can be used to estimate carbon sequestration at the regional level using a dynamic simulation model linked to spatially explicit data. Some calculations of the potential effects of afforestation on soil carbon stocks in Central Hungary provide a simple example of the system in use. Received: 1 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号