首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of red radish extract to light, heat, and hydrogen peroxide at different pH values (3, 5, and 7) was examined, in which major anthocyanins were pelargonidin glycosides acylated with a combination of p-coumaric, ferulic, or caffeic acids. The light irradiation (fluorescence light, 5000 lx; at 25 degrees C) indicated that the red radish extract was more stable at lower pH than at higher pH. The HPLC analyses revealed that diacylated anthocyanins in the extract were more stable to light at pH 3 than monoacylated anthocyanins. No significant difference in degradation rates of acylated anthocyanins at pH 5 was observed, whereas anthocyanins acylated with p-coumaric or ferulic acids were more stable at pH 7 than ones with caffeic acids. The stability to heat (at 90-95 degrees C) showed a tendency similar to that for light. The number of intramolecular acyl units contributes to stability to light and heat at lower pH, whereas the characteristics of intramolecular acyl units influence the stability at higher pH. The degradation behavior of red radish extract to H2O2 were almost the same to those of light and heat, depending on the pH. However, HPLC analyses revealed that the stability of individual acylated anthocyanins were independent of the pH. These data suggest that the characteristics, the number, and the binding site of intramolecular acyl units affect the stability of anthocyanin to H2O2. DPPH radical scavenging activity of all acylated anthocyanins was higher than those of pelargonidin and perlargonidin-3-glucoside. The activity of acylated anthocyanins mostly depended on the activity of intramolecular acyl units (caffeic acid > ferulic acid > p-coumaric acid). However, the activity was highly affected by the binding site of intramolecular acyl units even if anthocyanins have common acyl units.  相似文献   

2.
Six novel pyranoanthocyanins were identified by HPLC-ESI-MSn in black carrot (Daucus carota L. ssp. sativus var. atrorubens Alef.) juice. The two major compounds, namely, the vinylcatechol adducts of cyanidin 3-O-(6-O-feruloyl-beta-D-glucopyranosyl)-(1-->6)-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside and cyanidin 3-O-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside, respectively, were isolated by a combination of high-speed countercurrent chromatography with semipreparative HPLC. Their structures were fully elucidated by means of one- and two-dimensional NMR spectroscopy and high-resolution mass spectrometry. The four remaining pigments were characterized as the vinylphenol and vinylguaiacol adducts of cyanidin 3-O-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside, the vinylguaiacol adduct of cyanidin 3-O-(6-O-feruloyl-beta-D-glucopyranosyl)-(1-->6)-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside, and the vinylcatechol adduct of cyanidin 3-O-(6-O-sinapoyl-beta-d-glucopyranosyl)-(1-->6)-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside. These compounds are formed during storage of the juice through the direct reaction of either caffeic, ferulic, or coumaric acid with the respective genuine anthocyanins.  相似文献   

3.
Two novel caffeoylmalic acid methyl esters, 2-O-(trans-caffeoyl)malic acid 1-methyl ester (6) and 2-O-(trans-caffeoyl)malic acid 4-methyl ester (7), were isolated from pear (Pyrus pyrifolia Nakai cv. Chuhwangbae) fruit peels. In addition, 5 known hydroxycinnamoylmalic acids and their methyl esters were identified: 2-O-(trans-coumaroyl)malic acid (1), 2-O-(cis-coumaroyl)malic acid (2), 2-O-(cis-coumaroyl)malic acid 1-methyl ester (3), 2-O-(trans-coumaroyl)malic acid 1-methyl ester (4), and 2-O-(trans-caffeoyl)malic acid (phaselic acid, 5). The chemical structures of these compounds were determined by spectroscopic data from ESI MS and NMR. Of all the isolated compounds, five hydroxycinnamoylmalic acids and their methyl esters (2-4, 6, 7) were identified in the pear for the first time.  相似文献   

4.
Twenty-four secondary metabolites, including 16 isoflavonoids, 7 astragalasides, and 1 benzoquinone, have been isolated from the roots of Astragalus membranaceus (Astragali radix). Among these isolated isoflavonoids, (-)-methylinissolin 3-O-β-d-(6'-acetyl)-glucoside (1), (-)-methylinissolin 3-O-β-d-{6'-[(E)-but-2-enoyl]}-glucoside (2), and calycosin 7-O-β-d-(6'-acetyl)-glucoside (3) have been identified as new compounds on the basis of spectroscopic analysis; (-)-methylinissolin 3-O-β-d-glucoside (4) was isolated from the natural products for the first time. The nitric oxide (NO) production inhibitory activity of the major compounds has been assessed in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. To identify A. membranaceus, a fingerprint method was developed by using a high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) method. Furthermore, characteristic peaks for the 11 major compounds in the chromatogram were unambiguously confirmed.  相似文献   

5.
6.
The isolation and identification of two pinitol alpha-D-galactosides from jojoba meal are described. The products were isolated by a combination of preparative HPLC on silica gel and TLC on amino silica gel and were identified by MS, NMR spectroscopy, and chemical derivatization as 5-O-(alpha-D-galactopyranosyl)-3-O-methyl-D-chiro-inositol or 5-alpha-D-galactopyranosyl-D-pinitol and 2-O-(alpha-D-galactopyranosyl)-3-O-methyl-D-chiro-inositol or 2-alpha-D-galactopyranosyl-D-pinitol. The same preparative HPLC method on silica gel allowed a new simmondsin derivative to be isolated and identified as 4,5-didemethyl-4-O-alpha-D-glucopyranosylsimmondsin mainly by NMR spectroscopy and high-resolution mass spectrometry.  相似文献   

7.
Ten flavone glycosides have been isolated and identified in aerial parts of alfalfa. These included six tricin, one 3'-O-methyltricetin, and three chrysoeriol glycosides. Most of these compounds were acylated with ferulic, coumaric, or sinapic acids, and acylation occurred on the terminal glucuronic acid. Eight of these compounds, including 7-O-beta-D-glucuronopyranosyl-3'-O-methyltricetin, 7-O-beta-D-glucuronopyranosyl-4'-O-beta-D-glucuronopyranosidechrysoeriol, 7-O-[2'-O-feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]chrysoeriol, 7-O-[2'-O-feruloyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]chrysoeriol, 7-O-[2'-O-sinapoyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, 7-O-[2'-O- feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, 7-O-[2'-O-p-coumaroyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, and 7-O-[2'-O-feruloyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, have not been reported previously in the plant kingdom. Two previously identified alfalfa flavones, 7-O-beta-D-glucuronopyranosidetricin and 7-O-[beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, were also isolated.  相似文献   

8.
Fruits of the cultivated eggplant species Solanum melongena and its wild relative Solanum incanum have a high content of hydroxycinnamic acid conjugates, which are implicated in the human health benefits of various fruits and vegetables. Monocaffeoylquinic acid esters, in particular 5-O-(E)-caffeoylquinic acid, are usually predominant in solanaceous fruits and tubers. Two closely related caffeoylquinic acid derivatives with longer C(18) HPLC retention times than those of monocaffeoylquinic acids are minor constituents in cultivated eggplant fruit. In a prior study, the two compounds were tentatively identified as 3-O-acetyl- and 4-O-acetyl-5-O-(E)-caffeoylquinic acids and composed ≤2% of the total hydroxycinnamic acid conjugates in fruit of most S. melongena accessions. It was recently found that the pair of these caffeoylquinic acid derivatives can compose 15-25% of the total hydroxycinnamic acid conjugates in fruits of S. incanum and wild S. melongena. This facilitated C(18) HPLC isolation and structural elucidation using (1)H and (13)C NMR techniques and HR-ToF-MS. The isomeric compounds were identified as 3-O-malonyl-5-O-(E)-caffeoylquinic acid (isomer 1) and 4-O-(E)-caffeoyl-5-O-malonylquinic acid (isomer 2). Both exhibited free radical scavenging activity, albeit about 4-fold lower than that of the flavonol quercetin dihydrate. By contrast, the iron chelation activities of isomers 1 and 2, respectively, were about 3- and 6-fold greater than that of quercetin dihydrate. Reports of malonylhydroxycinnamoylquinic acids are rare, and only a few of these compounds have been structurally elucidated using both NMR and MS techniques. To the authors' knowledge, these two malonylcaffeoylquinic acid isomers have not previously been reported.  相似文献   

9.
The effects of glycosylation and acylation on the spectral characteristics, molar absorptivity, and color attributes of purified acylated and non-acylated pelargonidin derivatives were compared. Pigments were obtained from strawberries, radishes, red-fleshed potatoes, and partially hydrolyzed radish pigments. Individual pigments were isolated by using semipreparative HPLC. Spectral and color (CIELch) attributes of purified pigments were measured. Molar absorptivity ranged from 15 600 to 39 590 for pelargonidin-3-glucoside (pg-3-glu) and pg-3-rutinoside-5-glucoside acylated with p-coumaric acid, respectively. The presence of cinnamic acid acylation had a considerable impact on spectral and color characteristics, causing a bathochromic shift of lambda(max). Sugar substitution also played an important role, with a hypsochromic shift caused by the presence of glycosylation. Pg-3, 5-diglu and pg-3,5-triglu possessed a higher hue angle (>40 degrees ) than the other pg derivatives at pH 1.0, corresponding to the yellow-orange region of the color solid. Acylation with malonic acid did not affect lambda(max) and showed little effect on color characteristics. The solvent system had an effect not only on the molar absorptivity, but also on the visual color characteristic of the pigments.  相似文献   

10.
Valuable information about possible types of linkages, reaction mechanisms, and sequences for oxidative coupling of phenolic compounds in planta is available from in vitro model systems. Ferulate oligomers were generated in a system using ethyl ferulate, peroxidase, and hydrogen peroxide under various conditions. A molar ferulate/H2O2 ratio of 1:1, an ethanol level of 30% in an aqueous sodium phosphate buffer (pH 6.0), and a reaction time of 10 min were considered to be ideal to produce maximal proportions of ferulate trimers and tetramers from ethyl ferulate as starting material. The dominant trimer and tetramer were each isolated from the reaction mixture and identified as 8-O-4/8-5(cyclic)-dehydrotriferulic acid triethyl ester and 8-5(cyclic)/4-O-5/8-5(cyclic)-dehydrotetraferulic acid tetraethyl ester. The structure of the 8-O-4/8-5(cyclic)-dehydrotriferulic acid triethyl ester revealed that a third ferulate unit is bound to a preformed 8-O-4-diferulate dimer, a surprising reaction sequence considering the dominance of 8-5-coupled dimers among dehydrodiferulates in H2O2/peroxidase-based model reactions. As 4-O-5-coupling is not favored in the dimerization process of ferulates, the main tetramer isolated in this study is probably formed by 4-O-5-coupling of two preformed 8-5(cyclic)-diferulates, a logical step in analogy with reactions occurring in lignin biosynthesis.  相似文献   

11.
Four diacylated pelargonidin (Pg: SOA-4 and SOA-6), cyanidin (Cy: YGM-3), and peonidin (Pn: YGM-6) 3-sophoroside-5-glucosides isolated from the red flowers of the morning glory, Pharbitis nil cv. Scarlett O'Hara (SOA), and the storage roots of purple sweet potato, Ipomoea batatas cv. Ayamurasaki (YGM), were subjected to an alpha-glucosidase (AGH) inhibitory assay, in which the assay was performed with the immobilized AGH (iAGH) system to mimic the membrane-bound AGH at the small intestine. As a result, the acylated anthocyanins showed strong maltase inhibitory activities with IC(50) values of <200 microM, whereas no sucrase inhibition was observed. Of these, SOA-4 [Pg 3-O-(2-O-(6-O-(E-3-O-(beta-D-glucopyranosyl)caffeyl)-beta-D-glucopyranosyl)-6-O-E-caffeyl-beta-D-glucopyranoside)-5-O-beta-D-glucopyranoside] possessed the most potent maltase inhibitory activity (IC(50) = 60 microM). As a result of a marked reduction of iAGH inhibitory activity by deacylating the anthocyanins, that is, Pg (or Cy or Pn) sophoroside-5-glucoside, acylation of anthocyanin with caffeic (Caf) or ferulic (Fer) acid was found to be important in the expression of iAGH (maltase) inhibition. In addition, the result that Pg-based anthocyanins showed the most potent maltase inhibition, with an IC(50) value of 4.6 mM, and the effect being in the descending order of potency of Pg > Pn/Cy strongly suggested that no replacement at the 3'(5')-position of the aglycon B-ring may be essential for inhibiting iAGH action.  相似文献   

12.
Carotenoid metabolites are common plant constituents with significant importance for the flavor and aroma of fruits. Three new carotenoid derivatives, (2E,4E)-8-hydroxy-2,7-dimethyl-2,4-decadiene-1,10-dioic acid 1-O-beta-D-glucopyranosyl ester (1), (2Z,4E)-8-beta-D-glucopyranosyloxy-2,7-dimethyl-2,4-decadiene-1,10-dioic acid (3), and 3,9-dihydroxymegastigmast-5-ene-3-O-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside (5), as well as three known compounds, have been isolated from the ethanolic extract of peels of Cydonia vulgaris, the fruit of a shrub belonging to the same family as the apple. All the compounds were identified by spectroscopic techniques, especially 1D and 2D NMR. Antioxidant activities of all the isolated metabolites were assessed by measuring their ability to scavenge DPPH radical and superoxide radical (O2*-) and to induce the reduction of Mo(VI).  相似文献   

13.
New red leaf tea cultivar 'Sunrouge' (Camellia taliensis × Camellia sinensis), for which an application for registration was made in 2009, is an anthocyanin-rich tea. The anthocyanin content of 'Sunrouge' was the highest among 4 tea cultivars, and was 8.4 times higher than that of 'Yabukita'. We purified and isolated 6 anthocyanins from 'Sunrouge' by chromatography, and identified them by LC/MS/MS and NMR analysis. As a result, the four anthocyanins were identified as delphinidin-3-O-β-D-(6-(E)-p-coumaroyl)galactopyranoside (2), delphinidin-3-O-β-D-(6-(E)-p-coumaroyl)glucopyranoside (3), cyanidin-3-O-β-D-(6-(E)-p-coumaroyl)galactopyranoside (4), and cyanidin-3-O-β-D-(6-(E)-p-coumaroyl)glucopyranoside (5), and the other two were estimated as delphinidin-(Z)-p-coumaroylgalactopyranoside (1), petunidin-(E)-p-coumaroylgalactopyranoside (6). Compound 3 was found in tea for the first time. In general, anthocyanins have various bioactivities, including relieving eyestrain and antioxidative effects, so it is expected that drinking 'Sunrouge' tea brings in similar bioactivities.  相似文献   

14.
Tumor necrosis factor-α (TNF-α)-induced reactive oxygen species (ROS) production in HepG2 was used to screen hepatocyte protective compounds from the flowers of Hemerocallis fulva. Three new polyphenols, n-butyl 4-trans-O-caffeoylquinate (1), kaempferol 3-O-{α-L-rhamnopyranosyl(1→6)[α-L-rhamnopyranosyl(1→2)]}-β-D-galactopyranoside (2), and chrysoeriol 7-O-[β-D-glucuronopyranosyl(1→2)(2-O-trans-feruloyl)-β-D-glucuronopyranoside (3), together with four caffeoylquinic acid derivatives (4-7), eight known flavones (8-15), one naphthalene glycoside, stelladerol (16), one tryptophan derivative (17), adenosine (18), and guanosine (19) were isolated from the bioactive fractions of the aqueous ethanol extract of H. fulva flowers. The structures of isolated compounds were characterized by means of spectroscopic data. Compounds 1-3 were described as first isolated natural products. Among the above-mentioned compounds, the caffeoylquinic acid derivatives are the major components with potent free radical scavenging activity in HepG2 cells and are for the first time isolated from H. fulva flowers. A convenient ultraperformance liquid chromatography (UPLC) method was also developed to simultaneously separate and identify caffeoylquinic acids and flavonoids promptly.  相似文献   

15.
Glycosidically bound compounds were isolated from the methanol extract of fresh rhizomes of smaller galanga (Alpinia officinarum Hance). Nine glycosides (1-9) were finally obtained by reversed-phase HPLC and their structures were elucidated by MS and NMR analyses. They were the three known glycosides, (1R,3S,4S)-trans-3-hydroxy-1,8-cineole beta-D-glucopyranoside (1), benzyl beta-D-glucopyranoside (3), and 1-O-beta-D-glucopyranosyl-4-allylbenzene (chavicol beta-D-glucopyranoside, 4); and the six novel glycosides, 3-methyl-but-2-en-1-yl beta-D-glucopyranoside (2), 1-hydroxy-2-O-beta-D-glucopyranosyl-4-allylbenzene (5), 1-O-beta-D-glucopyranosyl-2-hydroxy-4-allylbenzene (demethyleugenol beta-D-glucopyranoside, 6), 1-O-(6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)-2-hydroxy-4-allylbenzene (demethyleugenol beta-rutinoside, 7), 1-O-(6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)-4-allylbenzene (chavicol beta-rutinoside, 8), and 1,2-di-O-beta-D-glucopyranosyl-4-allylbenzene (9). Compounds 2-9 were detected for the first time as constituents of galanga rhizomes.  相似文献   

16.
Six triterpenoid saponins were isolated from the seeds of Chenopodium quinoa (Chenopodiaceae). Their structures were as follows: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); spergulagenic acid 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl-28-O-beta-D-glucopyranoside (2); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (4); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (5); and spergulagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (6). Saponins 5 and 6 are new. The structures were characterized on the basis of hydrolysis and spectral evidence, including IR, UV, optical rotations, 1D- and 2D-NMR (HMQC and HMBC), ESIMS, and FABMS analyses.  相似文献   

17.
Six compounds, 1-O-(2,3, 4-trihydroxy-3-methyl)butyl-6-O-feruloyl-beta-D-glucopyranoside, ethyl beta-D-glucopyranosyl tuberonate, p-hydroxybenzoic acid, (-)-hydroxyjasmonic acid, caffeic acid, and 4-hydroxyacetophenone 4-O-[5-O-(3, 5-dimethoxy-4-hydroxybenzoyl)-beta-D-apiofrunosyl]-(1-->2)-beta-D- glu copyranoside, were isolated from the n-butanol-soluble fraction of sage leaf extracts. Their structures were determined by spectral methods (MS, NMR, and 2D-NMR), and their antioxidant activities were measured. Among them, two new glycosides were elucidated. All of these compounds showed DPPH free radical scavenging activity at the concentration of 30 mM, and caffeic acid was the most active compound.  相似文献   

18.
From the leaves of barley, Hordeum vulgare, one new flavone C-glucoside and three known flavone glucosides were isolated and characterized by (1)H and (13)C NMR and MALDI-TOF-MS. The novel flavone C-glucoside was isovitexin 7-O-beta-[6' "-O-(E)-p-coumaroyl]glucoside (6' "-coumaroylsaponarin), and the known compounds were isovitexin 7-O-beta-[6' "-O-(E)-feruloyl]glucoside, isoorientin 7-O-beta-[6' "-O-(E)-feruloyl]glucoside, and tricin 7-O-beta-glucoside. The sum of all the flavone glycosides and soluble phenolic acids in the leaves decreased with increased rate of plant nutrients given in animal manure and with increased crop yield. All of the major phenylpropanoids showed the same general response to nutrient level. The concentration of nitrogen in the leaves was not directly related to nutrient application or to contents of phenylpropanoids.  相似文献   

19.
Six triterpenoid saponins were isolated from the edible grain quinoa, which is seeds of Chenopodium quinoa (Chenopodiaceae). Following are their structures: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (2); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' "-->3' ')-beta-D-xylopyranosyl-(1' '-->2')-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' "-->2' ')-beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (4); oleanolic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (5); and oleanolic acid 3-O-[beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (6). The oleanane-type saponins (5, 6) were isolated for the first time in this plant, two of the phytolaccagenane (1, 3) were new compounds and two (2, 4) were previously found in quinoa. The structures were characterized on the basis of hydrolysis and spectral evidence, including 1D- and 2-D NMR (HMQC and HMBC) and ESI-MS analyses.  相似文献   

20.
Three new compounds, (7E)-2beta,3alpha-dihydroxy-megastigm-7-en-9-one (1), 3-[5,7-dihydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-8-yl]-4-methoxybenzoic acid (2), and 4'-O-methyl myricetin 3-O-(6-O-alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside (3), were isolated from Ginkgo biloba, together with 27 known compounds. The structures of the new compounds were determined primarily from 1D- and 2D-NMR analysis. The 4-O-methylbenzoic acid structural feature at C-8 in 2 is encountered for the first time. The antioxidant activities of 29 compounds isolated from Ginkgo biloba were evaluated on intracellular reactive oxygen species in HL-60 cells. It was found that quercetin, kampferol, and tamarixetin had antioxidant activity that was approximately 3-fold greater than that of their respective glycosides and also approximately 3-fold greater than that of a standard ascorbic acid with an IC(50) at maximum effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号