首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
  目的  随着大气氮沉降现象加剧,其对生态系统的影响也日益严重;氮沉降改变了土壤氮库的特征,也影响了土壤中微生物群落组成和功能。采用文献计量学方法总结了近20年来国际上有关氮沉降对土壤微生物影响方面研究的特征、前沿、热点及其变化趋势。  方法  采用Citespace软件,自Web of Science核心数据库中选取2001 ~ 2020年间发表的有关大气氮沉降对土壤微生物影响方面的研究论文,从国家、学术机构、作者、期刊、关键词和学科类别等方面进行可视化分析,以阐明该研究领域的发展趋势和研究热点。  结果  结果表明,大气氮沉降对土壤微生物影响研究发文量最大的国家为美国,而发文量最大的学术机构为中国科学院,研究领域集中在环境科学、生态学和农学等学科,研究内容呈现出多学科融合趋势。  结论  目前有关大气氮沉降对土壤微生物影响方面的研究趋向于探究氮沉降影响土壤养分循环和土壤微生物对大气氮沉降响应机制。  相似文献   

2.
张强  邓军  毛瑾  朵莹  程杰  郭梁 《水土保持通报》2021,41(1):29-34,40
[目的]探究半干旱区草地根际土壤碳氮及土壤微生物量碳氮对不同封禁年限响应特征,为半干旱草地生态系统物质循环研究以及生态系统养分限制判定等提供依据,并为确定合理围封年限提供科学参考。[方法]以宁夏回族自治区固原市云雾山国家级自然保护区半干旱草原为研究对象,应用生态化学计量学方法对比分析放牧地与围封10,25,35 a样地根际土壤有机碳、全氮、硝态氮、铵态氮和土壤微生物量碳氮含量及其化学计量特征变化过程与规律。[结果]围封显著增加了土壤碳氮含量,其最大值出现在封育25 a样地,随后下降。围封10,25 a和35 a样地土壤有机碳含量分别是放牧样地的1.37,1.83倍和1.38倍;总氮含量分别是放牧样地1.34,1.52倍和1.24倍。但土壤C:N随围封年限增加基本保持稳定,其值与土壤有机碳含量存在极显著相关,而与土壤总氮无明显相关性。与放牧样地相比,围封样地铵态氮含量随封育年限无明显变化,硝态氮含量和硝态氮:铵态氮比值则普遍下降,在围封25 a时最低。围封增加了土壤微生物量碳氮含量,围封10,25,35 a样地土壤微生物量碳含量较放牧地分别提高了20.5%,45.7%和15.1%;微生物量氮含量分别提高了24.7%,60.5%和40.9%。而微生物量C:N则随围封年限延长而下降,微生物量碳占土壤有机碳百分比对围封年限无响应。围封10,25 a样地与放牧地相比,微生物量氮占土壤总氮百分比和化学计量不平衡性(即土壤C:N与微生物量C:N比值)均无显著差异,但其值却在围封35 a样地显著增加。[结论]围封措施能够显著提高半干旱退化草地土壤碳、氮养分,促进土壤微生物活动,有利于退化草地恢复,但封育时间过长则可能产生负效应,封育25 a是草地长期封育措施中一个较为合理的围封年限。  相似文献   

3.
近几十年来,随着世界经济和人口的迅速增长,全球大气活性氮排放量急剧上升[1]。活性氮大气排放的增加使得从大气沉降到地面的氮素数量也迅速增加,从而有可能导致自然或半自然生态系统(如森林、草地和湖泊等)富营养化土壤或水体酸化以及生物多样性降低等危害[2~5]。为了有效地评价大气氮沉降的生态环境效应,欧美一些国家进行了大量的氮沉降监测工作,并建立起了比较完善的氮沉降监测网络,如联合国欧洲经济委员会欧洲监测与评价计划(UN ECE-EMEP)、美国的国家大气沉降计划(NADP)和清洁空气状况与趋势网(CASTNet)以及加拿大的空气与降水监测网(CAPMoN)等。我国关于氮沉降的网络研究起步较晚,且主  相似文献   

4.
中国生态系统服务研究发展过程解析   总被引:1,自引:0,他引:1  
探究近30年来中国生态系统服务研究态势,把握学科发展前沿,推动我国生态系统服务领域发展。以CNKI数据库为数据源,借助Citespace软件,利用科学计量学与信息可视化方法定量分析了近30年来中国生态系统服务研究不同时段的主题演进及发展趋势。近30年来,生态系统服务价值评估与方法研究始终是处于高度关注水平的研究热点,当前评估热点主要集中在土地利用方式、粮食生产和生物多样性等方面;研究对象由早期的全球性的大尺度的单一自然生态系统向森林、草地、湿地、城市等中小尺度的复合型生态系统过渡;研究方法更加趋向于评估模型的构建及大数据可视化分析;在生态环境可持续发展的大背景下,有关生态保护、生态恢复、生态补偿以及生态安全等研究方向的融合逐渐增多。近30年来,中国生态系统服务领域已完成了基础理论和研究体系的架构,研究主题及内容系统性不断增强,研究方法趋于多样化,研究热点和特色日益鲜明;生态系统服务在气候变化、土地利用变化、景观格局变化和人类活动干扰下的变化和反馈机理研究成为近年来关注的热点,我国应根据自身国情开展生态系统服务评价、监测和恢复研究。  相似文献   

5.
为揭示过量的大气氮沉降对华北落叶松人工林土壤微生物碳、氮和土壤呼吸的影响,通过对照(N0:0 g/(m^2·a))、轻度施氮(N1:8 g/(m^2·a))、重度施氮(N2:15 g/(m^2·a))3个外源施氮水平下5年的野外定点试验和观测,模拟过量氮沉降条件下华北落叶松人工林土壤微生物碳、氮和土壤呼吸的变化,旨在阐明林下土壤微生物和呼吸对过量氮沉降的响应及其对土壤碳氮循环的影响。结果表明:在5-10月生长季中,土壤微生物碳和氮的平均含量分别为1 098.93,97.31 mg/kg,二者都随土层深度的增加呈下降趋势;轻度施氮促进土壤微生物碳和氮的增加,重度施氮抑制土壤微生物碳和氮的增加;土壤微生物碳和微生物氮从生长初期5月起,5-7月呈增加趋势,7月出现峰值,8月降低,9-10月小幅增加,呈现"N"形曲线。土壤微生物碳氮比为4.94~18.54,且随施氮量增加而减小。各氮处理下,华北落叶松人工林土壤呼吸速率5,6月较低,7-8月持续增加,并在8月达到最高,9-10月逐渐降低。相关分析表明,土壤呼吸与土壤全氮、含水量、微生物碳和微生物氮含量呈极显著正相关关系,与土壤有机质呈显著正相关关系。在全球变化背景下,研究结果可为进一步明确过量大气氮沉降对森林生态系统碳氮循环的影响途径和机制研究提供重要参考。  相似文献   

6.
已有许多研究证明,中国北方草地生态系统的植物群落结构和组成对气候变化和氮沉降较为敏感,但是关于草原土壤微生物群落响应多重环境因子变化方面的研究较薄弱。水和氮是陆地生态系统生产力的两大限制性因子。本研究在内蒙古多伦半干旱草原地区进行增雨和施氮的野外控制试验,以模拟未来该地区的降水变化和氮沉降,使用微生物群落水平生理图谱法,监测样地土壤理化指标和土壤微生物群落碳源利用潜力的变化。3年的跟踪监测结果显示:增雨显著提高了半干旱草原地区土壤含水量和有机质含量;施氮和增雨同时施氮则显著提高了土壤可溶性氮含量,降低了土壤pH;施氮和增雨都没有单独引起土壤微生物群落碳源利用潜力的显著变化,而在同时增雨和施氮试验处理下,微生物群落碳源利用潜力得到提高,说明在水和氮都充足的条件下,土壤微生物碳源利用潜力才会显著提高。以上研究结果预示着在未来降雨增加和氮沉降的全球变化背景下,中国北方半干旱草地生态系统的碳循环速率可能会加快。  相似文献   

7.
氮沉降对细根分解影响的研究进展   总被引:1,自引:0,他引:1  
随着人类干扰的加剧,大气中氮沉降量迅速增加,并显著影响生态系统碳循环过程。细根分解不但是陆地生态系统重要的碳汇和矿质养分库,也是土壤碳及养分的主要来源,对陆地生态系统物质和能量循环具有重要意义。细根分解是植物、土壤动物、微生物及土壤微生态系统间复杂的互作过程,氮沉降对细根分解速率的影响较为复杂,系统深入地研究氮沉降下植物、土壤动物、微生物与土壤微生态系统的相互作用方式与机理,对探索定向调控细根分解过程、预测生态系统对全球变化的响应具有重要的指导意义。对细根分解对大气氮沉降的响应进行了全面总结,系统分析和详细描述了氮沉降对细根分解关键因素的影响,及氮沉降对细根分解影响的机理;总结了目前细根分解研究中存在的问题,并对未来重点研究方向进行了展望,以期为深入研究氮沉降与陆地生态系统碳循环间的交互作用及反馈机制提供参考。  相似文献   

8.
黄河源区人工草地植被群落和土壤养分变化   总被引:2,自引:1,他引:1  
[目的]研究黄河源区不同年限人工草地植被群落特征和土壤养分的动态变化,揭示高寒地区人工草地稳定机制与演替规律,为退化高寒草甸(湿地)的近自然恢复和缩短退化草地恢复时间提供理论依据。[方法]选择黄河源区青海省玛沁县3,11,17 a单播垂穗披碱草人工草地,对植被与土壤养分特征进行调查。[结果]随着种植年限增加,人工草地优势种垂穗披碱草盖度降低,植物总盖度、生物结皮盖度、杂类草盖度以及生殖枝数量呈倒"V"型变化,而原生植被莎草科植物盖度、物种多样性逐渐增加,17 a人工草地中莎草科植物的盖度是3,11 a的10倍;人工草地土壤养分中全氮、全钾、速效氮、速效钾以及有机质随年限增加呈现积累趋势,土壤pH值逐渐趋于中性。土壤全氮含量在不同恢复年限之间差异最大,平均准确率降低度为25.71,有机质含量次之,其平均准确率降低度为18.55,而全钾含量及均匀度指数最小,平均准确率降低度均小于5。[结论]高寒地区人工草地群落结构和土壤营养随着建植时间的延长在逐渐恢复,建植17 a的人工草地土壤全氮、有机质含量仅是原生高寒草甸土壤的50%左右,因此,17 a人工草地土壤养分完全恢复还需要较长时间。  相似文献   

9.
我国红壤区大气氮沉降及其农田生态环境效应   总被引:1,自引:0,他引:1  
崔键  周静  杨浩  何园球 《土壤》2015,47(2):245-251
大气氮沉降作为营养源和酸源,沉降数量的急速增加,将严重影响生态系统的生产力和稳定性,对农田生态系统的影响日益显现。本文简要介绍了大气氮沉降的概念、来源和研究方法,梳理了近年来我国红壤区大气氮沉降的形态、数量及其对农田生态系统的影响,提出了红壤农田生态系统大气氮沉降当前存在的问题及今后的发展趋势。  相似文献   

10.
近25 a来渭-库绿洲土地利用/覆被变化及其影响因素   总被引:1,自引:1,他引:0  
[目的]对渭干河—库车河三角洲绿洲土地利用/覆被变化特征及其驱动因素进行研究,为维护绿洲生态系统健康、稳定提供依据。[方法]利用研究区1989,2001,2013年Landsat TM/ETM+的影像数据,采用动态度模型及转移矩阵等方法,深入分析该绿州土地利用/覆被变化特征,并结合气候因子、人口与经济要素分析其变化原因。[结果](1)近25a来该绿洲土地利用/覆被类型没有发生变化,但各类型的面积及所占比例都发生了较大变化。(2)研究期内,各地类面积呈二增四减趋势:耕地面积净增114.52%,主要是由草地及其他地类转化而来;盐碱地面积增加66.11%,林地、草地、水体与其他地类的面积均有所减少。[结论]近25a来,该绿洲土地利用/覆被变化明显,其中,林地、草地、水体及盐碱地受自然因素主导,而耕地与其他地类则受人口和经济因素影响。  相似文献   

11.
The impacts of increased nitrogen (N) inputs into temperate ecosystems via atmospheric nitrogen deposition on nitrogen cycling and nitrogen retention have been described in a variety of ecosystem types. The role of secondary nutrients such as phosphorus (P) in ecosystem responses to increased N inputs is less well-understood. N and P availability are likely to interact to influence ecosystem productivity and N cycling rates, and this interaction would be expected to vary as N inputs increase. Furthermore, N and P inputs may affect plant-mycorrhizal associations and the ability of arbuscular mycorrhizae (AM) to colonize roots. We added nitrogen (97 kg ha-1 yr-1) and phosphorus (30 kg ha-1 yr-1) to an oak-maple forest in southwestern Virginia (U.S.A.) from 1994 through 1996. Inorganic nitrogen concentrations, net nitrogen mineralization, net nitrification rates and arbuscular mycorrhizal inoculum potential (MIP) were assessed during the growing season in 1996. Responses of the understory vegetation and soil N cycling to N addition suggested that the ecosystem was strongly N-limited. Nitrogen cycling rates were not affected by P inputs, though P addition increased P availability and decreased MIP. It was hypothesized that P availability may have more significant influences on N cycling and the plant-mycorrhizal association in ecosystems showing stronger symptoms of nitrogen saturation. Results suggest that the use of P fertilization would be effective in alleviating P-deficiency in vegetation receiving elevated atmospheric N deposition, but perhaps at the cost of benefits that associations with arbuscular mycorrhizae provide.  相似文献   

12.
Global atmospheric nitrogen deposition has increased steadily since the 20th century, and has complex effects on terrestrial ecosystems. This work synthesized results from 54 papers and conducted a meta-analysis to evaluate the general response of 15 variables related to plant root traits to simulated nitrogen deposition. Simulated nitrogen deposition resulted in significantly decreasing fine root biomass (<2 mm diameter; −12.8%), while significantly increasing coarse root (≥2 mm diameter; +56.5%) and total root (+20.2%) biomass, but had no remarkable effect on root morphology. This suggests that simulated nitrogen deposition could stimulate carbon accumulation in root biomass. The root: shoot ratio decreased (−10.7%) suggests that aboveground biomass was more sensitive to simulated nitrogen deposition than root biomass. In addition, simulated nitrogen deposition increased the fine root nitrogen content (+17.6%), but did not affect carbon content, and thus decreased the fine root C:N ratio (−13.5%). These changes delayed the decomposition of roots, combined with increasing of the fine root turnover rate (+21.4%), which suggests that simulated nitrogen deposition could increase carbon and nutrient retention in the soil. Simulated nitrogen deposition also strongly affected the functional traits of roots, which increased root respiration (+20.7%), but decreased fungal colonization (−17.0%). The effects of simulated nitrogen deposition on the plant root systems were dependent on ecosystem and climate zone types, because soil nutrient conditions and other biotic and abiotic factors vary widely. Long-term simulated experiments, in which the experimental N-addition levels were less than twofold of the average of atmospheric nitrogen deposition, would better reflect the response of ecosystems under atmospheric nitrogen deposition. These results provide a synthetic understanding of the effects of simulated nitrogen deposition on plant root systems, as well as the mechanisms underlying the effects of simulated nitrogen deposition on plants and the terrestrial ecosystem carbon cycle.  相似文献   

13.
Abstract

The fragile ecosystem of China's Loess Plateau is being exposed to increasing atmospheric nitrogen deposition but little information about the response of the region's natural vegetation is currently available. We studied the responses of aboveground biomass (AGB) to simulated nitrogen deposition in a field experiment conducted on natural grassland on sunny and shady slopes. Three levels of simulated nitrogen deposition were applied, and two treatments with phosphorus were included to test for secondary phosphorus limitation. For the same level of nitrogen deposition, grass generally grew better on the shady slope than on the sunny slope. Compared to a control treatment with no additional nitrogen, we found: (1) the 2.5 g N m?2 yr?1 treatment significantly increased biomass only on the sunny slope; (2) the total AGB increased significantly in the 5 g N m?2 yr?1 treatment on both the shady slope (by 31%) and the sunny slope (by 25%); and (3) for 10 g N m?2 yr?1, AGB was also significantly increased, however, phosphorus limitation became more apparent, and soil nitrate N levels increased significantly, suggesting nitrogen saturation and the potential for nitrate pollution. The AGB of Stipa bungeana (the dominant grass) was significantly increased by nitrogen, but not by phosphorus. The biomass of the second dominant species Lespedeza davurica Schindl., was not affected by increased nitrogen but addition of phosphorus had some positive impact. Therefore, nitrogen deposition was proven to have effects on plant growth in our study area on the Loess Plateau of China, but high level of nitrogen deposition would result in P limitation. Furthermore, increasing nitrogen deposition is likely to induce diversity change.  相似文献   

14.
[目的]陆地生态系统中的碳循环和水循环是陆地生态系统物质和能量循环的核心,也是连接地圈、生物圈和大气层的纽带。森林植被是陆地生态系统的重要组成部分,是表征陆地碳-水循环的重要变量,在维持生物圈和大气圈的动态平衡中发挥着重要作用。目前,对陆地生态系统中碳-水循环的耦合关系和机制缺乏系统的分析和总结。[方法]从森林植被碳与水过程及其相互作用、植被水分利用和耦合机制的角度,综述了森林植被碳与水循环过程及其相互作用的研究与进展,以及不同空间尺度(叶片到区域/全球尺度)碳-水耦合的定义、方法、进展和展望。[结果]新兴的技术和方法实现了不同尺度碳水过程的高频观测,WUE等耦合指标体系推动了碳水耦合机制的研究和发展。[结论]通过系统阐述植被碳水耦合关系的多尺度整合和碳水耦合机理,为系统认识森林碳水耦合机理和水资源管理提供了理论基础,对未来植被经营管理决策具有重要的科学支撑意义。  相似文献   

15.
Wet and dry deposition of atmospheric nitrogen (N) compounds into forest ecosystems and their effect on physical, chemical and microbial processes in the soil has attracted considerable attention for many years. Still the consequences of atmospheric N deposition on N metabolism of trees and its interaction with soil microbial processes has only recently been studied. Atmospheric N deposited to the leaves is thought to enter the general N metabolism of the leaves, but the processes involved, the interaction with different metabolic pathways, and the connection between injury by atmospheric N and its metabolic conversion are largely unknown. Laboratory and field experiments have shown that N of atmospheric NO2 and NH3, deposited to the leaves of trees, is subject to long-distance transport in the phloem to the roots. This allocation can result in considerable decline of N uptake by the roots. Apparently, the flux of N from the soil into the roots can be down-regulated to an extent that equals N influx into the leaves. This down-regulation is not mediated by generally enhanced amino-N contents, but by elevated levels of particular amino acids. Field experiments confirm these results from laboratory studies: Nitrate (NO3) uptake by the roots of trees at a field sites exposed to high loads of atmospheric N is negligible, provided concentrations of Gln in the roots are high. At the ecosystem level, consequences of reduced N uptake by the roots of trees exposed to high loads of atmospheric N are (1) an increased availability of N for soil microbial processes, (2) enhanced emission of gaseous N-oxides from the soil, and (3) elevated leaching of NO3 into the ground water. How recent forest management practices aimed at transforming uniform monocultures to more structured species-rich forests will interact with these processes remains to be seen. Possible implications of these forest management practices on N metabolism in trees and N conversion in the soil are discussed particularly in relation to atmospheric N deposition.  相似文献   

16.
[目的]黄土高原是中国一个伟大的地理单元,对国家粮食安全和生态安全具有重要的战略意义。通过长期的坡度治理、流域综合治理、植树造林等多种措施,黄土高原地区的生态环境已经得到显著改善,但仍然面临着局部地区植被恢复配置的合理性不足、全流域统筹不协调、平衡经济发展与生态保护等方面的挑战。在国家双碳目标的指引下,黄土高原生态系统及农业可持续发展的未来方向和目标应当是支持碳中和目标实现、建立环境适宜性的植被群落、推进生态系统统筹社会经济系统的发展实现发展方式绿色转型。[方法]通过文献计量学工具CiteSpace对1992—2023年发表的黄土高原土壤调控原理与应用研究相关文献进行可视化分析,重点针对该研究领域的核心研究力量、研究热点与研究趋势。[结果](1)从发文量的嬗变来看,整体呈上升趋势,在2001年后爆发式增长;(2)从发文机构来看,西北农林科技大学在该领域的发文量最高,为2 157篇;(3)从作者的合作关系来看,邵明安和刘国彬是该领域的核心带头人,发文量分别为141,117篇,由他们构成的合作网络已经非常成熟;(4)从该领域的研究热点和发展趋势来看,主要研究热点集中在土壤水分、产量、旱地、...  相似文献   

17.
许策  李超  张天柱  束继年 《水土保持通报》2017,37(5):198-204,212
[目的]从地形梯度角度,对区域生态系统空间分布及变化特征进行分析,提出基于地形梯度的区域生态系统保护对策建议,为制定山区生态规划及实现山区生态系统的持续、健康发展提供参考。[方法]以遥感解译获得的1993,2003,2013年生态系统类型空间分布数据为基础,选取高程级别、地形起伏度和坡度变率为地形梯度表征指标,采用分布指数,对区域农田、水域与湿地、森林、草地、聚落和荒漠6类生态系统的地形梯度差异分布情况及优势位进行分析,并结合1993—2013年各生态系统的服务价值变化特征,探讨区域生态系统的保护对策。[结果]农田、水域与湿地、聚落、草地生态系统集中于低地形梯度区;森林集中于高地形梯度区;荒漠生态系统分布特征随地形梯度差异不明显;在低地形梯度区,农田、水域与湿地的生态系统服务价值降低,草地、聚落生态系统服务价值有明显的增加趋势;在高地形梯度区,虽然森林生态系统服务价值变化较为剧烈,但总体呈现出持续增加的趋势。[结论]在制定针对山地的区域生态规划时,应考虑对位于优势位上的生态系统实行特殊保护,禁止被侵占为生态系统服务功能较弱的生态系统服务类型,以保证生态系统能够持续、健康地提供生态服务。  相似文献   

18.
研究森林土壤团聚体酶活性对氮沉降的响应差异以及团聚体酶活性的影响因素,以滇中亚高山云南松林和华山松林为研究对象,于2020年6月至2021年5月通过野外模拟氮沉降试验,设置对照[CK,0 g/(m2·a)N]、低氮[LN,10 g/(m2·a)N]、中氮[MN,20 g/(m2·a)N]、高氮[HN,25 g/(m2·a)N],分别采集旱季(2021年2月)和雨季(2020年8月)的土壤样品,分析土壤团聚体中脲酶(Ure)、蔗糖酶(Inv)和酸性磷酸酶(AP)的变化特征,以及与环境因子的交互作用,阐明不同筛分方式下土壤团聚体酶活性对氮沉降的响应特征。结果表明:(1)氮沉降对2种林分下土壤团聚体的分布未造成显著影响,而不同筛分方式则影响显著;不同氮沉降水平下,土壤团聚体中3种酶活性均表现出LN促进,MN与HN抑制;(2)与干筛法相比,湿筛法下土壤团聚体中酶活性均有显著下降,Inv和Ure的团聚体酶活性的降幅均在20%以上,AP的降幅可达57.55%;(3)土壤干筛、湿筛团聚体酶活性的几何平均数(GMe...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号