首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
浑水含沙率对膜孔灌肥液入渗土壤水氮运移特性的影响   总被引:8,自引:2,他引:6  
为研究浑水膜孔灌条件下含沙率对膜孔灌肥液入渗土壤水氮运移特性的影响,通过室内膜孔入渗试验,设5个含沙率水平(0、3%、6%、9%、12%),观测累积入渗量、湿润锋运移距离、湿润体内水分以及NO-3-N和NH4+-N运移变化特性。结果表明:浑水含沙率越大,湿润锋运移距离越小,相同入渗历时内湿润体体积和高含水率区域越小,湿润体内同一位置处土壤含水率越小。单位膜孔面积累积入渗量与入渗时间符合Kostiakov模型(R2>0.9,P<0.01);随着浑水含沙率的逐渐增大,入渗系数逐渐减小,而入渗指数基本不变。垂直湿润锋运移距离和减渗率均与入渗时间呈极显著的幂函数关系,含沙率对减渗率的影响主要是通过对减渗系数的影响来实现。湿润体土壤NO-3-N和NH4+-N含量随着浑水含沙率的增大而减小,且在膜孔中心附近区域其含量均较高。土壤NO-3-N主要集中分布在湿润半径10 cm范围内,湿润体水平方向及膜孔垂向土壤NO-3-N含量均随着距膜孔中心距离的增加而降低;而土壤NH4+-N主要集中分布在湿润半径5 cm范围内,湿润半径5~10 cm范围内的土壤NH4+-N含量随着土壤深度的增加而降低。研究结果可为进一步深入研究浑水膜孔灌肥液入渗提供理论依据。  相似文献   

2.
肥液浓度对单膜孔入渗NO-3-N运移特性影响的室内试验研究   总被引:2,自引:1,他引:2  
该文通过室内入渗试验,研究了不同浓度的单膜孔肥液入渗NO-3-N的分布特性.研究表明:不同浓度的膜孔肥液入渗土壤NO-3-N浓度的湿润锋运移距离与土壤水分运动的湿润锋一致;肥液浓度越大,相同入渗时间的NO-3-N浓度锋运移距离越大,土壤剖面NO3--N浓度最大值越大,相同深度处土壤NO3--N浓度也越大.肥液入渗土壤NO-3-N浓度分布特征与湿润体深度符合分段函数模型.供水入渗过程中,NO-3-N浓度锋运移距离和浓度最大值均随时间的延长而增大;再分布过程中,NO-3-N浓度锋运移距离继续增大,而NO-3-N浓度最大值逐渐减小.  相似文献   

3.
膜孔直径对浑水膜孔灌土壤水氮运移特性的影响   总被引:7,自引:5,他引:2  
通过对西安粉壤土进行4种膜孔直径(6,8,10,12cm)的浑水膜孔肥液自由入渗室内试验,观测并分析了湿润锋运移距离、累积入渗量、湿润体内水分分布以及NO_3~--N和NH_4~+-N运移特性的变化规律。结果表明:膜孔直径对浑水膜孔灌土壤水氮运移特性具有较为显著的影响。不同膜孔直径的浑水膜孔灌肥液自由入渗累积入渗量符合Philip入渗模型;湿润锋运移距离与入渗时间呈极显著的幂函数关系;在相同的入渗时间内,膜孔直径越大,湿润锋运移距离越大,单位膜孔面积累积入渗量越小,同一位置处土壤NO_3~--N和NH_4~+-N含量越大。入渗400min内,在膜孔中心附近区域NO_3~--N和NH_4~+-N含量较高,湿润体内土壤NO_3~--N主要集中分布在距膜孔中心15cm范围内,而NH_4~+-N主要集中分布在距膜孔中心8cm范围内。  相似文献   

4.
为了探究浑水膜孔灌肥液入渗在不同土壤初始含水率下水氮运移特性,通过室内肥液入渗试验,研究了不同土壤初始含水率(6.02%,7.40%,8.23%,10.08%和13.20%)条件下入渗特性、湿润锋运移、土壤水分分布以及铵态氮和硝态氮的运移特性,建立了浑水膜孔灌肥液入渗累积入渗量、各向湿润锋运移距离与土壤初始含水率之间的关系,提出了不同土壤初始含水率的累积入渗量以及各向湿润锋运移距离的经验模型。结果表明:累积入渗量、各向湿润锋运移距离以及湿润体内水分和氮素的分布规律均受到土壤初始含水率的影响;同一入渗时刻,累积入渗量随土壤初始含水率的增大而减小,而湿润锋运移距离却呈现出随时间增大的趋势;土壤初始含水率越大,湿润体体积越大,湿润体内水分、铵态氮以及硝态氮分布范围越广;土壤初始含水率越大,入渗系数K值越小,入渗指数α越大。灌水结束时,湿润体内铵态氮绝大部分分布在湿润体半径r≤5cm范围内,而湿润体半径10cmr5cm范围的土壤铵态氮含量随土层深度的增加而降低,当湿润体半径r≥10cm时,铵态氮含量明显降低;硝态氮主要集中分布在由膜孔中心至半径为10cm范围内,水平方向和垂直方向硝态氮含量均随着膜孔中心距离的增加而降低,距离膜孔中心越近硝态氮含量越高;在同一位置处,铵态氮和硝态氮质量分数均随土壤初始含水率的增大而增大;随土壤水分再分布,湿润锋逐渐下移,湿润体内铵态氮逐渐向下运移且其含量呈现降低趋势;随时间继续运移,上层土壤硝态氮含量逐渐减小,下层新湿润体中硝态氮含量逐渐增加,整个湿润体内硝态氮含量分布趋于均匀。研究成果为进一步研究浑水膜孔灌肥液入渗氮素运移及转化奠定了基础。  相似文献   

5.
涌泉根灌不同浓度肥液入渗特性及土壤湿润体模型研究   总被引:6,自引:2,他引:4  
为了研究涌泉根灌肥液入渗特性及湿润体水氮运移的变化规律,在陕北米脂山地微灌枣树示范基地原状土上进行了涌泉根灌肥液入渗试验。结果表明:累积入渗量与入渗时间之间符合Kostiakov幂函数关系(R20.9,P0.01);涌泉根灌入渗能力与增渗效果均随肥液浓度增大而增大;水平湿润锋与竖直湿润锋运移距离均随肥液浓度增大而增大,且均与入渗时间呈显著的幂函数关系,水平方向和竖直方向的湿润锋运移距离的拟合值与实测值的相对误差在–3.84%~5.20%以内。肥液浓度的不同对于湿润体大小略有影响。提出了涌泉根灌肥液入渗湿润体内土壤含水率和NH_4~+-N浓度分布的数学模型,即在一定浓度范围内,单位含水率的变化可引起的肥液浓度变化,且模型的计算精度较高(模拟值与实测值相对误差在10%以内),并符合湿润体内土壤含水率和NH_4~+-N分布规律,可对不同位置处土壤含水率及NH_4~+-N含量进行估算。水分分布情况对肥液浓度条件敏感性较低,NH_4~+-N分布情况对肥液浓度条件敏感性较高。研究可为涌泉根灌水肥高效利用提供参考。  相似文献   

6.
残膜量对膜孔灌土壤水氮运移特性的影响   总被引:1,自引:0,他引:1  
为探究土壤残膜量对膜孔灌肥液入渗土壤水氮运移特性的影响,通过室内土箱模拟试验设置0,90,180,360,720 kg/hm~2的5个残膜量水平,分析不同残膜量下膜孔灌肥液入渗累积入渗量、湿润锋运移距离、湿润体特征和水氮分布规律。结果表明:残膜对膜孔灌肥液入渗具有阻渗作用,残膜土累积入渗量较无残膜土减少10.63%~30.77%,Kostiakov模型对残膜土单位膜孔面积累积入渗量与入渗时间有较好地拟合效果;入渗前30 min,不同残膜量的垂直湿润锋运移距离差异不显著,随着入渗时间推进,残膜量与湿润锋运移距离、湿润体体积呈负相关关系。入渗结束时,含残膜土湿润体体积减小18.09%~41.96%。垂直湿润锋距离、湿润体体积与入渗时间均呈显著的幂函数关系,R~2均0.98;除膜孔中心处,相同位置含残膜的土壤含水率低于无残膜,30%高含水率区域减小。湿润体内同一深度土壤NO_3~--N和NH_4~+-N含量随残膜量增加而减小,减小幅度为4.20%~16.27%。研究结果可为残膜土下膜孔灌技术提供理论参考。  相似文献   

7.
单膜孔点源肥液入渗水氮分布特性试验研究   总被引:2,自引:1,他引:2  
该文通过室内试验,研究了膜孔灌肥液单点源自由入渗湿润体内水分和NO3-N浓度的分布特性,提出了膜孔肥液自由入渗湿润体内水分和NO3-N浓度分布的数学模型。研究结果表明:水分和NO3-N浓度分布模型计算精度较高,并符合点源湿润体内土壤含水率和NO3-N的分布规律;根据湿润体内水分和NO3-N浓度分布模型,推求得到了湿润体中土壤含水率、NO3-N浓度和湿润半径三者之间的关系。以上成果为进一步研究膜孔肥液入渗的影响因素和灌水技术提供了理论基础。  相似文献   

8.
肥液浓度对单膜孔入渗NO-3-N运移特性影响的室内试验研究   总被引:5,自引:0,他引:5  
该文通过室内入渗试验,研究了不同浓度的单膜孔肥液入渗NO-3-N的分布特性。研究表明:不同浓度的膜孔肥液入渗土壤NO-3-N浓度的湿润锋运移距离与土壤水分运动的湿润锋一致;肥液浓度越大,相同入渗时间的NO-3-N浓度锋运移距离越大,土壤剖面NO-3-N浓度最大值越大,相同深度处土壤NO-3-N浓度也越大。肥液入渗土壤NO-3-N浓度分布特征与湿润体深度符合分段函数模型。供水入渗过程中,NO-3-N浓度锋运移距离和浓度最大值均随时间的延长而增大;再分布过程中,NO-3-N浓度锋运移距离继续增大,而NO-3-N浓度最大值逐渐减小。  相似文献   

9.
肥液浓度对不同形态氮素在土壤中运移转化特性的影响   总被引:1,自引:1,他引:0  
为揭示肥液(尿素)浓度影响下土壤湿润体中不同形态氮素的运移转化规律,选取黏壤土和砂壤土作为肥液入渗试验供试土壤,量化分析肥液浓度对土壤累积入渗量和不同形态氮素在分布和再分布过程中运移转化特性的影响。结果表明:相同入渗时间内土壤累积入渗量随肥液浓度的增大而增加,Kostiakov公式的入渗系数与肥液浓度呈现线性关系,建立并验证了考虑肥液浓度影响的土壤累积入渗量估算公式,模拟值与实测值具有较高的一致性,两者间的相对误差绝对值均值均8.0%;入渗结束时,土壤湿润体相同位置处的尿素态氮、铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量均随肥液浓度的增大而增加;NH_4~+-N主要分布在土壤湿润体深度20 cm以上,尿素态氮和NO_3~--N含量随着湿润体深度的增大呈现下降趋势;再分布过程中,土壤湿润体中尿素态氮含量随再分布时间的增加整体呈现减小趋势,且黏壤土和砂壤土湿润体中的尿素态氮分别在再分布5,3天时基本水解完成;NH_4~+-N含量呈现先增加后减小的趋势,黏壤土湿润体中的峰值约出现在再分布3~5天,而砂壤土约在再分布3天;黏壤土湿润体中NO_3~--N含量呈现先增加后减小的趋势,其峰值约在5~10天,而砂壤土中NO_3~--N含量在再分布10天时,始终保持在较高水平。研究结果为农田灌溉施肥系统的设计和管理提供理论基础和技术支撑。  相似文献   

10.
膜孔单点源肥液入渗湿润体特性试验研究   总被引:7,自引:0,他引:7  
该文通过室内试验,研究了单点源肥液入渗的湿润体特性。研究结果表明:湿润锋的纵剖面形状曲线符合椭圆方程;湿润锋运移距离随时间的变化符合幂函数方程;建立了湿润体纵剖面动态变化的数学模型和膜孔肥液入渗累积入渗量的经验模型以及湿润体平均含水率随时间变化的关系。在此基础上,研究了湿润体内土壤水分的分布特性。该研究为进一步进行膜孔灌溉技术研究奠定了基础。  相似文献   

11.
肥液间歇入渗土壤湿润特性实验研究   总被引:1,自引:0,他引:1  
通过肥液间歇和连续入渗实验,分析了肥液间歇入渗土壤湿润特性。结果表明,肥液间歇入渗湿润锋运移速度较连续入渗慢,并随周期数的增加而减小;分析了肥液间歇入渗湿润锋运移的分段模型,提出了由连续入渗湿润锋运移参数计算间歇入渗湿润锋运移距离的简化模型,实例计算表明该方法简单有效;对比了肥液间歇入渗和连续入渗土壤含水量的分布,肥液间歇入渗土壤含水量分布较连续入渗均匀,相同深度土层中入渗水量占总入渗量的比例较大。  相似文献   

12.
In sandy fields with vegetable cultivation, fertilizer leaching may occur and it should be well-controlled. The development of a direct soil water sampler is necessary to examine solute transport and fertilizer leaching in the vadose zone, since soil water reflects timely monitoring of data more accurately than groundwater. We developed a Suction-Controlled Flux Sampler to collect infiltration soil water in a sandy soil. In the present study, we monitored fertilizer leaching in an unsaturated sandy field during the rainy season, while evaluating the sampling performance of SCFS for the sampling of infiltration water. SCFS directly collected the infiltration water effectively over a period of several months in the sandy field and recorded the Water-Collecting Efficiency from 92 to 115% under various infiltration conditions during a period of 50 d. WCE was affected by the rainfall intensity as well as by previous rainfall, which enhanced WCE. The results obtained from the use of SCFS and several sensors demonstrated that the amount of leached water remained low as long as irrigation was applied according to the cultivation manual. However, an unexpected heavy rainfall event led to fertilizer leaching. The fertilizer leaching trend was effectively monitored by several sensors inserted into the soils, while detailed analysis of the components was performed after collection by using SCFS. Direct access to infiltration water enabled to examine the infiltration process and detailed variations in the amounts of discharged anions. The sensor-equipped monitoring system together with SCFS is suitable for precise management of fertilizer and irrigation application.  相似文献   

13.
土壤间歇入渗水肥耦合特性试验研究   总被引:3,自引:1,他引:3  
为研究肥液浓度对施肥条件下土壤间歇入渗特性的影响,通过不同肥液浓度土壤间歇入渗试验,分析了不同肥液浓度波涌灌溉土壤间歇入渗水肥耦合特性。结果表明:在周期入渗时间相同时,土壤间歇入渗量与间歇入渗率均随肥液浓度的增加而增大,在间歇入渗的的第一周期表现明显,以后各周期这种差异变化随周期数的增加而变缓。同时分析了土壤间歇入渗量随肥液浓度增渗的机理,提出了不同肥液浓度土壤间歇入渗量计算模型,建立了不同肥液浓度土壤间歇入渗参数与清水连续入渗参数的关系,实现了根据清水连续入渗资料与肥液浓度确定波涌灌溉肥液间歇入渗量。实例计算表明,该方法可简单而有效地确定土壤间歇入渗量。  相似文献   

14.
为提高红壤区涌泉根灌水氮利用效率,通过室内肥液入渗试验,研究了不同肥液浓度(0,10,20,35,60 g/L)条件下涌泉根灌土壤的入渗能力、湿润锋运移距离、土壤水分分布以及铵态氮和硝态氮的运移特性,并建立了红壤涌泉根灌土壤累计入渗量及湿润锋在竖直向上、竖直向下和水平方向的运移距离与肥液浓度的关系模型。结果表明:土壤累计入渗量、湿润锋运移距离以及湿润体内水分和氮素的分布均受到肥液浓度的影响。在同一入渗时刻,土壤累计入渗量及湿润锋运移距离随肥液浓度的增大而增大,且与入渗历时均呈幂函数关系;在灌水结束时,相同土层深度内,肥液浓度越大,土壤含水率就越大,土壤中铵态氮和硝态氮的浓度也越大,且与铵态氮相比,硝态氮的分布范围更广。随着肥液再分布的进行,土层内最大含水率位置逐渐下移,且土壤含水率的分布也更加均匀;土壤中铵态氮和硝态氮浓度的变化趋势不同,浅层中铵态氮的浓度逐渐降低,而硝态氮的浓度先降低后增加;深层中铵态氮的浓度先增加后降低,而硝态氮的浓度逐渐增加。该研究成果可为进一步研究红壤区涌泉根灌肥液入渗氮素运移及转化提供理论参考。  相似文献   

15.
为了探究涌泉根灌水肥一体化灌溉在不同土壤初始含水率下水氮运移特性,通过室内肥液入渗试验,研究了不同土壤初始含水率(4.13%,7.21%,8.77%,11.06%,14.01%)条件下入渗特性、湿润锋运移、土壤水分以及铵态氮和硝态氮的运移特性,建立了涌泉根灌累积入渗量、各向湿润锋运移距离与不同土壤初始含水率之间的关系,提出了不同初始含水率下涌泉根灌累积入渗量、各向湿润锋运移距离的经验模型。结果表明:累积入渗量、各向湿润锋运移距离以及湿润体内水分和氮素的分布、转化等均不同程度地受到土壤初始含水率的影响。同一时刻条件下,累积入渗量随着土壤初始含水率的增大而减小,而湿润锋运移距离却呈现出增大的趋势;土壤初始含水率越大,湿润体体积越大,湿润体内水分、铵态氮和硝态氮的分布范围越广泛;距离灌水器出水孔越近,土壤中的铵态氮和硝态氮含量越高。入渗系数K随着土壤初始含水率的增大而减小,入渗指数α随着土壤初始含水率的增大而增大;水平湿润锋拟合参数a、b均随土壤初始含水率的增大而增大,竖直向下湿润锋运移指数c随着土壤初始含水率的增大而增大,入渗指数d随着土壤初始含水率的增大而减小。随着土壤水分再分布的持续进行,湿润体内水分分布越加均匀,采用克里斯琴森均匀系数Cu评价灌水结束、再分布1,3天条件下湿润体内水分分布均匀度依次为61.99%,74.27%和83.60%;湿润体内铵态氮含量逐渐减小,但铵态氮的分布区域基本无变化;湿润体内硝态氮分布区域变大,平均值呈增大,最值区域有下移趋势。研究成果为进一步研究涌泉根灌水氮高效利用技术奠定了基础。  相似文献   

16.
不同土壤质地和含水率对炭基肥料氮素矿化的影响   总被引:1,自引:2,他引:1  
为了探究土壤特性对炭基肥料氮素矿化的影响,采用室内培养和大田小区试验,分析了炭基肥在不同土壤质地(砂质壤土、粉砂质壤土、黏土)及含水率(80%、60%、40%田间最大持水量)条件下,氮素矿化动态变化特征。结果表明:在室内培养条件下,对于不同土壤质地,炭基肥在砂质壤土条件下矿化势最高,其次为黏土,最低的为粉砂质壤土;对于不同田间持水量,在粉砂质壤土条件下,炭基肥矿化势最高的为80%田间最大持水量(80%SMC),其次为60%SMC,最低的是40%SMC;在砂质壤土和黏土条件下,炭基肥的矿化势均表现为60%SMC>80%SMC>40%SMC。培养状态下粉砂质壤土、砂质壤土、黏土条件下最大氮素有效性分别是34.12%、56.31%、41.14%,而在大田条件下,炭基肥单季氮素最大矿化率在粉砂质壤土、砂质壤土、黏土3种土壤质地下分别是50.61%、32.27%、34.29%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号