首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 799 毫秒
1.
Plants link atmospheric and soil carbon pools through CO2 fixation, carbon translocation, respiration and rhizodeposition. Within soil, microbial communities both mediate carbon-sequestration and return to the atmosphere through respiration. The balance of microbial use of plant-derived and soil organic matter (SOM) carbon sources and the influence of plant-derived inputs on microbial activity are key determinants of soil carbon-balance, but are difficult to quantify. In this study we applied continuous 13C-labelling to soil-grown Lolium perenne, imposing atmospheric CO2 concentrations and nutrient additions as experimental treatments. The relative use of plant- and SOM-carbon by microbial communities was quantified by compound-specific 13C-analysis of phospholipid fatty acids (PLFAs). An isotopic mass-balance approach was applied to partition the substrate sources to soil respiration (i.e. plant- and SOM-derived), allowing direct quantification of SOM-mineralisation. Increased CO2 concentration and nutrient amendment each increased plant growth and rhizodeposition, but did not greatly alter microbial substrate use in soil. However, the increased root growth and rhizosphere volume with elevated CO2 and nutrient amendment resulted in increased rates of SOM-mineralisation per experimental unit. As rhizosphere microbial communities utilise both plant- and SOM C-sources, the results demonstrate that plant-induced priming of SOM-mineralisation can be driven by factors increasing plant growth. That the balance of microbial C-use was not affected on a specific basis may suggest that the treatments did not affect soil C-balance in this study.  相似文献   

2.
Controversial conclusions from different studies suggest that the decomposition of old soil organic matter (SOM) is either more, less, or equally temperature sensitive compared to the younger SOM. Based on chemical kinetic theory, the decomposition of more recalcitrant materials should be more temperature sensitive, unless environmental factors limit decomposition. Here, we show results for boreal upland forest soils supporting this hypothesis. We detected differences in the temperature sensitivity 1) between soil layers varying in their decomposition stage and SOM quality, and 2) inside the layers during a 495 day laboratory incubation. Temperature sensitivity increased with increasing soil depth and decreasing SOM quality. In the organic layers, temperature sensitivity of decomposition increased during the early part of a 495 day laboratory incubation, after respiration rate and SOM quality had notably decreased. This indicates that decomposition of recalcitrant compounds was more temperature sensitive than that of the labile ones. Our results imply that Q10 values for total heterotrophic soil respiration determined from short-term laboratory incubations can either underestimate or overestimate the temperature sensitivity of SOM decomposition, depending on soil layer, initial labile carbon content and temperature range used for the measurements. Using Q10 values that ignore these factors in global climate models provides erroneous estimates on the effects of climate change on soil carbon storage.  相似文献   

3.
Soil under six different land uses on Pianosa Island, in the Mediterranean Sea, was characterized in terms of microbial activity and organic matter quality, in order to define relationships between living and dead organic matter. Biological measurements and chemical and spectroscopic (13C NMR and FTIR) investigation of the extracted soil organic matter provided clues to the effects of soil management on the reciprocal interactions between living and dead organic matter. In particular, the conversion from the original bushy maquis to other land uses, such as degraded thickets of holm oak, maquis‐invaded groves of olive trees, stands of Aleppo pines and abandoned pastures, implied significant reduction of soil organic carbon (SOC) and its microbial fraction (MBC). Cropland, which is the land use with the greatest perturbation of soil, had the smallest SOC, MBC and soil respiration rate. Significant differences in extractable SOC among land uses occurred, both as total amount and as molecular mass distribution. The relatively good relationship between soil respiration and the extracted SOM‐fraction of 2–50 kDa, expressed on a molecular mass basis, suggests that this size is strongly linked to heterotrophic organisms and that it could be representative of a transitory pool of C in soil.  相似文献   

4.
Soil organic matter(SOM)in boreal forests is an important carbon sink.The aim of this study was to assess and to detect factors controlling the temperature sensitivity of SOM decomposition.Soils were collected from Scots pine,Norway spruce,silver birch,and mixed forests(O horizon)in northern Finland,and their basal respiration rates at five different temperatures(from 4 to 28℃)were measured.The Q_(10) values,showing the respiration rate changes with a 10℃ increase,were calculated using a Gaussian function and were based on temperature-dependent changes.Several soil physicochemical parameters were measured,and the functional diversity of the soil microbial communities was assessed using the MicroResp?method.The temperature sensitivity of SOM decomposition differed under the studied forest stands.Pine forests had the highest temperature sensitivity for SOM decomposition at the low temperature range(0–12℃).Within this temperature range,the Q_(10) values were positively correlated with the microbial functional diversity index(H'_(mic))and the soil C-to-P ratio.This suggested that the metabolic abilities of the soil microbial communities and the soil nutrient content were important controls of temperature sensitivity in taiga soils.  相似文献   

5.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

6.
Cellulose decomposition experiments were conducted under field conditions to analyze the effects of climatic and soil properties on rates of organic matter decomposition in temperate and tropical forests. The mass loss rates of cellulose filter papers buried in the soil surface were measured to estimate the respiratory C fluxes caused by cellulose decomposition and mean residence time (MRT) of cellulose. The rates of cellulose decomposition increased with soil temperature, except for during the dry season, while rate constants of decomposition (normalized for temperature) decreased with decreasing pH because of lower cellulase activity. The estimated MRTs of soil cellulosic carbohydrates varied from 81 to 495 days for the temperate forests and from 31 to 61 days for the tropical forests. As a major organic substrate, the C fluxes from cellulose decomposition can account for a substantial fraction of heterotrophic (basal) soil respiration. However, the respiratory C fluxes can be limited by the low substrate availability and low pH in tropical soils, despite high microbial activity. The rate-regulating factors of cellulose decomposition, i.e., temperature, soil pH, and substrate availability, can accordingly influence the rates of heterotrophic soil respiration.  相似文献   

7.
The effect of spruce swamp forest (SSF) drainage and water regime restoration on soil organic matter (SOM) quality and soil microbial heterotrophic activities was studied in pristine, drained and restored SSF in the Bohemian Forest, Czech Republic. Sequential chemical SOM fractionation using cold and hot water and hot acid was used to separate SOM fractions according to their mobility and potential lability/recalcitrance, and Fourier transform infrared spectra were used for SOM characterization. Soil physicochemical parameters and heterotrophic microbial activities were also determined. Drainage of SSF had significant long‐term effects (more than 50 yr) on plant communities and SOM quality. On drained sites, cover of sphagnum moss and sedge was much smaller than on pristine locations. A greater proportion of recalcitrant compounds and a smaller proportion of labile compounds were found in drained SSF as compared to pristine sites, which first led to an energy limitation and was followed by a decrease in microbial biomass and heterotrophic microbial activities (CO2 production, methanogenesis and methanotrophy). Restoration resulted in slow progressive changes in the vegetation cover, including the spread of sphagnum mosses, retreat of mosses typical of drier conditions and increased sedge cover compared with drained SSF. Moreover, soil physicochemical parameters (pH and bulk density), hot‐water‐extractable C and methanotrophic activity tended to evolve towards the pristine SSF and seem to be good indicators of the restoration process. No other SOM fractions changed significantly after restoration. Thus, to change significantly overall SOM quality and most microbial heterotrophic activities following restoration, more than 7 yr are required.  相似文献   

8.
Soil organic matter (SOM) content is a key indicator of riparian soil functioning and in the provision of ecosystem services such as water retention, flood alleviation, pollutant attenuation and carbon (C) sequestration for climate change mitigation. Here, we studied the importance of microbial biomass and nutrient availability in regulating SOM turnover rates. C stabilisation in soil is expected to vary both vertically, down the soil profile and laterally across the riparian zone. In this study, we evaluated the influence of five factors on C mineralisation (Cmin): (i) substrate quantity, (ii) substrate quality, (iii) nutrient (C, N and P) stoichiometry, (iv) soil microbial activity with proximity to the river (2 to 75 m) and (v) as a function of soil depth (0–3 m). Substrate quality, quantity and nutrient stoichiometry were evaluated using high and low molecular weight 14C-labelled dissolved organic (DOC) along with different nutrient additions. Differences in soil microbial activity with proximity to the river and soil depth were assessed by comparing initial (immediate) Cmin rates and cumulative C mineralised at the end of the incubation period. Overall, microbial biomass C (MBC), organic matter (OM) and soil moisture content (MC) proved to be the major factors controlling rates of Cmin at depth. Differences in the immediate and medium-term response (42 days) of Cmin suggested that microbial growth increased and carbon use efficiency (CUE) decreased down the soil profile. Inorganic N and/or P availability had little or no effect on Cmin suggesting that microbial community growth and activity is predominantly C limited. Similarly, proximity to the watercourse also had relatively little effect on Cmin. This work challenges current theories suggesting that areas adjacent to watercourse process C differently from upslope areas. In contrast, our results suggest that substrate quality and microbial biomass are more important in regulating C processing rates rather than proximity to a river.  相似文献   

9.
The input of labeled C into the pool of soil organic matter, the CO2 fluxes from the soil, and the contribution of root and microbial respiration to the CO2 emission were studied in a greenhouse experiment with continuous labeling of oat plants with 13CO2 using the method of the natural 13C abundance in the air. The carbon of the microbial biomass composed 56 and 39% of the total amounts of 13C photoassimilates in the rhizosphere and in the bulk soil, respectively. The contribution of root respiration to the CO2 emission from the soil reached 61–92%, including 4–23% of the rhizomicrobial respiration. The contribution of the microbial respiration to the total CO2 emission from the soil varied from 8 to 39%. The soil organic matter served as the major carbon-containing substrate for microorganisms in the bulk soil and in the rhizosphere: 81–91% of the total amount of carbon involved in the microbial metabolism was derived from the soil organic matter.  相似文献   

10.
Soil incubations are often used to investigate soil organic matter (SOM) decomposition and its response to increased temperature, but changes in the activity and community composition of the decomposers have rarely been included. As part of an integrated investigation into the responses of SOM components in laboratory incubations at elevated temperatures, fungal and bacterial phospholipid fatty acids (PLFAs) were measured in two grassland soils contrasting in SOM quality (i.e. SOM composition), and changes in the microbial biomass and community composition were monitored. Whilst easily-degradable SOM and necromass released from soil preparation may have fuelled microbial activity at the start of the incubation, the overall activity and biomass of soil microorganisms were relatively constant during the subsequent one-year soil incubation, as indicated by the abundance of soil PLFAs, microbial respiration rate (r), and metabolic quotient (qCO2). PLFAs relating to fungi and Gram-negative bacteria declined relative to Gram-positive bacteria in soils incubated at higher temperatures, presumably due to their vulnerability to disturbance and substrate constraints induced by faster exhaustion of available nutrient sources at higher temperatures. A linear correlation was found between incubation temperatures and the microbial stress ratios of cyclopropane PLFA-to-monoenoic precursor (cy17:0/16:1ω7c and cy19:0/18:1ω7c) and monoenoic-to-saturated PLFAs (mono/sat), as a combined effect of temperature and temperature-induced substrate constraints. The microbial PLFA decay patterns and ratios suggest that SOM quality intimately controls microbial responses to global warming.  相似文献   

11.
Soil organic matter (SOM) biomarker methods were utilized in this study to investigate the responses of fungi and bacteria to freeze-thaw cycles (FTCs) and to examine freeze-thaw-induced changes in SOM composition and substrate availability. Unamended, grass-amended, and lignin-amended soil samples were subject to 10 laboratory FTCs. Three SOM fractions (free lipids, bound lipids, and lignin-derived phenols) with distinct composition, stability and source were examined with chemolysis and biomarker Gas Chromatography/Mass Spectrometry methods and the soil microbial community composition was monitored by phospholipid fatty acid (PLFA) analysis. Soil microbial respiration was also measured before and during freezing and thawing, which was not closely related to microbial biomass in the soil but more strongly controlled by substrate availability and quality. Enhanced microbial mineralization (CO2 flush), considered to be derived from the freeze-thaw-induced release of easily decomposable organic matter from microbial cell lyses, was detected but quickly diminished with successive FTCs. The biomarker distribution demonstrated that free lipids underwent a considerable size of decrease after repeated FTCs, while bound lipids and lignin compounds remained stable. This observation indicates that labile SOM may be most influenced by increased FTCs and that free lipids may contribute indirectly to the freeze-thaw-induced CO2 flush from the soil. PLFA analysis revealed that fungal biomass was greatly reduced while bacteria were unaffected through the lab-simulated FTCs. Microbial community shifts may be caused by freezing stress and competition for freeze-thaw-induced substrate release. This novel finding may have an impact on carbon and nutrient turnover with predicted increases in FTCs in certain areas, because fungi and bacteria have different degradation patterns of SOM and the fungi-dominated soil community is considered to have a higher carbon storage capacity than a bacteria-dominated community.  相似文献   

12.
长期定位施肥下黑土呼吸的变化特征及其影响因素   总被引:9,自引:5,他引:4  
阐明长期不同施肥下的土壤呼吸特征及其影响机制对黑土区固碳减排研究至关重要。该研究基于1990年开始的国家土壤肥力与肥料效益监测网站-吉林省公主岭市黑土监测基地,选取不施肥(CK)、单施氮磷钾肥(NPK)、无机肥配施低量有机肥(NPKM1)、1.5倍的无机肥配施低量有机肥(1.5(NPKM1))、无机肥配施高量有机肥(NPKM2)和无机肥配施秸秆(NPKS)6个处理,明确了长期不同施肥下土壤总呼吸和异养呼吸的季节变化特征,并分析了土壤温度、水分、微生物量碳氮、铵态氮、硝态氮与土壤呼吸和异养呼吸的关系。结果表明:长期有机无机肥配施可以显著提高土壤有机碳、全氮、土壤速效磷、有效钾的含量和土壤活性有机碳库组分含量(P0.05);与不施肥相比,长期有机无机肥配施和无机配施秸秆处理分别显著增加土壤呼吸及异养呼吸碳累积排放量56.32%~86.54%和70.01%~100.93%;根系呼吸对土壤呼吸的整体贡献为23.68%~34.30%;相关分析表明,土壤呼吸速率和异养呼吸速率与土壤温度极显著正相关(P0.01),与土壤含水率呈显著负相关(P0.01),土壤温度可以分别解释土壤呼吸和异养呼吸变化的42.79%和39.61%;土壤微生物量碳氮、土壤硝态氮均与土壤呼吸速率和异养呼吸速率极显著相关(P0.01),土壤微生物量碳氮、土壤硝态氮可以分别解释土壤呼吸和异养呼吸变化的78.42%和77.18%,58.33%和56.79%,59.29%和59.14%;土壤铵态氮虽然显著影响土壤呼吸速率(P0.05),可以解释土壤呼吸变化的5.56%,但其对异养呼吸速率的影响不显著。综合来看,微生物量碳对土壤呼吸及异养呼吸的影响最大,而土壤含水率(15%)越高则土壤呼吸越弱;无机配施秸秆处理可以提高土壤碳库组分含量,且作物生育期内土壤呼吸及异养呼吸碳累积释放量均低于等氮量下施用有机肥(NPKM1)的处理,为最佳的农田管理措施。  相似文献   

13.
Tropical subsoils contain large reservoirs of carbon (C), most of which is stored in soil organic matter (SOM). Subsoil OM is thought to be particularly stable against microbial decomposition due to various mechanisms and its position in the soil profile, potentially representing a long-term C sink. However, few experiments have explicitly investigated SOM stability and microbial activity across several orders of magnitude of soil C concentrations as a function of soil depth. The objective of this study was to evaluate the biological stability of SOM in the upper 1.4 m of tropical forest soil profiles. We did so by measuring CO2 evolution during a 90-day laboratory incubation experiment on a sample set that was previously characterized for C and nutrient concentrations and microbial biomass. We concurrently measured the energy content of SOM using differential scanning calorimetry (DSC) as an index of the energy available for microbial metabolism, with the hypothesis that the biological stability of SOM would be inversely related to the energy contained within it. Cumulative CO2 evolution, mean respiration rates, and the energy density of SOM (energy released during combustion normalized to soil C) all declined with soil depth (P < 0.01). Biological indices of C stability were well correlated with measures of SOM energy. There was no change in the mean respiration rate as a function of depth when normalized to soil C, and a trend toward increased respiration per-unit microbial biomass (P = 0.07). While reduced microbial respiration in subsoils suggests an increase in the biological stability of SOM, we suggest this is driven principally by concurrent declines in energy availability as measured by DSC and the size of the microbial biomass pool. On a per-unit biomass basis, subsoil OM may be as prone to decomposition and destabilization as surface SOM.  相似文献   

14.
The dissolution of organic matter in soil is of fundamental relevance for the fate of organic contaminants associated with organic matter and for the microbial availability of organic matter. In this study, the kinetics of soil organic matter (SOM) dissolution from a sandy forest soil was investigated under different electrolyte conditions, using a continuous extraction method. The mathematical analysis of the concentration signal obtained from extractions with constant flow rates and after sudden flow rate changes showed that the dissolution of SOM is diffusion limited. The dissolution rate was lower during extraction with 0.01 M CaCl2. The reaction on sudden flow rate changes was slower when extracting with 0.01 M CaCl2 as compared to water, and the mechanism was different. These observations were explained by a gel phase developing in the swelling SOM. The lower dissolution rates found for extractions with 0.01 M CaCl2 could indicate a more stable gel structure in the presence Ca2+. The development of the gel phase may be influenced by mechanical strain due to increased flow rates.  相似文献   

15.
Quantitative knowledge of the amount and stability of soil organic matter (SOM) is necessary to understand and predict the role of soils in the global carbon cycle. At present little is known about the influence of soil type on the storage and stability of SOM, especially in the tropics. We compared the amount of mineral-associated SOM resistant to different chemical treatments in soils of different parent material and mineralogical composition (volcanic ashes – dominated by short-range-order aluminosilicates and marine Tertiary sediments – dominated by smectite) in the humid tropics of Northwest Ecuador. Using 13C isotope analyses we traced the origin of soil organic carbon (SOC) in mineral-associated soil fractions resistant to treatment with HCl, NaOCl, and Na4P2O7 under pasture (C4) and secondary forest (C3). Prior to chemical treatments, particulate organic matter was removed by density fractionation (cut-off: 1.6 g cm?3). Our results show that: (1) independent of soil mineralogical composition, about 45% of mineral-associated SOC was resistant to acid hydrolysis, suggesting a comparable SOM composition for the investigated soils; (2) oxidation by NaOCl isolated a SOM fraction with enhanced stability of mineral-bound SOM in soils developed from volcanic ashes; while Na4P2O7 extracted more SOC, indicating the importance of Al-humus complexes in these soils; and (3) recently incorporated SOM was not stabilized after land use change in soils developed from volcanic ashes but was partly stabilized in soils rich in smectites. Together these results show that the employed methods were not able to isolate a SOM fraction which is protected against microbial decay under field conditions and that the outcome of these methods is sensitive to soil type which makes interpretation challenging and generalisations to other soils types or climates impossible.  相似文献   

16.
In the future, climate models predict an increase in global surface temperature and during winter a changing of precipitation from less snowfall to more raining. Without protective snow cover, freezing can be more intensive and can enter noticeably deeper into the soil with effects on C cycling and soil organic matter (SOM) dynamics. We removed the natural snow cover in a Norway spruce forest in the Fichtelgebirge Mts. during winter from late December 2005 until middle of February 2006 on three replicate plots. Hence, we induced soil frost to 15 cm depth (at a depth of 5 cm below surface up to –5°C) from January to April 2006, while the snow‐covered control plots never reached temperatures < 0°C. Quantity and quality of SOM was followed by total organic C and biomarker analysis. While soil frost did not influence total organic‐C and lignin concentrations, the decomposition of vanillyl monomers (Ac/Ad)V and the microbial‐sugar concentrations decreased at the end of the frost period, these results confirm reduced SOM mineralization under frost. Soil microbial biomass was not affected by the frost event or recovered more quickly than the accumulation of microbial residues such as microbial sugars directly after the experiment. However, in the subsequent autumn, soil microbial biomass was significantly higher at the snow‐removal (SR) treatments compared to the control despite lower CO2 respiration. In addition, the water‐stress indicator (PLFA [cy17:0 + cy19:0] / [16:1ω7c + 18:1ω7c]) increased. These results suggest that soil microbial respiration and therefore the activity was not closely related to soil microbial biomass but more strongly controlled by substrate availability and quality. The PLFA pattern indicates that fungi are more susceptible to soil frost than bacteria.  相似文献   

17.
Decomposition of soil organic matter (SOM) and plant litter has been shown to be affected by high solar radiation; this could partly explain why biogeochemical models underestimate decomposition in arid and semi-arid ecosystems. We set out to test the effect of using traditional PVC chambers for measuring soil gas fluxes versus quartz chambers that allowed passage of light during field measurements in a dry-land field in Davis, CA. Results showed that fluxes from quartz-top chambers were on average 29% higher than from opaque chambers. We also studied the effect of solar light exposure on decomposition of native grass litter and SOM in a field experiment where plots were shaded or left exposed for 157 days during summer; litter did not seem to be affected by exposure to light. However, we concluded that SOM decomposition was affected by light exposure since shaded soil had similar respiration to sunlight-exposed soil indicating that microbial respiration occurred under the shade while photo-degradation likely occurred under the sun. Additionally, 15N-labeled grass was placed in litter bags in the field with either clear filters to allow light or aluminum covers to block light; 3-month exposure caused a change in lignin degradability as indicated by the change in the Ad/Al ratio. Incubation of that litter showed 9.3% more CO2 produced from litter in clear and aluminum bags than unexposed litter. This showed that photo-facilitation occurred although to a small degree and was a result of light exposure and/or heat degradation. We attributed the similar respiration from clear- and aluminum-exposed litter to heat degradation of the aluminum-exposed litter. In conclusion, our results show that in hot dry ecosystems conventional PVC chambers underestimate measured CO2 flux rates; sunlight exposure changes litter chemistry and appears to affect the degradation of soil organic matter, but the magnitude of degradation depends on an interaction of factors such as soil temperature and moisture.  相似文献   

18.
Sources of CO2 efflux from soil and review of partitioning methods   总被引:7,自引:0,他引:7  
Five main biogenic sources of CO2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO2 efflux from the soil including: root-derived CO2, plant-derived CO2, SOM-derived CO2, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO2 from plant-derived CO2, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO2 and for interpreting the sources of CO2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and insitu root respiration; continuous and pulse labeling, 13C natural abundance and FACE, and radiocarbon dating and bomb-14C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent disturbance of the ecosystem and C fluxes, and their versatility under various conditions. The shortfalls of existing approaches and the need for further development and standardization of methods are highlighted.  相似文献   

19.
A natural‐13C‐labeling approach—formerly observed under controlled conditions—was tested in the field to partition total soil CO2 efflux into root respiration, rhizomicrobial respiration, and soil organic matter (SOM) decomposition. Different results were expected in the field due to different climate, site, and microbial properties in contrast to the laboratory. Within this isotopic method, maize was planted on soil with C3‐vegetation history and the total CO2 efflux from soil was subdivided by isotopic mass balance. The C4‐derived C in soil microbial biomass was also determined. Additionally, in a root‐exclusion approach, root‐ and SOM‐derived CO2 were determined by the total CO2 effluxes from maize (Zea mays L.) and bare‐fallow plots. In both approaches, maize‐derived CO2 contributed 22% to 35% to the total CO2 efflux during the growth period, which was comparable to other field studies. In our laboratory study, this CO2 fraction was tripled due to different climate, soil, and sampling conditions. In the natural‐13C‐labeling approach, rhizomicrobial respiration was low compared to other studies, which was related to a low amount of C4‐derived microbial biomass. At the end of the growth period, however, 64% root respiration and 36% rhizomicrobial respiration in relation to total root‐derived CO2 were calculated when considering high isotopic fractionations between SOM, microbial biomass, and CO2. This relationship was closer to the 50% : 50% partitioning described in the literature than without fractionation (23% root respiration, 77% rhizomicrobial respiration). Fractionation processes of 13C must be taken into account when calculating CO2 partitioning in soil. Both methods—natural 13C labeling and root exclusion—showed the same partitioning results when 13C isotopic fractionation during microbial respiration was considered and may therefore be used to separate plant‐ and SOM‐derived CO2 sources.  相似文献   

20.
We characterized soil cation, carbon (C) and nitrogen (N) transformations within a variety of land use types in the karst region of the northeastern Dominican Republic. We examined a range of soil pools and fluxes during the wet and dry seasons in undisturbed forest, regenerating forest and active agricultural sites within and directly adjacent to Los Haitises National Park. Soil moisture, soil organic matter (SOM), soil cations, leaf litter C and pH were significantly greater in regenerating forest sites than agricultural sites, while bulk density was greater in active agricultural sites. Potential denitrification, microbial biomass C and N, and microbial respiration g−1 dry soil were significantly greater in the regenerating forest sites than in the active agricultural sites. However, net mineralization, net nitrification, microbial biomass C, and microbial respiration were all significantly greater in the agricultural sites on g−1 SOM basis. These results suggest that land use is indirectly affecting microbial activity and C storage through its effect on SOM quality and quantity. While agriculture can significantly decrease soil fertility, it appears that the trend can begin to rapidly reverse with the abandonment of agriculture and the subsequent regeneration of forest. The regenerating forest soils were taken out of agricultural use only 5-7 years before our study and already have soil properties and processes similar to an undisturbed old forest site. Compared to undisturbed mogote forest sites, regenerating sites had smaller amounts of SOM and microbial biomass N, as well as lower rates of microbial respiration, mineralization and nitrification g−1 SOM. Initial recovery of soil pools and processes appeared to be rapid, but additional research must be done to address the long-term rate of recovery in these forest stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号