首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dense hyphal mats formed by ectomycorrhizal (EcM) fungi are prominent features in Douglas-fir forest ecosystems, and have been estimated to cover up to 40% of the soil surface in some forest stands. Two morphotypes of EcM mats have been previously described: rhizomorphic mats, which have thick hyphal rhizomorphs and are found primarily in the organic horizon, and hydrophobic mats, which occur in the mineral horizon and have an ashy appearance. This study surveyed EcM mat and non-mat soils from eight early and late seral conifer forest stands at the H.J. Andrews Experimental Forest in western Oregon. EcM mats were classified by morphology and taxonomic identities were determined by DNA sequencing. A variety of chemical and biochemical properties, including enzymes involved in C, N, and P cycling were measured. Analysis was confined to a comparison of rhizomorphic mats colonizing the organic horizon with non-mat organic soils, and hydrophobic mats with non-mat mineral soils. Both the organic and mineral horizons showed differences between mat and non-mat enzyme profiles when compared on a dry weight basis. In the organic horizon, rhizomorphic mats had greater chitinase activity than non-mat soils; and in the mineral horizon, hydrophobic mats had increased chitinase, phosphatase, and phenoloxidase activity compared to the non-mat soil. The rhizomorphic mats had 2.7 times more oxalate than the non-mats and significantly lower pH. In the mineral horizon, hydrophobic mats had 40 times more oxalate and significantly lower pH than non-mat mineral soils. Microbial biomass C was not significantly different between the rhizomorphic mat and non-mat organic soils. In the mineral horizon, however, the hydrophobic mats had greater microbial biomass C than the non-mat soils. These data demonstrate that soils densely colonized by EcM fungi create a unique soil environment with distinct microbial activities when compared to non-mat forest soils.  相似文献   

2.
In acidified forest soils, the coarse‐soil fraction is a potential nutrient source. Plant nutrient uptake from the coarse‐soil fraction is aided by ectomycorrhiza. Similarly, (recalcitrant) organic matter (OM) is an important nutrient source largely made plant‐available through (symbiotic) microorganisms, especially in the topsoil. We hypothesized that in a podzol profile, fungal hyphae would concentrate in nutrient hotspots, either OM or the coarse‐soil fraction. Absolute hyphal length, base saturation, and organic‐C content of a Podzol profile were determined in the fine‐earth and coarse‐soil fractions. In the fine‐earth fraction, hyphae were attracted by the organic‐C content and relative high base saturation. In the coarse‐soil fraction of the BhBs horizon, the absolute hyphal length exceeded the hyphal length in the fine earth by factor 3, yet C content and base saturation were lowest. We could not determine to what fungi the hyphae belonged. Most likely ectomycorrhiza, ericoid mycorrhiza and saprotrophic fungi dominate the upper soil layers of this profile and all utilize OM for nutrition. In the deeper mineral horizons and especially in the coarse‐soil fraction, ectomycorrhiza are better adapted than other fungi to harvest nutrients from inorganic sources. Additionally, favorable physical properties may explain the high amount of fungal hyphae in the coarse‐soil fraction of the BhBs horizon. Both the coarse‐soil fraction and deeper mineral soil horizons may play a more active role in microbial nutrient cycling than previously assumed.  相似文献   

3.
Field observations and laboratory analyses of podzols developed on sandy Triassic parent material in the Vosges have demonstrated clay accumulation in the upper parts of spodic horizons, especially in the Bh horizons. To see whether clay accumulation corresponds to real clay illuviation, two types of podzol profiles have been studied. The first is an iron podzol, called “podzol forestier”, because it has been entirely developed under climax forest environment. The second, an iron-humus podzol, called “podzol de dégradation”, was first developed under forest and more recently (the last 1000 to 2000 years) under heath vegetation. Methods used in the study of the two profiles were the “isoquartz” alteration balance, clay mineral identification by X-ray analyses and micromorphholigical examination.For the podzol forestier, the data strongly support a hypothesis of illuviation of very fine micaceous clays (vermiculite), especially the ferriargillans in the Bh horizon. Consequently, it is believed that illuviation of the greatest part of clays promoted differentiation of podzol horizons. Podzolization is strongly redistributive.In the podzol de dégradation, the identified clay minerals are the same as in the podzol forestier but the pedological features in the Bh horizon correspond to those of classic spodic horizons (mixed concentration and grain coatings). Moreover, podzolization is geochemically strongly subtractive in this second type of podzol.Inasmuch as the podzols de dégradation are developed from the podzols forestiers, the authors define an evolutionary time-sequence: the first phase of forest soil genesis is regulated by the double process of clay illuviation and redistributive podzolization. The following degradation phase connected to the particular nature of heath vegetation and to abundant chelating organic compounds induces the disruption of the ferriargillans previously formed in the Bh horizon, the formation of an agglomeroplasmic fabric microstructure and above all, the elimination of hydrolyzed products of minerals from the profile. During this last phase, a strongly subtractive podzolization prevails over clay illuviation.  相似文献   

4.
Elevated aluminum (Al) availability limits plant growth on acidic soils. Although this element is found naturally in soils, acidic conditions create an environment where Al solubility increases and toxic forms of Al impact plant function. Plant resistance to Al is often attributed to organic acid exudation from plant roots and the chelation of cationic Al in the rhizosphere. The association of arbuscular mycorrhizal (AM) fungi with the roots of plants may alleviate Al toxicity by altering soil Al availability or plant exposure through the binding of Al to fungal structures or through the influence of fungi on exudation from roots. Diverse communities of AM fungi are found in soil ecosystems and research suggests that AM fungi exhibit functional diversity that may influence plant performance under varying edaphic environments. In the present study, we evaluated acidic isolates of six AM species in their responses to Al. Andropogon virginicus (broomsedge), a warm-season grass that commonly grows in a range of stressful environments including acidic soils, was used as a plant host for Acaulospora morrowiae, Glomus claroideum, Glomus clarum, Glomus etunicatum, Paraglomus brasilianum, and Scutellospora heterogama. Fungal spores were germinated and exposed to 0 or 100 μM Al on filter paper in sand culture or were grown and exposed to Al in sand culture in association with A. virginicus. Short- and long-term responses to Al were evaluated using direct measurements of fungal spore germination, hyphal elongation, and measurements of A. virginicus colonization and plant growth as a phytometer of AM function in symbio. Spore germination and hyphal elongation varied among AM species in response to Al, but patterns were not consistent with the influences of these AM species on A. virginicus under Al exposure. Exposure to Al did not influence colonization of roots, although large differences existed in colonization among fungal species. Plants colonized by G. clarum and S. heterogama exhibited the least reduction in growth when exposed to Al, produced the highest concentrations of Al-chelating organic acids, and had the lowest concentrations of free Al in their root zones. This pattern provides evidence that variation among AM fungi in Al resistance conferred to their plant hosts is associated with the exudation of Al-binding organic acids from roots and highlights the role that AM fungal diversity may play in plant performance in acidic soil environments.  相似文献   

5.
The exotic earthworm invasion in hardwood forests of the northern United States is associated with many ecosystem-level changes. However, less is known about the effects of the invasion on the composition of the soil microbial community through which ecosystem-level changes are mediated. Further, earthworm effects on soil microbial community composition have not been well studied in the field. To evaluate changes in bacterial and fungal abundance associated with the earthworm invasion we quantified bacterial and fungal biomass by microscopic counts in paired earthworm-invaded (earthworm) and earthworm-free (reference) plots in five forest stands in central New York (USA). Earthworms significantly increased the ratio of bacteria to fungi on an area basis (per m2), by more than two times in mid-summer and early autumn. While this effect was associated primarily with the lack of the fungal-dominated organic horizon in earthworm plots, a higher ratio of bacteria to fungi in the surface 5 cm mineral soil also contributed as it developed between spring and mid-summer. Earthworm reduction of fungal biomass was confirmed by substantially lower growth of fungal hyphae into mesh sand bags in earthworm compared to reference plots. Burrowing activity by the earthworm Lumbricus terrestris increased the ratio of bacteria to fungi over the short-term within earthworm plots, introducing small-scale spatial heterogeneity associated with burrows. Our study suggests that the exotic earthworm invasion in these northern hardwood forests markedly increased the ratio of bacteria to fungi by eliminating the fungal-rich organic horizon, and was associated localized increases in bacterial vs. fungal abundance in mineral soil, setting the stage for future research into linkages between the earthworm invasion, bacterial and fungal abundance, and ecosystem processes.  相似文献   

6.
This paper discusses the effects of different horizons and soil solution compositions on dissolved organic matter retention in a moorland podzol and compares the results with previous studies of forest podzols. Adsorption isotherms were constructed for each of the major horizons of a freely draining, upland, moorland, humic podzol from north-east Scotland, to investigate processes of retention and release of dissolved organic matter (DOM). Carbon retention of a range of solute types was studied, and phthalate was chosen as a model compound to measure carbon retention at three different pH values (3, 4.5 and 6). Retention and release of DOM was related to chemical, physical and mineralogical characteristics of the different soil horizons. All the mineral horizons retained DOM, with the Bs horizon most retentive. Solution pH did not significantly affect DOM retention in the O and A horizons. At pH 3 and 4.5 organic matter was weakly retained in the Bhs horizon, but strongly retained in the Bs and the Cx horizons. At pH 6 reversal of surface charge occurred in the Bs and Cx horizons resulting in the release of similar amounts of organic matter to that released from the O horizon at the same pH. The results demonstrate how podzols act as a ‘valve’ in controlling the input of dissolved organic compounds into surface and ground water, and how sensitive the controlling mechanisms are to pH change.  相似文献   

7.
Many northern forests are limited by nitrogen (N) availability, slight changes in which can have profound effects on ecosystem function and the activity of ectomycorrhizal (EcM) fungi. Increasing N and phosphorus (P) availability, an analog to accelerated soil organic matter decomposition in a warming climate, could decrease plant dependency on EcM fungi and increase plant productivity as a result of greater carbon use efficiency. However, the impact of altered N and P availability on the growth and activity of EcM fungi in boreal forests remains poorly understood despite recognition of their importance to host plant nutrition and soil carbon sequestration. To address such uncertainty we examined above and belowground ecosystem properties in a boreal black spruce forest following five years of factorial N and P additions. By combining detailed soil, fungal, and plant δ15N measurements with in situ metrics of fungal biomass, growth, and activity, we found both expected and unexpected patterns. Soil nitrate isotope values became 15N enriched in response to both N and P additions; fungal biomass was repressed by N yet both biomass and growth were stimulated by P; and, black spruce dependency on EcM derived N increased slightly when N and P were added alone yet significantly declined when added in combination. These findings contradict predictions that N fertilization would increase plant P demands and P fertilization would further exacerbate plant N demands. As a result, the prediction that EcM fungi predictably respond to plant N limitation was not supported. These findings highlight P as an under appreciated mediator of the activity of denitrifying bacteria, EcM fungi, and the dynamics of N cycles in boreal forests. Further, use of δ15N values from bulk soils, plants, and fungi to understand how EcM systems respond to changing nutrient availabilities will often require additional ecological information.  相似文献   

8.
Abstract. The aluminium (Al), iron (Fe) and Dissolved Organic Carbon (DOC) contents of the soil solution were monitored in two upland grassland and afforested podzol soils in Mid-Wales. Al organo-metallic complexes predominated in the O horizon leachates of the grassland soil, whereas inorganic monomeric Al forms dominated in the lower mineral horizons. Dissolved organic matter determines the chemistry, solubility, and transport of Al and Fe in the O horizon, and these are under strong biological control. The distributions of organic-Al, Fe and DOC within the soil profile were consistent with traditional podzolization theory. Observed increases in the molar ratios of Al:DOC in solution in the lower soil horizons may be responsible for the small solubility of Al organo-metallic complexes in those horizons. Afforestation increased the concentrations of organic-Al and Fe in the soil solution as compared with the concentrations observed for the grassland soil. Clearcutting further significantly mobilized Al and Fe from the upper soil horizon, primarily by increasing the DOC concentration in the soil water.  相似文献   

9.
An experiment on transformation of biotite (fraction <1 μm) particles placed into containers with different permeability in the AEL horizon of podzolic soil was performed in order to estimate the contribution of different factors to the transformation of biotite in the modern soil. After two-year-long incubation in the AEL horizon, biotite was transformed into vermiculite, mixed-layer biotite–vermiculite, and pedogenic chlorite. The most intense vermiculitization of the biotite took place under the impact of fungal hyphae and, to a lower degree, fine plant roots and components of the soil solution. The formation of labile structures from biotite was accompanied by thinning of the mica crystallites, the disturbance of the homogeneity of layers, the removal of interlayer K, the removal and oxidation of octahedral Fe, the increase in the sum of exchangeable cations, and the appearance of exchangeable Al. The process of chloritization was definitely diagnosed upon the action of plant roots and fungal hyphae on the biotite. Strong complexing anions released by fungal hyphae partly inhibited chloritization. Chloritization led to a decrease in the cation exchange capacity of vermiculitic structures.  相似文献   

10.
Arbuscular mycorrhizal (AM) fungi are recognized for their positive effects on plant growth, playing an important role in plant P nutrition. We used C16:1cis11 and C18:1cis11 fatty acid methyl ester (FAME) biomarkers to monitor the dynamics of AM fungi during the reproductive stages of maize (Zea mays L.) grown at high yield in Nebraska, USA. Two fields with four different levels of P availability were sampled throughout the reproductive stages. Chambers, made of PVC enclosed mesh fabric to allow passage of roots and hyphae (+R) or hyphae alone (-R) and amended with either KH2PO4(+P) or distilled water (-P), were installed in the field at tasselling and removed after three, six and nine weeks. Our objectives were (i) to provide evidence for C allocation to AM fungi during the reproductive stages of high productivity maize and (ii) to link AM fungal growth dynamics with changes in soil P availability. We observed that initial AM FAME concentration was lower at sites with a high availability of P. During the reproductive growth of maize, AM biomarkers increased inside the chambers and were consistent with the biomarker increase observed in adjacent field soil. This confirms that there is C allocation from the plant to the symbiont during the reproductive stages of maize. We also observed a reduction in available P in +R and -R chambers. This observation implies that hyphae were as efficient as roots and hyphae in reducing the P concentration in chambers. These results demonstrate that AM fungi are active during the reproductive growth stages of maize and may benefit high productivity maize crops by facilitating P uptake.  相似文献   

11.
The effects of live and dead roots on soil fungi were investigated experimentally in a spodosolic soil of the New Jersey Pinelands. Field mesocosm plots were constructed to have a layer of either C- and N-rich organic soil or a vermiculite substitute overlying a layer of sandy mineral soil with a very low organic content. The plots were also supplied with live pitch pine and blueberry roots or dead pitch pine roots in varying quantities based on anturally occurring densities (half, same, and double the ambient quantities). All plots were sampled 1 year after construction (June 1991), and three more times in two subsequent years (November 1991, June 1992, June 1993). In the presence of live roots, fluorescein diacetate-determined (FDA-active) fungal hyphae, total fungal hyphae, and soil moisture decreased significantly in the organic material, while no change was associated with the dead roots. The FDA-active fungal length in the live-root plots ranged from 40 to 165 mg-1 soil, and from 55 to 335 mg-1 soil in the dead-root plots. While the total fungal length in live-root plots remained constant over time (3000 mg-1 soil), the total fungal length in the dead-root plots increased from an initial value of 3000 to >4000 mg-1 soil at the conclusion of the study. Fungal lengths in mineral soil were higher under organic material than under the vermiculite substitute. Soil moisture was higher in the presence of live roots in mineral soils, but this did not increase the fungal abundance. Inputs of dead roots did not alter the fungal abundance. Overall, we demonstrated that live and dead roots had different effects on fungal abundance in soils with contrasting qualities, and in a spodosolic forest soil, roots could have ecosystem effects very different from those in agricultural soils.Contribution No. 94-29 from the Institute of Marine and Coastal Sciences  相似文献   

12.
In this paper podzols of free-draining sands in south-eastern Queensland are examined. The 14 profiles represent a chronosequence from young incipient podzols, to ancient ‘giant podzols’ of Pleistocene age, with a spodic horizon at a depth of 8–10 m. Carbon, Fe and Al were determined in pyrophosphate, and Fe, Al and Si in oxalate extracts. The resulting profile distributions were modelled by three expressions, fitted for each attribute, which accounted for surface accumulation, B horizon development and a phase (B/C horizon) of constant composition with depth. The parameters may be used to characterize soil profiles. They show that there is a tendency for the accumulation of carbon in the B horizon to be reflected by Fe and particularly A1 accumulation, which supports the proposition that carbon is directly associated with the transport of A1 and Fe. A feature of many of these soils is a deeply weathered surface with little tendency for commensurate development of an illuvial horizon. Rates of removal of Fe and Al from the A horizon were obtained by comparison of the depths of leaching with age estimates based on geomorphology, and they indicate a non-linear rate of increase in the thickness of the A horizon.  相似文献   

13.
We investigated the Collembola community at an arable field where mineral and organic fertilizers have been applied at low and high rates for 27 years. As food resources for Collembola, the soil microbial community was analyzed using phospholipid fatty acids (PLFAs). A special focus was put on AM fungi, which were estimated by the marker 16:1ω5 in PLFA (viable hyphae) and neutral lipid fatty acid (NLFA – storage fat in spores) fractions. Additionally, whole cellular lipids in crop plant tissues and manure were assessed. Greater Collembola species richness occurred in plots where mineral fertilizer was added. In contrast, soil microbial biomass including AM fungal hyphae increased with addition of organic fertilizer, while the amount of AM fungal spores and biomass of saprotrophic fungi were not affected by fertilizer type. The lipid pattern in wheat roots was altered by fertilizer type, application rate and their interaction, indicating different rhizosphere communities. In sum, the availability and composition of food resources for Collembola changed considerably due to farm management practice. The major diet of three dominant Collembola species, Isotoma viridis, Willemia anophthalma and Polyacanthella schäffer was determined by lipid profiling. Multivariate analysis demonstrated species specific lipid patterns, suggesting greater importance of species than management practice on the diet choice. Nevertheless, feeding strategy was affected by fertilizer type and availability of resources, as trophic biomarker fatty acids indicated feeding on wheat roots (and to some extent saprotrophic fungi) with mineral and a shift to soil organic matter (litter, detritus) with organic fertilization. Although AM fungi dominated the soil fungal community, the AMF marker 16:1ω5 was not detected in Collembola lipids, indicating that these were not consumed. The very low amount of saprotrophic fungi in the soil and the fact that Collembola as major fungal grazers did not feed on AM fungi indicates that the fungal energy channel in the investigated arable field is of little importance to the faunal food web.  相似文献   

14.
B.K. Daly 《Geoderma》1982,28(1):29-38
A method for separating podzols and podzolised soils from other New Zealand soils is proposed. The method is based on measurement of the optical density of acid oxalate extracts of soils. A number of soil leaching sequences and some individual soils are examined.It is assumed that the optical density of the oxalate extracts is due mainly to extracted fulvic acid and that detection of appreciable quantities of this material in the B horizon indicates that podzolisation is an active process in the soil.The technique separated the soils of the leaching sequences well, following the observable increase of podzolic characteristics with increased leaching.When the B horizon/A horizon ODOE (optical density of the oxalate extracts) ratios were compared with the criteria for the spodic horizon in “Soil Taxonomy” (Soil Survey Staff, 1975), it was found that all soils with a ratio of less than 1.0 did not satisfy spodic horizon criteria and were not classified as podzol/podzolised. All the soils examined with ratios > 1.0 satisfied spodic horizon criteria or were classified as podzol/podzolised, usually both.  相似文献   

15.
Processes governing the mobilization of Al and Cd in podzols and cambisols of S. Sweden having different tree layer vegetation (Picea abies, Fagus sylvatica, or Betula pendula) were investigated. Speciation of Al and Cd in soil solutions were performed by a column cation exchange procedure (cf. Driscoll, 1984) in combination with thermodynamic calculations. Podzols in spruce and beech stands were characterized by a high release of organic compounds from the O/Ah horizons, resulting in a high organic complexation of Al (c. 93%) in the soil solution from the E horizon (15 cm lysimeters). Organic complexes were mainly adsorbed/precipitated in the upper Bh horizon and the overall transport of Al at 50 cm depth was governed by a pH dependent dissolution of a solid-phase Al pool. In the cambisols, inorganic Al forms were predominant at both 15 and 50 cm depth, and Al solubility was closely related to solution pH. Secondary minerals like synthetic gibbsite, jurbanite, kaolinite or imogolite could generally not explain measured solution Al3+ activities. Results instead indicated that the relatively large organically bound solid-phase Al pools present in both soil types could do so. The column fractionation procedure could be used only qualitatively for Cd, but results strongly indicated that Cd-organo complexes contributed significantly to the overall mobilization of Cd in the podzol E horizons. In all other soil solutions, Cd2+ was the predominant species. Both solid-phase and solution chemistry suggests that ion exchange processes controlled the Cd2+ activities in these solutions. All reactive solidphase Cd was extractable by NH4Cl and Cd2+ activities could in most cases effectively be modeled by the use of ion exchange equations. Solubilized Al3+ efficiently competed for exchange sites and played an important role for the Cd mobilization in these soils.  相似文献   

16.
D. Righi  F. De Connick 《Geoderma》1977,19(4):339-359
Soils of the nearly level “Landes du Médoc” in southwestern France have a pattern of alternating bodies of hydromorphic podzols (Haplaquods) and low humic hydromorphic soils (Psammaquents). The soils are formed in a sedimentary mantle of coarse, quartzose sands with a slight microrelief consisting of low, elongated ridges and shallow, intervening troughs. The water table is at shallow depths throughout the plain, even at the surface in places. The podzols on the crests of the low ridges have distinct A2 and cemented B2 h horizons. Podzols persist down the sides of ridges but going downslope first lose the A2 horizon and then the cementation of the Bh horizon. Soils in the shallow troughs have A1 and Cg horizons without B horizons.The fine silt (2–20 μm) and clay (0–2 μm) fractions of the parent sand contain primary trioctahedral chlorite, mica, feldspars, and quartz, with the last mineral predominant. During soil development, the first three minerals undergo weathering at different rates and to different extents. Chlorite is most strongly weathered, followed in order by plagioclases and K-minerals. In the fine silt fraction, weathering seems to occur mostly by fragmentation of particles. In the clay fraction, the phyllosilicates successively form irregularly interstratified minerals with contractible but not expandable vermiculitic layers, interstratified minerals with contractible and expandable smectitic layers, and finally smectites.The extent to which the silicate minerals are weathered becomes progressively greater from the low humic hydromorphic soils to the podzols with friable Bh horizons to the podzols with cemented Bh horizons. Smectite is present only in the A2 horizons of these last podzols.The aluminum release by weathering of silicate minerals is translocated in part in the form of organo-metal complexes into the Bh horizons of the podzols. Greatest concentrations of Al are associated with coatings of monomorphic organic matter on mineral grains in the cemented Bh horizons, in which some Al has also crystallized into gibbsite. That mineral was not detected in friable B horizons of podzols nor in the low humic hydromorphic soil. Contrary to expectations, the mobile Al did not enter interlayer spaces of expanding 2:1 clay minerals.  相似文献   

17.
Recycling of olive mill wastewaters (OMW) into agricultural soils is a controversial issue since benefits to soil fertility should counterbalance potential short-term toxicity effects. We investigated the short-term effects of OMW on the soil-plant system, regarding the diversity, structure and root colonization capacity of arbuscular mycorrhizal (AM) fungi and the respective growth response of Vicia faba L, commonly used as green manure in olive-tree plantations. A compartmentalized pot system was used that allowed the establishment of an AM fungal community in one compartment (feeder) and the application of three OMW dose levels in an adjacent second compartment (receiver). At 0, 10, and 30 days after OMW treatment (DAT), V. faba pre-germinated seeds were seeded in the receiver compartment. At harvest, shoot and root dry weights, AM fungal root colonization, soil hyphal length and P availability were recorded in the receiver compartment. In addition, OMW effects on AM fungal diversity in plant roots were studied by DGGE. A transient effect of OMW application was observed; plant growth and AM fungal colonization were initially inhibited, whereas soil hyphal length was stimulated, but in most cases differences were absent when seeding was performed 30 DAT. Similarly, changes induced in the structure of the root AM fungal community were of transient nature. Cloning and sequencing of all the major DGGE bands showed that roots were colonized by Glomus spp. The transient effects of OMW on the structure and function of AM fungi could be attributed to OMW-derived phytoxicity to V. faba plants or to an indirect effect via alteration of soil nutritional status. The high OMW dose significantly increased soil P availability in the presence of AM fungi, suggesting efficient involvement of AM fungi in organic-P minerilization. Overall our results indicate that soil application of OMW would cause transient changes in the AM fungal colonization of V. faba plants, which, would not impair their long-term plant growth promoting ability.  相似文献   

18.
The effect of endogeic earthworms (Octolasion tyrtaeum (Savigny)) on the translocation of litter-derived carbon into the upper layer of a mineral soil by fungi was investigated in a microcosm experiment. Arable soil with and without O. tyrtaeum was incubated with 13C/15N-labelled rye leaves placed on plastic rings with gaze (64 μm mesh size) to avoid incorporation of leaves by earthworms. The plastic rings were positioned either on or 3 cm above the soil surface, to distinguish between biotic and chemical/physical translocation of nutrients by fungi and leaching.Contact of leaves to the soil increased 13C translocation, whereas presence of O. tyrtaeum reduced the incorporation of 13C into the mineral soil in all treatments. Although biomass of O. tyrtaeum decreased during the experiment, more 13C and 15N was incorporated into earthworm tissue in treatments with contact of leaves to the soil. Contact of leaves to the soil and the presence of O. tyrtaeum increased cumulative 13CO2-C production by 18.2% and 14.1%, respectively.The concentration of the fungal bio-indicator ergosterol in the soil tended to be increased and that of the fungal-specific phospholipid fatty acid 18:2ω6 was significantly increased in treatments with contact of leaves to the soil. Earthworms reduced the concentration of ergosterol and 18:2ω6 in the soil by 14.0% and 43.2%, respectively. Total bacterial PLFAs in soil were also reduced in presence of O. tyrtaeum, but did not respond to the addition of the rye leaves. In addition, the bacterial community in treatments with O. tyrtaeum differed from that without earthworms and shifted towards an increased dominance of Gram-negative bacteria.The results indicate that litter-decomposing fungi translocate litter-derived carbon via their mycelial network in to the upper mineral soil. Endogeic earthworms decrease fungal biomass by grazing and disruption of fungal hyphae thereby counteracting the fungal-mediated translocation of carbon in soils.  相似文献   

19.
A well‐developed podzol hydrosequence that has been partially covered with drift sand, and partially subjected to improved drainage, provides new insights into the causes of variation in soil organic matter chemistry in such soils. While E horizons invariably move towards a dominance of aliphatic components reflecting residual accumulation, the chemistry of organic matter in well‐drained B horizons is determined mainly by decaying roots, which are transformed by microorganisms to humus aggregates. In poorly drained, stratified B horizons, humus coatings dominate and the chemistry is very close to that of dissolved organic carbon. When a sand cover inhibits the supply of fresh litter, microbial decomposition in the A horizon causes a shift in chemistry towards that of the E horizon. Similarly, upon improved drainage and removal of complexed metals from the top of the B horizon, microbial decomposition of all palatable organic matter in the top of the B horizon causes a shift towards E‐horizon chemistry. This is probably the mechanism by which most E horizons in podzols are formed, and not by re‐solution. Marked chemical changes upon improved drainage may take only decades. During microbial decay, small polysaccharide‐derived pyrolysis products (mainly furans, furaldehydes and acetic acid) remain abundant due to the contribution of microbial sugars. Both micromorphology and factor analysis on quantified results of pyrolysis‐gas chromatography/mass spectrometry contribute significantly to the interpretation of the humus chemistry of these profiles and thus to our understanding of soil genesis. Organic chemistry of the investigated podzols can be understood only in the context of their genesis.  相似文献   

20.
Differentiation of the subtypes humuspodzol, humus-iron podzol and iron podzol Humic podzols are characterized by a distinct Bh-horizon and deep humus illuviation (humic bands). They may be thus recognized by morphological features. Differentiation of humic podzols on layered sands, of humus-iron podzols and of iron podzols is only possible by quantitative analytical data. For that the ratio of pyrophosphate-extractable C/Fe is proposed: humic podzols (Bh) > 10, humus-iron podzols (Bhs) 3–10, iron podzols (Bs) < 3. For differentiation of soil varieties quantities of illuviated matter in the investigated illuvial subhorizons (Bh, Bhs, Bs) may be chosen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号