首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of Cu and Cd ions with ovalbumin has been measured indirectly by observing the displacement of H+ from acidic groups on the ovalbumin. The pH-measuring procedure agreed with values obtained by an equilibrium dialysis method. Both the metals were bound by carboxyl groups with log K values being 2.39 and 2.22, respectively. The extent of binding was found to be pH dependent with the involvement of the imidazole site yielding logK values of 3.23 and 2.80, respectively. Equilibrium dialysis results supported involvement of both carboxyl and imidazole groups of the protein in metal ion binding.  相似文献   

2.
The release of heavy metals in aquatic systems due to the discharge of industrial wastewaters is a matter of environmental concern. Heat-inactivated cells of a flocculent strain of Saccharomyces cerevisiae were used in the bioremediation, in a batch mode, of a real electroplating effluent containing Cu, Ni, and Cr. In this approach, no previous reduction of Cr(VI) to Cr(III) was required. Cr(VI) was selectively removed (98%) by yeast biomass at pH 2.3. At this pH, Cr(VI) is mainly in the form of HCrO 4 ? and yeast surface is surrounded by H+ ions, which enhance the Cr(VI) interaction with biomass binding sites by electrostatic forces. Subsequently, pH of the effluent was raised up to 6.0; this pH maximizes the efficiency of cations removal since at this pH the main binding groups of yeast cells are totally or partially deprotonated. The passage of effluent through a series of sequential batches, at pH 6.0, allowed, after the third batch, the removal of Cu(II), Ni (II), Cr total, and Cr(VI) in the effluent to values below the legal limit of discharge. The strategy proposed in the present work can be used in plants for the treatment of heavy metals rich industrial effluents containing simultaneously Cr(VI) and Cr(III).  相似文献   

3.
This study investigates pentachlorophenol (PCP) adsorption by the white-rot fungus Anthracophyllum discolor in a fixed-bed column reactor. PCP adsorption at different concentrations (20, 30, and 50?mg?L?1) and pH values (5.0, 5.5, and 6.0) was determined and modeled using the Thomas model. Fourier transform infrared spectroscopy (FTIR) was used to identify functional groups of biomass that may participate in the interaction of PCP. The biosorption capacity of A. discolor was pH-dependent, and the PCP adsorbed increased with the decrease in the pH solution. Acid pH values of the influent gave an increase in saturation time in all PCP concentrations. By contrast, the increase in PCP concentration caused that the binding sites were filled quickly, resulting in a decrease in saturation time. The Thomas model was found suitable for describing the entire dynamic of the column with respect to the PCP concentration and pH of the solution. FTIR results showed that amines, carboxylates, alkanes, and C?CO groups might participate in the PCP adsorption on the biomass surface. It was concluded that A. discolor biomass was a good adsorbent for PCP removal from influent with mainly acidic pH.  相似文献   

4.
The prediction of the mobility of arsenic (As) is crucial for predicting risks in soils contaminated with As. The objective of this study is to predict the distribution of As between solid and solution in soils based on soil properties and the fraction of As in soil that is reversibly adsorbed. We studied adsorption of As(V) in suspensions at radiotrace concentrations for 30 uncontaminated soils (pH 4.4–6.6). The solid–liquid distribution coefficient of As (Kd) varied from 14 to 4430 l kg?1. The logarithm of the concentration of oxalate‐extractable Fe explained 63% of the variation in log Kd; by introducing the logarithm of the concentration of oxalate‐extractable P in the regression model, 85% of the variation in log Kd is explained. Double labelling experiments with 73As(V) and 32P(V) showed that the As to P adsorption selectivity coefficient decreased from 3.1 to 0.2 with increasing degree of P saturation of the amorphous oxides. The addition of As(V) (0–6 mmol kg?1) reduced the Kd of 73As up to 17‐fold, whereas corresponding additions of P(V) had smaller effects. These studies suggest that As(V) is adsorbed to amorphous oxides in soils and that sites of adsorption vary in their selectivity in respect of As and P. The concentration of isotopically exchangeable As in 27 contaminated soils (total As 13–1080 mg kg?1) was between 1.2 and 19% (mean 8.2%) of its total concentration, illustrating that a major fraction of As is fixed. We propose a two‐site model of competitive As(V)–P(V) sorption in which amorphous Fe and Al oxides represent the site capacity and the isotopically exchangeable As represents the adsorbed phase. This model is fitted to 73As adsorption data of uncontaminated soils and explains 69% of the variation of log Kd in these soils. The log Kd in contaminated soils predicted using this two‐site model correlated well with the observed log Kd (r = 0.75). We conclude that solubility of As is related to the available binding sites on amorphous oxides and to the fraction of As that is fixed.  相似文献   

5.
The application of poly(acrylamide-co-sodium methacrylate) (AAm/SMA) hydrogel for the removal of Pb2+ ions from aqueous solutions has been investigated using batch adsorption technique. The extent of adsorption was investigated as a function of pH, adsorbent dose, and temperature. The Fourier transform infrared (FTIR) spectra showed that ?CNH2 and ?CCOOH groups are involved in Pb2+ ion adsorption. The obtained results were analyzed by pseudo-first-order, pseudo-second?Corder, and intraparticle diffusion models using both linear and nonlinear methods. It was found that the Pb2+ ion adsorption followed pseudo-first-order kinetics. Nonlinear regression analysis of six isotherms, Langmuir, Freundlich, Redlich-Peterson, Toth, Dubinin-Radushkevich, and Sips, have been applied to the sorption data, while the best interpretation was given by Redlich-Peterson. Based on the separation factor, R L, the Pb2+ ion adsorption is favorable, while the negative values of ?G indicates that the Pb2+ ion adsorption on the investigated hydrogel is spontaneous.  相似文献   

6.
A comparative approach based on ion–selective electrode measurements is presented for studying Cu(II) complexing by fulvic acids. Metal binding curves (% free metal vs pH) and complexation capacity curves (% free metal vs total metal at fixed pH) for copper(II) fulvic acid systems are compared with those for appropriate model ligands.
It is inferred that citrate, malonate and amino acid moieties could dominate complexing to Cu(II) at pH 3 to 7. The involvement of amino acid moieties is supported by fluorescence quenching and by anodic stripping voltammetry (ASV) studies. The proportion of ASV–non labile complexes is reported for Cu(II) and Pb(II) fulvic acid systems at pH 4.8.
A mixed mode of coordination is proposed, with the dominant binding sites varying with pH and metal:ligand ratio.  相似文献   

7.
Risk assessment of cadmium (Cd) contamination in soils requires identifying the bioavailable portion of the total Cd, a portion that is determined by environmental conditions such as pH and calcium (Ca) level in soils and by the physiological processes going on in the plant roots. Growth tests in solutions were conducted to develop a terrestrial biotic ligand model to describe uptake and rhizotoxicity of Cd to pea (Pisum sativum L. cv. Lincoln). Inhibition concentration associated with a 50% reduction in root elongation (IC50) values were found to vary with external Ca2+ and H+ activities. Root-bound Ca was found to reach a plateau of about 63 µmol g?1 (dry weight) although Ca treatment increased from 0.04 to 2 mmol L?1. When experimental treatments (e.g., pH 6, Ca 0.2 to 2 mM) resulted in sufficient Ca supply, dose–response curves relating root elongation to root-bound Cd could be modeled with Weibull equations; IC50 values were expressed in terms of root-bound Cd concentration. When the treatments (e.g., pH 4 or 5, Ca 0.04 mM) suggested a low Ca supply, root elongation was more sensitive to Ca content and root-bound Ca concentration became the dominant predictor variable. Cd accumulation was modeled by treating the pea roots as an assemblage of biotic ligands with known site densities (Q Lj ) and proton binding constants (K HLj ). The logK Ca and logK Cd values were established using measured root-bound ion concentrations and solution chemistry. The logK Ca values were negatively correlated to root Ca contents. The logK Cd values were positively correlated to logK Ca values. Explanations for the changing of constants are discussed.  相似文献   

8.
Cattle manure vermicompost has been used for the adsorption of Al(III) and Fe(II) from both synthetic solution and kaolin industry wastewater. The optimum conditions for Al(III) and Fe(II) adsorption at pH?2 (natural pH of the wastewater) were particle size of ≤250?µm, 1 g/10 mL adsorbent dose, contact time of 4 h, and temperature of 25°C. Langmuir and Freundlich adsorption isotherms fitted reasonably well in the experimental data, and their constants were evaluated, with R 2 values from 0.90 to 0.98. In synthetic solution, the maximum adsorption capacity of the vermicompost for Al(III) was 8.35 mg g?1 and for Fe(II) was 16.98 mg g?1 at 25°C when the vermicompost dose was 1 g 10 mL?1, and the initial adjusted pH was 2. The batch adsorption studies of Al(III) and Fe(II) on vermicompost using kaolin wastewater have shown that the maximum adsorption capacities were 1.10 and 4.30 mg g?1, respectively, at pH?2. The thermodynamic parameter, the Gibbs free energy, was calculated for each system, and the negative values obtained confirm that the adsorption processes were spontaneous.  相似文献   

9.
An acute Biotic Ligand Model (BLM) was developed to predict the effect of cobalt on the survival of the potworm Enchytraeus albidus, exposed in nutrient solutions added to acid washed, precombusted sand. The extent to which Ca2+, Mg2+ and Na+ ions and pH independently mitigate cobalt toxicity to E. albidus was examined. Higher activities of Ca2+, Mg2+ and H+ linearly increased the 14 d LC50Co2+ (LC50 expressed as Co2+-activity) whereas Na+-activity did not. Stability constants for the binding of Co2+, Ca2+, Mg2+ and H+ to the biotic ligand (BL) were derived, i.e. log KCoBL=5.13, log KCaBL=3.83, log KMgBL=3.95 and log KHBL=6.53. It was calculated that at Co-concentrations corresponding to the 14d-LC50 value, 32% of the BL sites were occupied by cobalt. An initial validation of the applicability of this BLM in true soil exposure systems was performed by comparing observed and model-predicted 14 d LC50 s in a standard artificial soil and a standard field soil. By assuming pore water to be the only route of exposure and assuming equilibrium between pore water Co2+ and solid phase Co, which is predicted by the geochemical WHAM-Model 6, LC50 s (as mg Co kg−1 dry wt of soil) were predicted within an error of less than a factor two. Further validation in true soil exposures, combined with more detailed knowledge of Co binding to soil solid phases is needed, if this model is to be used as a tool for risk assessment and derivation of soil quality criteria for Co.  相似文献   

10.
LIU Yuan  LI Zhongyi  XU Renkou 《土壤圈》2019,29(5):656-664
Distribution of chemical forms of manganese(Ⅱ)(Mn(Ⅱ))on plant roots may affect Mn(Ⅱ)absorption by plants and toxicity of Mn(Ⅱ)to plants at its high level.The chemical forms of Mn(Ⅱ)on soybean roots were investigated to determine the main factors that affect their distribution and relationship with Mn(Ⅱ)plant toxicity.Fresh soybean roots were reacted with Mn(Ⅱ)in solutions,and Mn(Ⅱ)adsorbed on the roots was differentiated into exchangeable,complexed,and precipitated forms through sequential extraction with KNO_3,EDTA,and HCl.The exchangeable Mn(Ⅱ)content on the roots was the highest,followed by the complexed and precipitated Mn(Ⅱ)contents.Mn(Ⅱ)toxicity to the roots was greater at pH 5.5 than at pH 4.2 due to the larger amount of exchangeable Mn(Ⅱ)at higher pH.The cations Al~(3+),La~(3+),Ca~(2+),Mg~(2+),and NH_4~+competed with Mn(Ⅱ)for cation exchange sites on the root surfaces and thus reduced exchangeable Mn(Ⅱ)on the roots,in the order Al~(3+),La~(3+)Ca~(2+),Mg~(2+)NH_4~+.Al~(3+) and La~(3+) at 100μmol L~(-1) decreased exchangeable Mn(Ⅱ)by 80%and 79%,respectively,and Ca~(2+) and Mg2+at 1 mmol L~(-1) decreased exchangeable Mn(Ⅱ)by 51%and 73%,respectively.Organic anions oxalate,citrate,and malate reduced free Mn(Ⅱ)concentration in solution through formation of complexes with Mn(Ⅱ),efficiently decreasing exchangeable Mn(Ⅱ)on the roots;the decreases in exchangeable Mn(Ⅱ)on the roots were 30.9%,19.7%,and 10.9%,respectively,which was consistent with the complexing ability of these organic anions with Mn(Ⅱ).Thus,exchangeable Mn(Ⅱ)was the dominant form of Mn(Ⅱ)on the roots and responsible for Mn(Ⅱ)toxicity to plants.The coexisting cations and organic anions reduced the exchangeable Mn(Ⅱ)content,and thus they could alleviate Mn(Ⅱ)toxicity to plants on acid soils.  相似文献   

11.
Proton consumption with phosphate adsorption on amorphous Fe (III) hydroxide (am-Fe(OH)3) was compared between two different pH-controlled conditions in a 0.1 mol dm-3 NaClO4 solution at initial pH values of 5.50 and 4.50, at 298±0.005 K.

The number of protons caused by phosphate dissociation was subtracted from the total number of protons consumed, then the amount of surface OH groups released by the ligand exchange reaction were determined. When a sequential acid titration by a pH-stat maintained pH values of the systems at initial pH values, the percentage of OH groups released during the ligand exchange reaction was almost constant, 29–37%. When the pH values of the systems increased with phosphate adsorption, the percentage of OH groups released by the ligand exchange reaction varied from -4.3 to 33%. The difference in the proton migration between the two pH-controlled conditions not only depended on the phosphate dissociation, but on the difference in the adsorption mechanism, i.e. the ratio of ligand exchange with OH groups to total phosphate adsorption.  相似文献   

12.
《Geoderma》2005,124(1-2):37-47
Isotopic signatures of soil components are commonly used to infer past ecologic and climatic shifts in the soil record. The theory behind the fractionation of isotopes that occurs during ecosystem processes is well understood; however, few isotopic studies have explored ecosystem relationships in modern soils. We discuss relationships of stable carbon isotopic signatures in plant tissue, soil organic carbon (SOC), laboratory-respired CO2, and modern carbonates at 10 sites (seven containing pedogenic carbonates) along a C3-dominated climatic gradient (mean annual precipitation (MAP) ranging from 200 to 1000 mm) in the Palouse region of eastern Washington state.A horizon soil organic carbon (SOC) δ13C values varied from −24.3‰ to −25.9‰ PDB. Values in the arid portion of the gradient (200 to approximately 500 mm MAP) generally decreased and linear regression of SOM 13C vs. MAP was significant (r2=0.71, p=0.02). Trends in plant-13C of two grass species (Agropyron spicatum and Festuca idahoensis) found throughout this portion of the gradient were similar to that of SOC. Mean pedogenic carbonate δ13C values varied from −4.1‰ to −10.8‰ PDB. Linear regression was significant for carbonate 13C vs. MAP (r2=0.79, p=0.007), estimated above-ground productivity (r2=0.88, p=0.002) and soil carbon content (r2=0.83, p=0.004). Carbonate δ13C values at the most arid site exhibited higher variability than other sites (presumably due to greater spatial variation in plant respiration vs. atmospheric diffusion). Our data suggest that carbon isotopic relationships among ecosystem components may prove useful in determining ecosystem level properties in modern systems, and potentially in ancient systems as well.  相似文献   

13.
The adsorption of As(V) on alumina, hematite, kaolin and quartz has been measured as a function of pH (2 to 10), and As concentrations (10?4 to 10 ?8 M; in the alumina and kaolin systems only). The effects of sulfate (0 to 80 mg L?1) and fulvic acid (0 to 25 mg L?1) were studied. The charge of the solid surface and the As speciation in solution (determined by pH) were the most important chemical parameters affecting the sorption behavior. At pH below PZC of the solid, there was a qualitative correlation between the adsorption and the anion exchange capacity of the solid. For hematite at low pH (below 5) there was a reduction of the adsorption possibly related to the formation of positively charged species. The presence of sulfate or fulvic acid reduced the adsorption.  相似文献   

14.
The adsorption technique using wollastonite has been applied for the removal of Cu(II) from aqueous solutions. The low concentration, high temperature and alkaline pH favor the removal of Cu(II). The Langmuir isotherm was used to represent the equilibrium data at different temperatures. The apparent heat of adsorption has been found to be 5.926 Cal mol?1. The uptake of Cu(II) is diffusion controlled and the mass transfer coefficient is 3.6 × 10?5 cm s?1. The maximum removal of Cu(II) in alkaline medium has been explained on the basis of the uptake of hydrolyzed adsorbate species by the active surface sites of adsorbent.  相似文献   

15.
Cohen-Shoel  N.  Ilzycer  D.  Gilath  I.  Tel-Or  E. 《Water, air, and soil pollution》2002,135(1-4):195-205
An effective removal process of Sr2+ from polluted solution has been demonstrated by its binding to Azolla biofilter at high affinity, involving ion exchange with Na+, K+, Mg2+ and Ca2+. Maximal Sr2+ binding capacity was as high as 3.5% per Azolla dry weight. The biosorption of Sr2+ was optimal at neutral and high pHs, but lower at acidic pH, due to a competition between Sr2+ and H+ ions on the cation binding groups of Azolla. Pectin, constituting 8–10.5% (w/w) of the Azolla cell wall, is shown to bind a major portion of Sr2+ ions. Treatment with pectinase reduced the binding capacity of Azolla to Sr2+. Methylation of Azolla biomass, known to block the carboxyl groups of pectin by esterification markedly reduced the Sr2+ binding. Optimal Sr2+ binding by Azolla at high pH values indicates deesterification of pectin and exposure of additional available carboxyl groups for metal binding.  相似文献   

16.
The irreversible binding of selected sulfur-containing flavor compounds to proteins was investigated in aqueous solutions containing ovalbumin and a mixture of disulfides (diethyl, dipropyl, dibutyl, diallyl, and 2-furfuryl methyl) using solid-phase micro-extraction (SPME). In systems which had not been heated, the recovery of disulfides from the headspace above the protein at the native pH (6.7) was similar to that from an aqueous blank. However, significant losses were observed when the pH of the solution was increased to 8.0. When the protein was denatured by heating, much greater losses were observed and some free thiols were produced. In similar heat-denatured systems at pH 2.0, no losses of disulfides were observed. Disulfides containing allyl or furfuryl groups were more reactive than saturated alkyl disulfides. Interchange reactions between protein sulfhydryl groups and the disulfides are believed to be responsible for the loss of the disulfides.  相似文献   

17.
Data from two Podzol O and E horizons, sampled in 1-cm layers at 13 points within 2 m × 2 m plots, were used to test the hypothesis that the composition of hydrogen ions (H) and aluminium (Al) adsorbed to the solid-phase soil organic matter (SOM) determines pH and Al solubility in organic-rich acidic forest soils. Organically adsorbed Al was extracted sequentially with 0.5 m CuCl2 and organically adsorbed H was determined as the difference between total acidity titrated to pH 8.2 and Al extracted in 0.5 m CuCl2. The quotient between fractions of SOM sites binding Al and H (NAl/NH) is shown to determine the variation in pH and Al solubility. It is furthermore shown that models in which pH and Al solubility are linked via a pH-dependent solubility of an Al hydroxide and in which cation exchange between Al3+ and Ca2+, rather than cation exchange between Al3+ and H+, is the main pH-buffering process cannot be used to simulate pH or Al solubility in O and E horizons. The fraction of SOM sites adsorbing Al increased by depth in the lower O and throughout the E horizon at the same magnitude as sites adsorbing H decreased. The fraction of sites binding the cations Ca2+ + Mg2+ + K+ + Na+ remained constant. It is suggested that a net reaction between Al silicates (proton acceptors) and protonated functional groups in SOM (proton donors) is the long-term chemical process determining the composition of organically adsorbed H and Al in the lower part of the O and in the E horizon of Podzols. Thus, in the long term, pH and Al solubility are determined by the interaction between organic acidity and Al alkalinity.  相似文献   

18.
Acute toxicity screening tests were conducted with water soluble fractions (WSFs) of a solvent refined coal (SRC-II) liquid from a pilot plant and three reference organisms: the cladoceran Daphnia magna, the fathead (FH) minnow Pimephales promelas, and larvae of the midge fly Chironomus tentans. Stock WSFs typically contained 900 to 1100 mg l?1 total carbon (TC) and 700 to 800 mg l?1 total dye complexable phenolics, with lower concentrations of aromatic and saturate hydrocarbons and N compounds. Under standard test conditions (temperature 20 °C, pH 7.3 to 8.2 and hardness 65 to 80 mg l?1 CaCO3), mean LC50 values in mg l? TC were 3.3 for daphnia, 11.l for FH minnow, and 13.7 for midge larvae. Acute toxicity was also examined under other water quality conditions (temperature 10 or 25 °C, pH 6.0 or 6.5, and hardness ? 180 to 220 mg 1?1 CaCO3). The coal liquid was less toxic to daphnids at 10 °C than at 20 or 25 °C, but response of other organisms at different temperatures varied. The pH of the liquid had little effect on toxicity values. All organisms were less susceptible in hard water. Chemical compositions of stock WSFs were similar, suggesting that temperature, pH, and hardness had little effect on solubility of major synfucl components. Dilution indexes for stock WSFs were higher than for petroleum oils, and reflect the greater solubility of chemicals from the liquified coal in freshwater.  相似文献   

19.
The sorption and desorption processes of Se(VI) onto non-living Eichhornia crassipes (E. crassipes) and Lemna minor (L. minor) were evaluated. Different pH values of the initial Se solution (20???g?L?1) were tested at static conditions. At dynamic conditions of horizontal flow, biomass-packed columns (BPC) were estimated as prepared (pH 4) and unprepared (pH 6?C7) and at different flow rates. The desorption process was tested using HCl (0.1?M) as the eluent. The maximum Se uptake took place at a pH of 4 for both biomasses. The lowest flow rate improves major Se removal due to the increase in contact time. The Se was desorbed from the biomass with elution efficiencies of 5 and 18?% for E. crassipes and L. minor, respectively. Nevertheless, more time was needed to increase these efficiencies and reach desaturation times. The breakthrough curves showed that unprepared E. crassipes and L. minor BPC at horizontal flow, with a flow rate of 6 and 4?mL?min?1 respectively, had a biomass removal capacity of 0.135 and 0.743???g?g?1 correspondingly. The system of E. crassipes is more efficient, suggesting an ion exchange sorption mechanism. This demonstrates that non-living E. crassipes and L. minor have the capacity to remove Se from very dilute solutions.  相似文献   

20.
Ponds on about 80 km2 of farmland in Sussex were investigated with regard to breeding amphibians. The survey covered five different geological strata and included 60 ponds (out of a total of more than 200) marked on 1:25000 ordnance maps. Eighteen of these ponds were found on inspection not to exist; the remainder were characterised with respect to surface area, depth, pH, ionic score, aquatic vegetation, fish fauna and surrounding terrestrial habitats as well as for amphibian species. 14 pools contained amphibians; Triturus vulgaris was the most widespread (9 ponds) closely followed by T. helveticus (8 ponds). T. cristatus occurred at 5 sites, Rana temporaria at 2 and Bufo bufo not at all. The 2 frog sites were very shallow pools on pasture/woodland interfaces; the ideal newt pond had no fish, was 0·5–1·0 m deep and < 200 m2 in surface area with 5–50% aquatic vegetation cover and a low ionic score (< 400 parts/106). Callitriche-containing ponds were particularly favoured, and with terrestrial habitat there was a requirement for a scrub or woodland component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号