首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The greatest challenge for tropical agriculture is land degradation and reduction in soil fertility for sustainable crop and livestock production.Associated problems include soil erosion,nutrient mining,competition for biomass for multiple uses,limited application of inorganic fertilizers,and limited capacity of farmers to recognize the decline in soil quality and its consequences on productivity.Integrated soil fertility management(ISFM) is an approach to improve crop yields,while preserving sustainable and long-term soil fertility through the combined judicious use of fertilizers,recycled organic resources,responsive crop varieties,and improved agronomic practices,which minimize nutrient losses and improve the nutrient-use efficiency of crops.Soil fertility and nutrient management studies in Ethiopia under on-station and on-farm conditions showed that the combined application of inorganic and organic fertilizers significantly increased crop yields compared to either alone in tropical agro-ecosystems.Yield benefits were more apparent when fertilizer application was accompanied by crop rotation,green manuring,or crop residue management.The combination of manure and NP fertilizer could increase wheat and faba bean grain yields by 50%–100%,whereas crop rotation with grain legumes could increase cereal grain yields by up to 200%.Although organic residues are key inputs for soil fertility management,about 85% of these residues is used for livestock feed and energy;thus,there is a need for increasing crop biomass.The main incentive for farmers to adopt ISFM practices is economic benefits.The success of ISFM also depends on research and development institutions to provide technical support,technology adoption,information dissemination,and creation of market incentives for farmers in tropical agro-ecosystems.  相似文献   

2.
Abstract. Nutrient losses from arable land are important contributors to eutrophication of surface waters, and phosphorus (P) and nitrogen (N) usually act together to regulate production of Cyanobacteria. Concentrations and losses of both nutrients in drainage water from pipe drains were studied and compared in 15 crop rotations on a clay soil in southwest Sweden. Special emphasis was placed on P and it was possible to evaluate critical components of the crop rotations by flow-proportional water sampling. Total P concentrations in drainage water were generally small (0.04–0.18 mg L−1), but during two wetter years out of six, high P concentrations were measured following certain management practices, including ploughing-in lucerne ( Medicago sativa L.) and fertilizing in advance without incorporation into the soil to meet the needs of several subsequent crops. This resulted in average flow-weighted concentrations of total P between 0.3 and 0.7 mg L−1. In crop rotations containing green manures, green fallow or leguminous leys, there was also a risk for increased P losses after these crops were ploughed in. The losses increased in the order: cash crops < dairy with grass < dairy with lucerne < monoculture with barley < organic farming with cattle slurry < stockless organic farming with green manure. P balances varied between −9 and +8 kg P ha−1 and N balances between +4 and +35 kg N ha−1. The balances were not related to actual leaching losses. Phosphorus losses in drainage from set-aside were 67–82% of those from cash crops grown in ploughed and P-fertilized soil at the same site, indicating a high background P loss from this clay soil.  相似文献   

3.
Abstract. Sustainable management of nutrients in agricultural systems is critical for sufficient production of nutritious foods and to minimize environmental pollution. In this overview, we discuss some of the most important factors influencing nutrient cycling, and how practices for sustainable nutrient management can be optimized. In most cases, problems are associated with excessive use of nutrients (manures, other organic amendments, and inorganic fertilizers). Options for dealing with such problems at the farm level include: reducing nutrient inputs to balance exports, increasing the land area on which manures are applied, and export of excess nutrients from the farm in the form of value-added products. These strategies can be used singly, or in combination. Nutrients in the human food chain are often not recycled back to primary crop production. To manage such issues, and avoid regional nutrient accumulations, we need to develop a better understanding of large-scale nutrient flows, and develop policies to manage them. We stress the importance of scale when considering nutrient management in the future.  相似文献   

4.
Sustainability of agriculture became a major issue of global concern during this decade. Agronomic practices aimed at reducing the dependence on inputs such as chemical fertilizers can contribute to sustainability. Nitrogen (N) is the most limiting and commonly applied nutrient for crop production. The development of nutrient-responsive cultivars especially during the past three decades led to an intensive use of N fertilizers in many agricultural systems. Environmental and economic issues associated with such practices have, however, generated an interest in alternative management systems. These include practices such as exploitation of beneficial biological functions (symbiotic nitrogen fixation, etc.) and substitution of chemical fertilizers with farm-generated products.  相似文献   

5.
Abstract. To determine the effects of low-input agriculture on soil properties, we compared several forms of arable land management in a rotation experiment lasting 8 years on a Cambisol in Lithuania. Conventional arable cropping with applications of inorganic fertilizers increased the potassium (K) status of the soil, but resulted in losses of nitrogen (N) from the soil by mineralization and leaching. With ley–arable integrated cropping, a similar fertilizer regime based on farmyard manure (FYM) augmented with inorganic fertilizers increased the phosphorus (P), K, organic matter and N in the soil, as well as increasing N loss by leaching. These two high-input regimes were compared to three systems with less or no input. A reference treatment with no input, which produced small crop yields, maintained its nutrient status and organic matter. An organic regime receiving FYM and green manure lost only P, but maintained its K and N status, while a second organic regime in which the FYM was replaced by composted sewage maintained its fertility. The microbial activity varied somewhat from treatment to treatment, with the largest numbers of almost all groups of microorganisms in the reference treatment. All treatments led to decreases in fulvic acid, and the soil managed conventionally lost humic acid, too. The content of humic acid increased in the treatments where FYM was applied and in the reference soil, and the fraction bound to calcium increased in the integrated and the first organic treatments. The soil structures under the integrated cropping and second organic regime were the most stable. Of the low-input systems, the second organic regime seemed the most sustainable.  相似文献   

6.
长期不同施肥措施下黑土作物产量与养分平衡特征   总被引:13,自引:2,他引:13  
为了明确长期不同施肥措施下黑土作物产量及养分平衡特征,利用开始于1979年的哈尔滨黑土肥力长期定位试验,以小麦-大豆-玉米轮作(3a)为一个周期,选取对照(不施肥,记作CK)、常量氮磷钾化肥配施(小麦施N、P2O5量分别为150、75 kg/hm2,大豆施N、P2O5量分别为75、150 kg/hm2,玉米施N、P2O5量分别为150、75 kg/hm2,K2O共施75 kg/hm2,记作NPK)、常量有机肥(施肥18 600 kg/hm2,记作M)、常量化肥有机肥配施(化肥施量同NPK,有机肥施量同M,记作MNPK)和二倍量氮磷化肥有机肥配施(小麦施N、P2O5量分别为300、150 kg/hm2,大豆施N、P2O5量分别为150、300 kg/hm2,、玉米施N、P2O5量分别为300、150 kg/hm2,有机肥共37 200 kg/hm2,记作M2N2P2)5个处理,研究了不同作物的平均产量、产量年际变化和土壤养分表观平衡。结果表明:1)较CK,长期平衡施用化肥或化肥配施有机肥提高了作物产量,多年平均增产率分别在82.5%~91.6%(小麦)和35.6%~40.9%(玉米)之间。长期不同施肥措施增产效果表现为M2N2P2MNPKNPKM,有机无机肥配施与单施化肥处理间作物产量差异不显著。2)长期不施肥处理小麦和玉米产量随试验年限推移呈下降趋势,降幅分别为13.93和42.61 kg/(hm2·a),大豆则以7.409 kg/(hm2·a)的速率增加。施肥处理小麦、大豆和玉米产量随试验年限的增加呈总体上升的趋势。3)在该试验条件下,长期施用常量化肥处理(NPK)和常量化肥有机肥配施处理(MNPK)土壤氮亏缺量分别为29.7和17.5 kg/hm2,磷盈余量分别为33.4和61.2 kg/hm2。各处理土壤中钾素均表现为亏缺,亏缺量在30.4~73.0 kg/hm2之间。MNPK处理氮、钾供应状况有所改善,较NPK处理分别增加12.2和27.6 kg/hm2。4)作物产量与土壤有机质、碱解氮、有效磷、降雨量、生育期日平均气温呈显著正相关关系(P0.05)。5)在黑土小麦-大豆-玉米典型轮作制度下,基于土壤养分平衡特征提出"稳氮、减磷和增钾"的施肥策略。该研究为评价和建立长期施肥模式、促进粮食持续生产提供依据。  相似文献   

7.
Improving technologies and the challenge of producing more bio-products while reducing the environmental footprint of humans are shifting paradigms in agricultural research. Harnessing the microbial resources of arable soils is a new avenue to improve the efficiency of nutrient use in agriculture. The objective of this study was to define how crop management influences the contribution of resident AM fungi to nutrient efficiency and crop productivity. The AM fungal communities of 72 organically and 78 conventionally managed wheat fields of the Canadian prairie were described by 454 pyrosequencing and related to crop productivity and N and P use efficiency. Conventional management reduces soil pH and increases the fluxes of all soil nutrients except S, B, and K. Organic management increased the abundance of Claroideoglomus reads. The efficiency of N and P uptake from soil by organic wheat was 2.3 and 1.8 times higher than that of conventional systems. This high N and P uptake efficiency in organic wheat crops was mainly attributable to the low soil fertility of organic fields, as wheat biomass production was 1.44 times greater in conventional than organic systems. Overall, the amounts of N and P taken up by conventional and organic wheat crops were similar. Plant nutrient balance and the abundance of Paraglomus drove conventional wheat production, whereas organic production depended mainly on soil moisture, plant nutrient balance, and abundance of Glomus, which was associated with reduced and nutrient-inefficient wheat production. The high nutrient concentrations at maturity and the low productivity of organic wheat fit a model of limiting CO2-assimilation. The trade-off between nutrient use efficiency and productivity in low input wheat production could be relieved by reducing the abundance of Glomus species, increasing soil moisture and early N availability, or by improving the inherent CO2 assimilation capacity of wheat.  相似文献   

8.
Nutrient sources and management influence soil properties and crop productivity indicating that sustained crop production needs nutrient rate specific tuning after certain periods of time. We hypothesize that long-term use of organic and inorganic nutrient sources maintains soil fertility and improve crop production. Yield and nutrient use efficiencies have not been evaluated in Bangladesh from long-term fertilizer trials focusing on adaptation strategies for sustained food production. So, the objectives of the present investigation were to examine the effects of organic and inorganic amendments on yields and soil properties under a rice-fallow-rice system. The experiment was initiated in 1985 with 12 treatments under dry season irrigated rice culture at the Bangladesh Rice Research Institute, Gazipur. The effects of organic and inorganic nutrient sources were evaluated under missing element techniques. The contributions of nitrogen (N), phosphorus (P), and potassium (K) fertilizers to yields were more in the dry season but the role of P was negligible in the wet season. The omissions of N, P and K nutrients are not suitable management option for rice cultivation during dry and wet seasons, although P can be omitted in the wet season provided its full dose is applied in the dry season. The combined use of organic and inorganic nutrient sources are the best option for improving rice productivity and sustaining soil fertility in a rice-fallow-rice system in Bangladesh.  相似文献   

9.
ABSTRACT

To assess if the nutrient supply through planted tree fallows meets crop nutrient uptake and export, N, P, K, Ca and Mg uptake and export by a groundnut/maize/cassava intercrop was compared with the nutrient uptake by three planted fallow systems (Senna spectabilis, Flemingia macrophylla, Dactyladenia barteri) and a no-tree control. Three cycles of two years fallow and one year cropping on Ultisol in southern Cameroon were studied. Fallows were slashed and burned. The fallow system had no consistent effect on nutrient uptake by individual crops. Crop nutrient uptake was most often highest in the S. spectabilis system. Nitrogen balances were generally negative due to N loss in the burn. Across three cropping cycles, the balance of fallow nutrient uptake versus total crop nutrient uptake was only in the S. spectabilis system positive for all nutrients. Nutrient export by all crops (mean of three years) was unaffected by fallow systems. The fallow nutrient uptake versus crop nutrient export balance was positive for all nutrients and systems. Planted fallows appear capable of acquiring sufficient nutrient stocks during fallow phases, covering the crops’ demand. Fallow N and K uptake and crop export declined with every fallow/cropping cycle.  相似文献   

10.
潮土肥力演变与施肥作用的长期定位试验初报   总被引:69,自引:6,他引:63       下载免费PDF全文
1989-1994年在河南封丘潮土上,对几种主要肥料的效益。以及不同施肥条件对土壤养分供应能力的影响进行了长期定位试验,试验结果表明;潮土的生产潜力很大,贫瘠的潮土单施N肥或P肥收效甚微,只要N,P肥配合施用,其交互增产作用极显著,如一旦停止施肥,产量又将急剧下降到很低水平,在富K的潮土上,连续五年不施K肥和有机肥,对小麦产量尚不构成影响,然而耕层土壤中的速效K以每年3.8mg/kg的速度下降,已  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号