首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HPLC-MS and (1)H, (13)C, and 2D NMR analyses were used to identify new addition products between 3-sulfanylhexan-1-ol (3SH) and o-quinones derived from (+)-catechin, (-)-epicatechin, and caftaric acid. The kinetics of formation of these adducts were monitored in a wine model solution and in a must-like medium by HPLC-UV-MS with the aim of understanding the chemical mechanism involved in reactions between volatile thiols and o-quinones. One o-quinone-caftaric acid/3SH adduct, three o-quinone-(+)-catechin/3SH adducts, and three o-quinone-(-)-epicatechin/3SH adducts were characterized. Caftaric acid was oxidized faster than (-)-epicatechin and (+)-catechin when these phenolic compounds were incubated in a one-component mixture with polyphenoloxidase (PPO) in the presence of 3SH. Consequently, o-quinone-caftaric acid formed adducts with 3SH more rapidly than o-quinone-(+)-catechin and o-quinone-(-)-epicatechin in the absence of other nucleophilic species. Furthermore, o-quinone-(-)-epicatechin reacted faster than o-quinone-(+)-catechin with 3SH. Sulfur dioxide decreased the yield of adduct formation to a significant extent. Under chemical oxidation conditions, the rates and yields of adduct formation were lower than those observed in the presence of PPO, and o-quinone-caftaric acid was slightly less reactive with 3SH, compared to oxidized flavan-3-ols. The identification of o-quinone-caftaric acid/3SH and o-quinone-(+)-catechin/3SH adducts in a must matrix suggests that the proposed reaction mechanism is responsible for 3SH loss in dry wines during their vinification and aging process.  相似文献   

2.
The reactions of (+)-catechin and (-)-epicatechin with glyoxylic acid were studied in a model white wine solution. When the reactions were performed in darkness at 45 degrees C, the (-)-epicatechin concentration decreased more rapidly than that of (+)-catechin, and the (-)-epicatechin sample had twice the 440 nm absorbance of the (+)-catechin sample after the 14 day incubation period. The main pigments generated were identified as xanthylium cation pigments regardless of the isomeric character of the phenolic compound. Using a combination of absorbance and ion current data, the xanthylium cation pigments generated from (-)-epicatechin were found to have combined molar absorptivity coefficients 1.8 times that of the xanthylium cation pigments generated from (+)-catechin. The implication of these results on the development of an index of white wine oxidation susceptibility is discussed.  相似文献   

3.
Three newly formed Port wine pigments were isolated by Toyopearl HW-40(s) gel chromatography and semipreparative HPLC. Furthermore, the pigments were identified by mass spectrometry (LC/MS) and NMR techniques (1D and 2D). These anthocyanin-derived pigments showed UV-visible spectra different from those of the original grape anthocyanins. These pigments correspond to malvidin 3-glucoside linked through a vinyl bond to either (+)-catechin, (-)-epicatechin, or procyanidin dimer B3 [(+)-catechin-(+)-catechin]. NMR data of these pigments are reported for the first time.  相似文献   

4.
The reactions of (+)-catechin and (-)-epicatechin in the presence of acetaldehyde were studied in model solution systems. When incubated separately with acetaldehyde and at pH values varying from 2.2 to 4. 0, reactions were faster with (-)-epicatechin than with (+)-catechin. In mixtures containing both (+)-catechin and (-)-epicatechin with acetaldehyde, new compounds besides the homogeneous bridged derivatives were detected. These compounds were concluded to be hetero-oligomers consisting of (+)-catechin and (-)-epicatechin linked with an ethyl bridge. In this case, the reaction of (-)-epicatechin was faster than that of (+)-catechin. This was also observed in solutions containing the two flavanols and the (+)-catechin-ethanol intermediate. Under these conditions, the homogeneous (+)-catechin bridged dimers and heterogeneous dimers were obtained by action of the intermediate on (+)-catechin and (-)-epicatechin, respectively. In addition, the homogeneous (-)-epicatechin ethyl-bridged dimers were also detected, showing that ethyl linkages underwent depolymerization and recombination reactions.  相似文献   

5.
Direct addition of anthocyanins and flavan-3-ols was investigated in a model system by incubating malvidin 3-glucoside and (-)-epicatechin in ethanol. Analysis of reaction products by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC/ESI-MS) before and after thiolysis showed the formation of colorless dimers detected at m/z 781 in the negative ion mode, with retention times and spectroscopic characteristics identical to those of compounds detected in wine, which contain one malvidin 3-glucoside unit and one flavanol unit. On the basis of their resistance to thiolysis, these compounds were postulated to be bicyclic dimers linked with both carbon-carbon and ether bonds as observed in the case of A type proanthocyanidins. The major dimer analyzed by NMR experiments was identified as malvidin 3-glucoside(C2-O-C7,C4-C8)epicatechin, confirming this hypothesis. A similar assay was performed with (+)-catechin instead of (-)-epicatechin, and the formation of bicyclic dimers was also observed.  相似文献   

6.
Catechins, compounds that belong to the flavonoid class, are potentially beneficial to human health. To enable an epidemiological evaluation of catechins, data on their contents in foods are required. HPLC with UV and fluorescence detection was used to determine the levels of (+)-catechin, (-)-epicatechin, (+)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg) in 8 types of black tea, 18 types of red and white wines, apple juice, grape juice, iced tea, beer, chocolate milk, and coffee. Tea infusions contained high levels of catechins (102-418 mg of total catechins/L), and tea was the only beverage that contained GC, EGC, ECg, and EGCg in addition to (+)-catechin and (-)-epicatechin. Catechin concentrations were still substantial in red wine (27-96 mg/L), but low to negligible amounts were found in white wine, commercially available fruit juices, iced tea, and chocolate milk. Catechins were absent from beer and coffee. The data reported here provide a base for the epidemiological evaluation of the effect of catechins on the risk for chronic diseases.  相似文献   

7.
French wines are abundant sources of phenolic compounds. The content of several catechins, i.e., (+)-catechin, (-)-epicatechin, dimers B1, B2, B3, and B4, trimers C1, and trimer 2 (T2), of 160 French wines was determined by HPLC with UV detection. Red wines (n = 95) were found to have high levels of catechins, ranging from 32.8 to 209.8 mg/L (mean concentration 114.5 mg/L) for (+)-catechin, from 22.1 to 130.7 mg/L (mean concentration 75.7 mg/L) for (-)-epicatechin, from 7.8 to 39.1 mg/L (mean concentration 25.4 mg/L) for B1, from 18.3 to 93 mg/L (mean concentration 47.4 mg/L) for B2, from 21.4 to 215.6 mg/L (mean concentration 119.6 mg/L) for B3, from 20.2 to 107.2 mg/L (mean concentration 81.9 mg/l) for B4, from 8.6 to 36.9 mg/L (mean concentration 26.3 mg/L) for C1, and from 26.7 to 79.3 mg/L (mean concentration 67.1 mg/L) for T2. White and rosé wines (n = 57 and n = 8) were found to have low levels of (+)-catechin (mean concentrations 9.8 and 10.6 mg/L, respectively) and (-)-epicatechin (mean concentrations 5.3 and 6.5 mg/L, respectively). These data provide a basis for the epidemiological evaluation of catechin intake by the consumption of French wine.  相似文献   

8.
Phenolic compounds are responsible for major organoleptic characteristics of plant-derived food and beverages; these substances have received much attention, given that the major function of these compounds is their antioxidant ability. In the context of this study, our major aim was study the binding of several phenolic compounds such as (+)-catechin, (-)-epicatechin, (-)-epicatechin gallate, malvidin-3-glucoside, tannic acid, procyanidin B4, procyanidin B2 gallate, and procyanidin oligomers to different proteins (bovine serum albumin and human alpha-amylase) by fluorescence quenching of protein intrinsic fluorescence. From the spectra obtained, the Stern-Volmer, the apparent static, and the bimolecular quenching constants were calculated. The structure of polyphenols revealed to significantly affect the binding/quenching process; in general, the binding affinity increased with the molecular weight of polyphenol compounds and in the presence of galloyl groups. For catechin monomer and procyanidin dimer B4, the K(SV) was 14,100 and 13,800 M(-1), respectively, and for galloyl derivatives, the K(SV) was 19,500 and 21,900 M(-1), respectively. Tannic acid was shown to be the major quenching molecule for both proteins. However, comparing different proteins, the same polyphenol showed different quenching effects, which are suggested to be related to the three-dimensional structure of the proteins studied. For (+)-catechin and BSA, the K(SV) was 8700 M(-1), and with alpha-amylase, it was 14,100 M(-1); for tannic acid, the K(SV) was 10,0548 and 11,0674 M(-1), respectively. From the results obtained, besides the main binding analysis performed, we conclude that this technique is more sensitive than thought because we can detect several interactions that have not been proven by other methods, namely, nephelometry. Overall, fluorescence quenching has proven to be a very sensitive technique with many potentialities to analyze the interaction between polyphenols and proteins.  相似文献   

9.
The peroxidase- and polyphenoloxidase-catalyzed oxidations of (+)-catechin yield several products showing different degrees of polymerization, which are apparently responsible for the pigment decay and the associated browning reaction that occurs in processed strawberry fruits and their derived foods. In this work, we have purified both peroxidase and polyphenoloxidase from Oso Grande cv. strawberry fruits, and comparatively analyzed the products of their enzyme-mediated (+)-catechin oxidation. The joint analysis by reversed-phase and size-exclusion HPLC of the (+)-catechin oxidation products obtained with both enzymes indicate that they were qualitatively the same: dehydrodicatechin B4, a (+)-catechin quinone methide, dehydrodicatechin A, a (+)-catechin trimer, and a (+)-catechin oligomer with polymerization degree equal to or greater than 5. The main quantitative differences between the oxidative reactions were the great amount of oligomer formed in the case of the polyphenoloxidase-mediated reaction and the low amount of (+)-catechin reacted in the case of the peroxidase-mediated reaction. One of the possible reasons for such low levels of (+)-catechin consumption in the case of the peroxidase-mediated reaction was the possible inhibition by products of the enzyme-catalyzed oxidation. In fact, the peroxidase-mediated (+)-catechin oxidation was differentially inhibited by dehydrodicatechin A, showing a competitive type inhibition and a k(I) of 6.4 microM. In light of these observations, these results suggest that brown polymer formation, estimated as oligomeric compounds resulting from (+)-catechin oxidation, in strawberries is mainly due to polyphenoloxidase, and although peroxidase also plays an important role, it is apparently auto-regulated by product (dehydrodicatechin A) inhibition.  相似文献   

10.
The concentrations of trans-resveratrol, (+)-catechin, (-)-epicatechin, and quercetin were evaluated by means of high-performance liquid chromatography-diode array detection in red wines obtained from Aglianico, Piedirosso, and Nerello Mascalese grapes. The trans-resveratrol and epicatechin concentrations did not differ significantly between experimental wines. The concentration of quercetin in Nerello Mascalese wines was more than twice that observed in Aglianico and Piedirosso wines. Nerello Mascalese wines also significantly differed from other wines in the (+)-catechin content, which was significantly higher than those found in the other two wines. During maceration, the maximum extraction of trans-resveratrol was reached after 12 days for Aglianico and Piedirosso, after which a decline was observed. On the contrary, in the case of Nerello Mascalese, the concentration of trans-resveratrol increased steadily throughout the whole maceration process. After 2 days of maceration, the maximum concentration of quercetin was observed in Aglianico must, whereas the maximum quercetin extraction was reached after 12 days for Piedirosso and 17 days for Nerello Mascalese. The maximum levels of (+)-catechin and (-)-epicatechin were generally observed after 12 days of maceration for all wines, although a decline of (-)-epicatechin occurred after maximum extraction in Aglianico and Piedirosso wines. Following marc pressing, a significant increase in the concentration of trans-resveratrol for Aglianico, (+)-catechin and (-)-epicatechin for Piedirosso, and (-)-epicatechin for Nerello Mascalese was observed.  相似文献   

11.
Catechins, compounds that belong to the flavonoid class, are potentially beneficial to human health. To enable epidemiological evaluation of these compounds, data on their contents in foods are required. HPLC with UV and fluorescence detection was used to determine the levels of (+)-catechin, (-)-epicatechin, (+)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg) in 24 types of fruits, 27 types of vegetables and legumes, some staple foods, and processed foods commonly consumed in The Netherlands. Most fruits, chocolate, and some legumes contained catechins. Levels varied to a large extent: from 4.5 mg/kg in kiwi fruit to 610 mg/kg in black chocolate. (+)-Catechin and (-)-epicatechin were the predominant catechins; GC, EGC, and ECg were detected in some foods, but none of the foods contained EGCg. The data reported here provide a base for the epidemiological evaluation of the effect of catechins on the risk for chronic diseases.  相似文献   

12.
A simultaneous determination of trans-resveratrol, (-)-epicatechin, and (+)-catechin in red wine by capillary electrophoresis with electrochemical detection (CE-ED) is reported. The effects of the potential of the working electrode, pH and concentration of running buffer, separation voltage, and injection time on CE-ED were investigated. Under the optimum conditions, the analytes could be separated in a 100 mmol/L borate buffer (pH 9.2) within 20 min. A 300 microm diameter carbon disk electrode has a good response at +0.85 V (vs SCE) for all analytes. The response was linear over 3 orders of magnitude with detection limit (S/N = 3) ranging from 2 x 10(-7) to 5 x 10(-7) g/mL for all analytes. This method has been used for the determination of these analytes in red wine without enrichment, and the assay result was satisfactory.  相似文献   

13.
Cocoa flavanols and procyanidins have numerous biological activities. It is known that (-)-epicatechin, (+)-catechin, epicatechin-(4beta-8)-epicatechin (dimer B2), and epicatechin-(4beta-6)-epicatechin (dimer B5) are unstable at physiologic pH, degrading almost completely within several hours, whereas they are relatively stable at pH 5.0. The present study investigated the effects of ascorbic and citric acid on the stability of monomers and dimers in simulated intestinal juice (pH 8.5) and in sodium phosphate buffer (pH 7.4). The addition of ascorbic acid to the incubation mixture significantly increased the stability of the monomers and dimers, whereas the addition of citric acid provided no protective effects. LC-MS showed that with the degradation of dimer B2 and dimer B5, doubly linked A-type dimers were formed. The present results, although not directly transferable to in vivo conditions, suggest that ascorbic acid may stabilize cocoa flavanols and procyanidins in the intestine where the pH is neutral, or alkaline, before absorption.  相似文献   

14.
(+)-catechin and (-)-epicatechin degradation in water-alcohol solutions containing Fe2+ and tartaric acid was studied in the presence and absence of yeasts. On the basis of the results, yeast partially inhibited the degradation of both flavans, with much slower formation of browning products absorbing at 420 and 520 nm. In comparative terms, yeast was found to be more efficient toward the degradation products of (+)-catechin absorbing at the latter wavelength. Likewise, the presence of yeast decreased the yield of a group of colored compounds eluting at high retention times in HPLC and indicated these as important contributors to color darkening in white wines. This inhibitory effect may in part account for the resistance to browning observed over periods of several years in sherry wines subjected to biological aging under flor yeast.  相似文献   

15.
Phenolic composition of grape stems   总被引:5,自引:0,他引:5  
Grape stems contain significant amounts of polyphenolic compounds, especially phenolic acids, flavonols, and flavanonols such as astilbin. The tannin content was characterized after the depolymerization reaction thiolysis. Tannins consisted of polymeric proanthocyanidins (up to 27 units) mainly consisting of (-)-epicatechin units along with smaller amounts of (+)-catechin, (-)-epicatechin gallate, and (-)-epigallocatechin. Flavanonols (astilbin) have been identified for the first time in stem and characterized by LC/MS and NMR. All phenolic compounds in grape stems were quantified by HPLC: quercetin 3-glucuronide was the most important, followed by catechin, caffeoyltartaric acid, and dihydroquercetin 3-rhamnoside (astilbin). Comparison was made of proanthocyanidin characteristics in different white and red grape varieties and also among parts of the cluster (skin, seed, and stem). Stem-condensed tannins were qualitatively intermediate between seed and skin but could not be differentiated between red and white varieties.  相似文献   

16.
This study was performed to assess the impact of glutathione on the reaction between (+)-catechin and carbonyl compounds in wine-related conditions. (+)-Catechin (0.50 mM) and either glyoxylic acid (0.25 mM) or acetaldehyde (0.25 mM) were added to a model wine system with 0.0, 0.25, and 2.5 mM of glutathione added. UPLC-DAD and LC-MS analysis showed that the formation of carbonyl-bridged (+)-catechin dimers was inhibited in the samples with a glutathione to carbonyl ratio of 10:1 compared to the samples without glutathione. At a ratio of 1:1, glutathione inhibited the acetaldehyde-bridged dimers but only had a minor impact on the glyoxylic acid-bridged dimers. Further investigations showed that this trend of inhibition by glutathione on the glyoxylic acid-derived dimer was independent of temperatures, 20 °C vs 45 °C, or the presence of metal ions, 0.2 mg/L copper(II) and 5 mg/L iron(II). (1)H NMR analysis and LC-MS analysis provided evidence that glutathione inhibited dimer formation via different mechanisms depending on the carbonyl compound. For acetaldehyde-derived dimers, the main mode of inhibition was the ability of glutathione to form a (methyl-glutathionyl-methine)-(+)-catechin complex. Alternatively, the formation of a glutathione-glyoxylic acid addition product impeded the reaction between glyoxylic acid with (+)-catechin. These results demonstrate that glutathione, at sufficient concentration, can have a substantial impact on carbonyl-derived polymerization reactions in wine-like conditions.  相似文献   

17.
Accumulation and compositional changes of flavonols, proanthocyanidins, and anthocyanins were measured in Vitis vinifera L. cv. Pinot noir in shaded and exposed treatments. In addition, extraction of these compounds into a model wine solution was measured. The study was conducted in a commercial vineyard within a uniform zone of relatively low vigor vines. Light exclusion boxes were installed on pairs of clusters on the same shoot (shaded treatment), and a second set of clusters on an adjacent shoot were labeled as the exposed treatment. Fruit samples were harvested at the onset of ripening (véraison) and at commercial harvest. Cluster shading resulted in a substantial decrease in mg/berry accumulation of flavonols and skin proanthocyanidins and minimal differences in anthocyanins. In analyzing seed proanthocyanidins by phloroglucinolysis, shaded and exposed treatments were similar at véraison; however, by harvest, the shaded treatment had higher extension and terminal subunits (nmol/seed) as compared to the exposed treatment. For skin proanthocyanidins, shaded fruit was lower for all subunits (nmol/berry) at both véraison and harvest. Shading caused an increase in the proportion of (-)-epicatechin and a decrease in (-)-epigallocatechin at harvest in skin extension subunits. Seed proanthocyanidins in shaded fruit contained a lower proportion of (+)-catechin and a higher proportion of (-)-epicatechin-3-O-gallate in extension subunits and a lower proportion of (+)-catechin and (-)-epicatechin-3-O-gallate and a higher proportion of (-)-epicatechin in terminal subunits. For anthocyanins, the shaded treatment had a proportional reduction in delphinidin, cyanidin, petunidin, and malvidin and a large increase in peonidin glucosides. The model extractions from the two treatments paralleled differences in the fruit with a lower concentration of flavonols, anthocyanins, and proanthocyanidins in the shaded treatment. The skin proanthocyanidin percent extraction was found to be approximately 17% higher in the exposed model extraction than the shaded treatment.  相似文献   

18.
3'-O-Methyl derivatives of flavan-3-ols, (+)-catechin (C), (-)-epicatechin (EC), and (-)-catechin gallate (CG) were prepared enzymatically. Hexanal (EC and CG family, 5 mmol/L) and conjugated diene (C and EC family, 0.25-10 mmol/L) formation following CuSO4-mediated triacylglycerol-rich lipoprotein oxidation was measured. All EC and CG compounds significantly reduced hexanal formation (p < 0.02). O-Methylation improved the ability of CG (more polar) while reducing the ability of EC (less polar) to limit hexanal formation. 3'-O-methyl EC was 18% (p < 0.001) and 4'-O-methyl 65% (p < 0.001) less able than EC to suppress hexanal formation. At >1 micromol/L all EC and C compounds significantly increased lag time. Parent compounds were more effective (> 4-fold increase) than metabolites (1.5-fold increase). Parent compounds did not influence propagation rate (DeltaOD/min). At >1 mmol/L O-methylated EC and C reduced propagation by 20-40% (p < 0.01). Notably, at 0.25 mmol/L O-methylated EC and C increased propagation rates 22% (p < 0.01) despite prolonging lag time.  相似文献   

19.
Three newly formed pigments were detected and isolated from a 2-year-old Port wine through TSK Toyopearl HW-40(S) gel column chromatography and characterized by UV-visible spectrophotometry, NMR, and mass spectrometry (ESI/MS). (1)H NMR and (13)C NMR data for these pigments obtained using 1D and 2D NMR techniques (COSY, NOESY, gHSQC, and gHMBC) are reported for the first time. The structure of the pigments was found to correspond to the vinyl cycloadducts of malvidin 3-coumaroylglucoside bearing either a procyanidin dimer or a flavanol monomer ((+)-catechin or (-)-epicatechin). Additionally, conformational analysis was performed for one of these newly formed pigment using computer-assisted model building and molecular mechanics. A chemical nomenclature is proposed to unambiguously name this new family of anthocyanin-derived pigments.  相似文献   

20.
The processes of absorption, blood transport, tissular distribution, metabolism, and excretion are at present understood very little. The aim of this study was to investigate blood transport and identify which principal plasma proteins in humans and rats bind to monomeric catechin and procyanidins in red wine ex vivo. Human and rat plasma and serum were incubated with (+)-catechin and procyanidins from grape seed, the origin of red wine catechins. Proteins were separated by SDS-PAGE and native-PAGE to determine which proteins bound to these compounds. The principal protein that bound to (+)-catechin in each species was sequenced. SDS-PAGE showed that (+)-catechin and procyanidins mainly bound to a protein of about 80 kDa in rats and 35 kDa in humans. Their sequencing indicated that these proteins were apo A-I in humans and transferrin in rats. The fact that red wine procyanidins bind to both proteins suggests that they may have a role in reverse cholesterol transport and in the oxidizing action of iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号