首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
太湖地区稻麦轮作下氮素径流和淋洗损失   总被引:26,自引:0,他引:26  
Although nitrogen (N) loss through runoff and leaching from croplands is suspected to contribute to the deterioration of surrounding water systems, there is no conclusive evidence for paddy soils to prove this hypothesis. In this study, field plot experiments were conducted to investigate N losses through runoff and leaching for two consecutive years with 3 N fertilization rates in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) rotations in the Taihu Lake region, China. A water collection system was designed to collect runoff and leachates for both the rice and wheat seasons. Results showed that dissolved N (DN), rather than particulate N (PN), was the main form of N loss by runoff. The NO3^--N concentration in runoff was between 0.1 and 43.7 mg L^-1, whereas the NH4^+-N concentration ranged from below detection limit to 8.5 mg L^-1. Total N (TN) loads by runoff were 1.0-17.9 and 5.2-38.6 kg ha^-1 during rice and wheat seasons, respectively, and the main loss occurred at the early growing stage of the crops. Nitrogen concentrations in leachates during the rice seasons were below 1.0 mg L^-1 and independent of the N application rate, whereas those during the wheat season increased to 8.2 mg L^-1 and were affected by the fertilizer rate. Annual losses of TN through runoff and leaching were 13.7-48.1 kg ha^-1 from the rice-wheat cropping system, accounting for 5.6%-8.3% of the total applied N. It was concluded that reduction in the N fertilization rate, especially when the crop was small in biomass, could lower the N pollution potential for water systems.  相似文献   

2.
施用控释肥提高直播水稻氮的利用率   总被引:4,自引:0,他引:4  
Field trials on a silt-loamy paddy soil derived from shallow-sea deposit in direct seeding rice fields were conducted in Zhejing ,China,in 1996 to compare N efficiency of controlled release fertilizers (LP fertilizers) with the conventional urea.Six treatments including CK (no N fertilizer),conventional urea and different types of LP fertilizers at different rates were designed for two succeeding crops of early and late rice.A blend of different types of LP fertilizers as a single preplant “co-situs“ application released n in a rate and amount synchronizing with uptake pattern of direct seeding rice.A single preplant application of the LP fertilizers could meet the N requirement of rice for the whole growth period without need of topdressing,Using LP fertilizer blends ,equivalent grain yields could be maintained even if the N fertilization rates were reduced by 25%-50% compared with the conventional urea .Agronomi efficiency of the LP fertilizers was 13.6%-86.4% higher than that of the conventional urea in early rice and 100%-164.1% in late rice,depending on the amounts of the LP fertilizers applied.N fertilizer recovery rate incereased from 27.4% for the conventional application of urea to 41.7%-54.1%,for the single preplant “co-situs“ application of the LP fertilizers,Use of the LP fertilizers was promising if the increse in production costs due to the hihg LP fertilizer prices could be compensated by increase in yield and N efficiency,reduction in labor costs and improvement in environment.  相似文献   

3.
太湖地区水稻最适宜施氮量研究   总被引:4,自引:0,他引:4  
To determine the optimal amount of nitrogen(N) fertilizer for achieving a sustainable rice production at the Taihu Lake region of China,two-year on-farm field experiments were performed at four sites using various N application rates.The results showed that 22%-30% of the applied N was recovered in crop and 7%-31% in soils at the rates of 100-350 kg N ha 1.Nitrogen losses increased with N application rates,from 44% of the applied fertilizer N at the rate of 100 kg N ha 1 to 69% of the N applied at 350 kg N ha 1.Ammonia volatilization and apparent denitrification were the main pathways of N losses.The N application rate of 300 kg N ha 1,which is commonly used by local farmers in the study region,was found to lead to a significant reduction in economic and environmental efficiency.Considering the cost for mitigating environmental pollution and the maximum net economic income,an application rate of 100-150 kg N ha 1 would be recommended.This recommended N application rate could greatly reduce N loss from 199 kg N ha 1 occurring at the N application rate of 300 kg N ha 1 to 80-110 kg N ha 1,with the rice grain yield still reaching 7 300-8 300 kg DW ha 1 in the meantime.  相似文献   

4.
氮肥用量对太湖水稻田间氨挥发和氮素利用率的影响   总被引:28,自引:0,他引:28  
Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.  相似文献   

5.
华北平原水浇玉米-小麦轮作农田氨挥发与反硝化损失   总被引:15,自引:6,他引:9  
Ammonia (NH3) volatilization, denitriflcation loss, and nitrous oxide (N2O) emission were investigated from an irrigated wheat-maize rotation field on the North China Plain, and the magnitude of gaseous N loss from denitrification and NH3 volatilization was assessed. The micrometeorological gradient diffusion method in conjunction with a Bowen Ratio system was utilized to measure actual NH3 fluxes over a large area, while the acetylene inhibition technique (intact soil cores) was employed for measurement of denitrification losses and N2O emissions. Ammonia volatilization loss was 26.62% of the applied fertilizer nitrogen (N) under maize, while 0.90% and 15.55% were lost from the wheat field at sowing and topdressing, respectively. The differences in NH3 volatilization between different measurement events may be due to differences between the fertilization methods, and to differences in climatic conditions such as soil temperature. Denitrification losses in the fertilized plots were 0.67%-2.87% and 0.31%-0.49% of the applied fertilizer N under maize and wheat after subtracting those of the controls, respectively. Nitrous oxide emissions in the fertilized plots were approximately 0.08%-0.41% and 0.26%-0.34% of the applied fertilizer N over the maize and wheat seasons after subtracting those of the controls, correspondingly. The fertilizer N losses due to NH3 volatilization were markedly higher than those through denitriflcation and nitrous oxide emissions. These results indicated that NH3 volatilization was an important N transformation in the crop-soil system and was likely to be the major cause of low efficiencies with N fertilizer in the study area. Denitriflcation was not a very important pathway of N fertilizer loss, but did result in important evolution of the greenhouse gas N2O and the effect of N2O emitted from agricultural fields on environment should not be overlooked.  相似文献   

6.
Sustainable potassium (K) management at different soil sites requires understanding the relationships between crop productivity and long-term K fertilizations on a regional or national scale.We analyzed responses of grain yield of wheat (Triticum aestivum L.) and maize (Zea mays L.),K efficiency,and partial balance (difference between K input through fertilizer and K output in the aboveground biomass) during 15-(1990-2005) or 18-year (1990-2008) K fertilizations at five distinctive agroecological zones across China.Compared to the inorganic nitrogen (N) and phosphorus (P) fertilization,the inorganic NPK fertilization significantly increased grain yields of wheat (21%) and maize (16%-72%) at Qiyang and Changping,where soils have low exchangeable and non-exchangeable K contents,but not at rmqi,Yangling and Zhengzhou,where soils have a high exchangeable and non-exchangeable K and/or low N/K ratio in crop plants.Compared to the inorganic NPK fertilization,the inorganic NPK (30% N) and organic manure (70% N) fertilization (NPKM) increased grain yields of wheat (14%-40%) and maize (9%-61%) at four sites,but not at Zhengzhou.For a productivity of wheat at 2-5 t ha-1 or maize at 3-6 t ha-1,13-26 or 9-17 kg K ha-1 were required to produce 1.0 t wheat or maize.The NP fertilization resulted in the lowest negative partial K balance and accumulated 52 kg K ha-1 year-1 less than the NPK fertilization,which accumulated 28 kg ha-1 year-1 less K than the NPKM fertilization.A re-evaluation of the site-specific fertilization effects on N/K ratio in crop plants and soil K accumulation under current NPK and NPKM fertilization is urgently needed to increase both crop yield and K use efficiency at different agroecological zones across China.  相似文献   

7.
The rice-wheat rotation in southern China is characterized by frequent flooding-draining water regime and heavy nitrogen(N)fertilization. There is a substantial lack of studies into the behavior of dissolved organic nitrogen(DON) in the intensively managed agroecosystem. A 3-year in situ field experiment was conducted to determine DON leaching and its seasonal and yearly variations as affected by fertilization, irrigation and precipitation over 6 consecutive rice/wheat seasons. Under the conventional N practice(300kg N ha-1for rice and 200 kg N ha-1for wheat), the seasonal average DON concentrations in leachate(100 cm soil depth) for the three rice and wheat seasons were 0.6–1.1 and 0.1–2.3 mg N L-1, respectively. The cumulative DON leaching was estimated to be1.1–2.3 kg N ha-1for the rice seasons and 0.01–1.3 kg N ha-1for the wheat seasons, with an annual total of 1.1–3.6 kg N ha-1. In the rice seasons, N fertilizer had little effect(P 0.05) on DON leaching; precipitation and irrigation imported 3.6–9.1 kg N ha-1of DON, which may thus conceal the fertilization effect on DON. In the wheat seasons, N fertilization had a positive effect(P 0.01)on DON. Nevertheless, this promotive effect was strongly influenced by variable precipitation, which also carried 1.8–2.9 kg N ha-1of DON into fields. Despite a very small proportion to chemical N applied and large variations driven by water regime, DON leaching is necessarily involved in the integrated field N budget in the rice-wheat rotation due to its relatively greater amount compared to other natural ecosystems.  相似文献   

8.
长期施肥对华北平原土壤生产力的影响   总被引:3,自引:0,他引:3  
Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil productivity and fertilizer applications affect crop yields. A long-term experiment with a winter wheat-summer maize rotation was established in 1989 in a field of the Fengqiu State Key Agro-Ecological Experimental Station, a region typical of the North China Plain, including seven treatments: 1) a balanced application of NPK chemical fertilizers(NPK); 2) application of organic fertilizer(OM); 3) application of 50% organic fertilizer and50% NPK chemical fertilizers(1/2OMN); 4) application of NP chemical fertilizers(NP); 5) application of PK chemical fertilizer(PK);6) application of NK chemical fertilizers(NK); and 7) unfertilized control(CK). To investigate the effects of fertilization practices on soil productivity, further pot tests were conducted in 2007–2008 using soil samples from the different fertilization treatments of the long-term field experiment. The soil sample of each treatment of the long-term experiment was divided into three pots to grow wheat: with no fertilization(Potunf), with balanced NPK fertilization(PotNPK), and with the same fertilizer(s) of the long-term field experiment(Potori). The fertilized soils of the field experiment used in all the pot tests showed a higher wheat grain yield and higher nutrient uptake levels than the unfertilized soil. Soil productivity of the treatments of the field experiment after 18 years of continuous fertilizer applications were ranked in the order of OM 1/2OMN NPK NP PK NK CK. The contribution of soil productivity of the different treatments of the field experiment to the wheat grain yield of Potoriwas 36.0%–76.7%, with the PK and NK treatments being higher than the OM, 1/2OMN, NPK, and NP treatments since the soil in this area was deficient in N and P and rich in K. Wheat grain yields of PotNPKwere higher than those of Potoriand Potunf. The N, P, and K use efficiencies were higher in PotNPKthan Potoriand significantly positively correlated with wheat grain yield. Soil organic matter could be a better predictor of soil productivity because it correlated more strongly than other nutrients with the wheat grain yield of Potunf. Wheat yields of PotNPKshowed a similar trend to those of Potunf, indicating that soil productivity improvement was essential for a further increase in crop yield. The long-term applications of both organic and chemical fertilizers were capable of increasing soil productivity on the North China Plain, but the former was more effective than the latter. The balanced application of NPK chemical fertilizers not only increased soil productivity, but also largely increased crop yields, especially in soils with lower productivity. Thus, such an approach should be a feasible practice for the sustainable use of agricultural soils on the North China Plain, particularly when taking into account crop yields, labor costs, and the limited availability of organic fertilizers.  相似文献   

9.
太湖地区地表水氮污染源的评论   总被引:11,自引:0,他引:11  
The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system (GPS). The seasonal variations in the concentrations of different N components in the rivers were measured. Using tension-free monolith lysimeters and ^15N-labeled fertilizer, field experiments were carried out in this region to determine variations of iSN abundance of NO3^- in the leachate during the rice and wheat growing seasons, respectively. Results showed that the main source of N pollution of surface waters in the Taihu Lake region was not the N fertilizer applied in the farmland but the urban domestic sewage and rural human and animal excreta directly discharged into the water bodies without treatment. Atmospheric dry and wet N deposition was another evident source of N pollutant of the surface waters. In conclusion, it would not be correct to attribute the N applied to farmlands as the source of N pollution of the surface waters in this region.  相似文献   

10.
中国太湖地区稻麦轮作农田硝态氮动态与氮素平衡   总被引:1,自引:0,他引:1  
Nitrate-nitrogen (NO 3--N) dynamics and nitrogen (N) budgets in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) rotations in the Taihu Lake region of China were studied to compare the effects of N fertilizer management over a two-year period. The experiment included four N rates for rice and wheat, respectively: N1 (125 and 94 kg N ha-1 ), N2 (225 and 169 kg N ha-1 ), N3 (325 and 244 kg N ha-1 ), and N0 (0 kg N ha-1 ). The results showed that an overlying water layer during the rice growing seasons contributed to moderate concentrations of NO 3--N in sampled waters and the concentrations of NO 3--N only showed a rising trend during the field drying stage. The NO 3--N concentrations in leachates during the wheat seasons were much higher than those during the rice seasons, particularly in the wheat seedling stage. In the wheat seedling stage, the NO 3--N concentrations of leachates were significantly higher in N treatments than in N0 treatment and increased with increasing N rates. As the NO 3--N content (below 2 mg N L-1 ) at a depth of 80 cm during the rice-wheat rotations did not respond to the applied N rates, the high levels of NO 3--N in the groundwater of paddy fields might not be directly related to NO 3--N leaching. Crop growth trends were closely related to variations of NO 3--N in leachates. A reduction in N application rate, especially in the earlier stages of crop growth, and synchronization of the peak of N uptake by the crop with N fertilizer application are key measures to reduce N loss. Above-ground biomass for rice and wheat increased significantly with increasing N rate, but there was no significant difference between N2 and N3. Increasing N rates to the levels greater than N2 not only decreased N use efficiency, but also significantly increased N loss. After two cycles of rice-wheat rotations, the apparent N losses of N1, N2 and N3 amounted to 234, 366 and 579 kg N ha-1 , respectively. With an increase of N rate from N0 to N3, the percentage of N uptake in total N inputs decreased from 63.9% to 46.9%. The apparent N losses during the rice seasons were higher than those during the wheat seasons and were related to precipitation; therefore, the application of fertilizer should take into account climate conditions and avoid application before heavy rainfall.  相似文献   

11.
猪粪沼液施用对稻、麦产量和氮磷吸收的影响   总被引:11,自引:0,他引:11       下载免费PDF全文
黄红英  曹金留  常志州  曹云 《土壤》2013,45(3):412-418
在江苏太湖稻麦轮作区,开展了连续2年不同沼液替代化肥比例及沼液基追比的等氮田间试验,结果表明:单施化肥处理(NPK)及沼液化肥配施处理水稻、小麦生物量及产量均显著高于无肥对照,各处理以75%沼液替代比例分3次施入(N75%)处理的水稻生物量和产量为最高,其生物量及产量分别比单施化肥处理提高2.7%和7.5%;而小麦生物量和产量以50%沼液替代比例(N50%)处理最高,其生物量和产量比单施化肥处理分别提高15.9%和7.8%.沼液化肥配施对稻麦的增产作用主要体现在提高水稻与小麦总穗数及穗粒数上;各处理水稻、小麦的氮素累积量和氮素当季表观利用率分别以75%(N75%)和50%(N50%)替代比例为最高;在50%~ 100%替代比例内沼液分次施用,水稻、小麦氮肥农学效率、偏生产力都高于化肥处理.水稻、小麦不同器官的氮分配比例显示,沼液配施化肥促进氮素向籽粒转移;相同沼液替代比例下,沼液分次施用水稻、小麦的产量、氮素累积量及氮素利用率均较基肥一次性施入高.稻、麦根、叶部磷含量分别以N75%和N100%处理最高.以上表明稻麦配施50% ~ 75%的沼液分3次施用,可获得与纯化肥处理相当的产量,且在一定程度上提高稻麦氮素利用率.  相似文献   

12.
田间试验研究了稻-麦轮作体系中减施氮肥对作物氮素吸收、利用和土壤氮素平衡的影响。结果表明,与当地习惯施肥(小麦:N 225 kg/hm2,基肥与分蘖肥各半;水稻:N 210 kg/hm2,基肥和分蘖肥为3∶2)相比,减氮20%~30%处理产量并没有降低,而氮肥当季利用率、氮素农学利用率以及氮素偏因子生产力则有所增加;而且,氮肥分次追施,能增加子粒产量,并减少氮肥成本。虽然减氮20%~30%处理0—40 cm土层无机氮含量较习惯施肥处理降低,但是并没有降低植株地上部对氮素的吸收。在小麦和水稻收获期,减施氮肥处理0—100 cm土壤无机氮残留量低于习惯施肥处理;且稻-麦轮作系统中氮的表观损失主要发生在水稻季。初步认为,在长江中下游平原稻-麦轮作体系氮素过量施用地区,第一个轮作周期减施氮肥20%~30%不仅不影响产量,而且可提高氮素利用率,有利于保护环境。  相似文献   

13.
以太湖流域典型稻麦轮作农田为研究对象开展大田试验,通过设置稻麦季均施磷(PR+W,当前农民施肥习惯)、麦季施磷稻季不施磷(PW)、稻季施磷麦季不施磷(PR)以及稻麦季均不施磷(Pzero,对照)四种施磷处理,提出麦季施磷稻季不施磷(PW)的减磷措施。四年八季作物研究结果表明:与传统PR+W处理相比较,PW处理的作物籽粒和秸秆产量均无显著变化,但却提高磷肥利用率3.54%,同时降低土壤速效磷累积量10.5%~36.7%,减少径流总磷浓度12.0%。据此推算,如果一个稻季不施磷肥,太湖流域1.02×106 hm2水稻土四年可节约P2O5约24万t,估算该流域每年可直接节约肥料投入成本3.06亿元。这表明采取麦季施磷稻季不施磷的减磷措施不仅能够保持稳产,而且可节约磷肥(磷矿)资源,降低水环境污染风险,具有农学、环境以及经济效益的三赢潜力。  相似文献   

14.
太湖地区不同轮作模式下的稻田氮素平衡研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用田间微区15N示踪,研究了太湖地区稻田不同轮作模式(紫云英-水稻轮作、休闲-水稻轮作、小麦-水稻轮作)和施氮水平(0、120 kg·hm?2、240 kg·hm?2、300 kg·hm?2)下水稻对氮肥的吸收利用效率及土壤氮素残留特征。结果表明,水稻吸收的氮素来自肥料的比例为20.9%~49.6%,休闲-水稻轮作模式下水稻产量的获得更加依赖无机氮肥的大量投入。当季水稻对肥料氮的利用率为25.0%~41.5%,肥料氮的土壤残留率为13.4%~24.6%,其中90%以上的土壤残留肥料氮集中在0~20 cm土层,在土壤剖面中的残留率随土层深度增加而迅速降低,30~40 cm土层的肥料残留量仅占氮肥施用量的0.2%~0.7%。紫云英?水稻轮作和休闲?水稻轮作模式下氮肥利用率和土壤残留率均在施氮240 kg·hm?2时达到最大值,其氮肥利用率显著高于小麦?水稻轮作55.6%和66.0%。稻季施氮240 kg·hm?2时,小麦-水稻轮作模式下的氮肥利用率、土壤残留率以及总回收率显著最低,损失率显著最大;紫云英?水稻轮作模式下的氮肥损失率最小,分别小于休闲?水稻轮作和小麦-水稻轮作13.9%、39.2%。不同轮作模式下,水稻籽粒产量随施氮量的增加而增加,稻季施氮240 kg·hm?2时,紫云英?水稻轮作下水稻籽粒产量显著高于休闲?水稻轮作和小麦?水稻轮作,小麦?水稻轮作籽粒产量虽略高于休闲?水稻轮作,但没有达到显著水平。本研究认为,选择紫云英还田配施氮肥240 kg·hm?2,既可以保证水稻氮肥利用率而获得高产,又能减少氮肥损失而带来的环境风险,是一种值得在当地大力推广的耕作制度。  相似文献   

15.
基于长期定位试验的典型稻麦轮作区作物产量稳定性研究   总被引:15,自引:6,他引:9  
为探讨长期施肥条件下作物持续稳产和高产的途径,利用始于1980年的江苏太湖典型稻麦轮作区水稻土长期定位试验,分析水稻和小麦不同年份产量数据和土壤养分数据,研究了长期不同施肥方式对作物产量稳定性的影响,以及作物产量波动和土壤养分变化相关性。结果表明:各处理试验小区水稻和小麦的平均产量均呈锯齿状波动,受气候和其他因素影响不同年份间的产量变动差异较大。数十年期间,各施肥处理包括对照的水稻和小麦产量均有增长趋势,水稻增产趋势较小麦明显,小麦产量年际间的波动较大。有机肥与化肥配施和秸秆还田较单施化肥或有机肥有更明显的增产效果。水稻产量的稳定性高于小麦,各处理水稻产量的变异系数(CV)较小麦低,而稳定性系数(SYI)较高。其中MPK(有机肥+化肥磷钾)处理的产量稳定性最高,而MNPK(有机肥+化肥氮磷钾)的稳定性最低。施化肥尤其是氮肥可能是造成产量稳定性降低的一个因素。氮肥是增产的主要因素,也可能是引起稻田生态系统稳定性降低的因素。水稻和小麦产量与土壤氮素之间的相关性较显著、相比旱季,在稻季条件下,水稻产量稳定性更高,且增产趋势更明显,说明稻田土壤生态系统可能稳定性较高,并且随着耕作年限的延长其稳定性有提高趋势。  相似文献   

16.
  【目的】  普遍认为,相同施肥量下增加施肥次数有利于提高肥料利用率,但施肥次数偏多已成为江苏稻麦化肥过量投入的主要因素。一次施肥仍存在争议,基肥结合分蘖期追肥的两次施肥也会导致水稻生长后期养分供应不足,明确基肥结合抽穗期追肥的两次施肥效果对稻麦化肥减量具重要意义。  【方法】  2016—2019年开展稻麦轮作田间定位试验,分析产量和产量组成、氮肥累积效率和氮素累积盈余。定位试验为完全随机区组设计、4次重复,设不施氮 (CK)、习惯施肥 (CF)、推荐施肥 (相对于CF处理水稻减氮18.2%、小麦减氮22.2%,RF) 和推荐施氮量下基施4种类型氮肥(尿素U、硫包膜尿素SCU、聚合物包膜尿素PCU和尿素添加5%双氰胺NIU)结合抽穗期追肥 (BH) 两次施肥 ,共7个处理。2018—2019年,使用以普通尿素为氮源的改良配方肥 (IFF) 和含硝化抑制剂的稳定性复合肥 (SCF) 做基肥,进行稻麦两次施肥(BH)田间验证试验,以农户实际 (FP) 为对照比较施肥成本和种植效益。  【结果】  定位试验结果表明,与农户习惯 (CF) 比较,推荐施肥处理 (RF) 对稻麦产量均无显著影响;与推荐施肥比较,相同施氮量下基施不同类型氮肥结合抽穗期追肥的两次施肥处理对稻麦产量也无显著影响。施氮量减少可使稻麦氮肥累积效率显著增加、氮素累积盈余显著减少,而施肥次数减少对稻麦氮肥累积效率和氮素累积盈余均无显著影响。相同施氮量下基施不同类型氮肥结合抽穗期追肥两次施肥条件下,稻麦产量和氮肥效率均以含硝化抑制剂的尿素处理 (NIU-BH) 表现较好;小麦上使用聚合物包膜尿素处理 (PCU-BH) 效果不稳定。验证试验结果表明,基施改良配方肥两次施肥 (IFF-BH) 和基施稳定性复合肥两次施肥 (SCF-BH) 与农户实际比较,水稻可在施氮量减少18.2%~33.8%条件下使产量分别增加1.8%~4.5%和2.6%~6.1%,施肥成本分别减少1069~1538和473~1029元/hm2,净收益分别增加1950~2270和1168~2126元/hm2;小麦可在施氮量减少30.0%条件下使产量分别增加0.7%和9.7%,施肥成本分别减少1132和495元/hm2,净收益分别增加1387和2045元/hm2。  【结论】  在本研究条件下,定位试验和验证试验结果均表明,采用基肥加抽穗期追肥两次施肥,配合选择合适类型的肥料做基肥,可在施氮量减少18.2%~33.8%前提下稳定稻麦产量、提高氮肥效率和种植效益。  相似文献   

17.
聚脲甲醛缓释肥对太湖稻麦轮作体系氨挥发及产量的影响   总被引:8,自引:3,他引:5  
【目的】 通过研究尿素和聚脲甲醛缓释肥 (MU) 对太湖地区稻麦轮作体系氨挥发、氮肥利用率及产量的影响,为新型缓释肥料的推广和降低农田氨挥发损失提供理论依据。 【方法】 田间小区试验在江苏苏州进行,种植制度为水稻小麦轮作,供试聚脲甲醛缓释氮肥有两个,MU70 (含氮量39%) 和MU50 (含氮量40%),供试土壤为潜育型水稻土。除对照外,施氮量稻季为N 270 kg/hm2,麦季为N 190 kg/hm2。以施用普通尿素为对照,试验共设6个处理,分别为100%MU50 (单施缓释肥)、100%MU70、50%MU50 (缓释肥配施尿素)、50%MU70、当地常规 (U) 和对照 (CK)。各处理中缓释肥全部用于基施,尿素分三次追施。施肥后的第二天采用密闭室间歇通气—稀硫酸吸收法测定田间氨挥发通量。收获期测产,计算各处理的经济收益。 【结果】 氨挥发主要发生在稻季,稻季施用MU可降低稻田的氨挥发损失,表现为100%MU50≈100%MU70 < 50%MU50≈50%MU70 < U。相比U处理,单施MU可导致水稻减产,而MU配施尿素可保证产量,50%MU50和50%MU70的产量比U处理分别提高了5.7%和3.2%;麦季单施MU处理的氨挥发和产量均显著低于U处理,50%MU50和U处理的氨挥发和产量无明显差异,而50%MU70处理的氨挥发损失高于U处理。稻季和麦季的MU与尿素配施处理的氮肥利用率均高于U处理的,而单施MU处理的氮肥利用率均显著低于U处理的,其中不同的是,稻季50%MU50处理的氮肥利用率比U处理显著提高了8.1%;麦季50%MU70处理的氮肥利用率比U处理的显著提高3%。 【结论】 综合考虑农学和环境效益,稻麦轮作体系50%MU50的总净收入是30259元/hm2,相比U处理 (30168元/hm2) 差异不大,但前者显著降低了氨挥发损失,提高了氮肥利用率。因此,MU50和尿素1∶1配施模式值得在太湖地区推广应用。   相似文献   

18.
朱文彬  曾科  田玉华  张超  李晓  葛仁山  尹斌 《土壤》2023,55(4):729-738
本研究以太湖地区稻田为研究对象开展连续两年的田间试验,通过设置不施氮肥(CK)、常规施氮(CN)、减氮表施(RN)、减氮侧深施(RNS)和减氮穴施(RNP)5种施氮处理,探究不同深施方式对稻田氨挥发与氮肥利用率的影响。结果表明,与表施处理(CN和RN)相比,RNS和RNP通过降低田面水NH4+-N浓度和pH分别减少30.95%~41.54%和66.71%~72.23%的氨挥发排放(P<0.05)。相较于RN处理,RNP促进水稻根系生长并增加根区土壤有效氮含量,进而增加水稻产量(6.23%),提高氮肥利用率(50.15%),降低土壤氮盈余(63.92%)(P<0.05)。与CN处理相比,RNS显著降低土壤氮盈余(29.20%)(P<0.05),但水稻吸氮量和氮肥利用率均未显著增加。相较于RNS,RNP进一步降低氨挥发损失(50.84%)和土壤氮盈余(51.07%),提高氮肥利用率(40.40%)(P<0.05)。综上所述,RNP的农学和环境效益最高,但因穴施机械及肥料造粒技术等因素的限制,尚难应用于实际生产;而侧深施肥在我国水稻大规模集约化生产中效益较高且切实可行。  相似文献   

19.
Due to increased economic and environmental concerns, developing statistical models of crop yield has become one of the most important steps in determination of the cost effective rates (CERs) of nitrogen (N) fertilization. Although quadratic models are commonly used to describe wheat and paddy rice yield response to fertilizer rates in the Taihu Lake region of China, few studies have investigated why this model is selected over others. This study evaluated quadratic, exponential and square root models describing the wheat (Triticum aestivum L.) and rice (Oryza sativa L.) yield response to N fertilizer when determining the CERs, while also considering the environmental costs of N losses. All models fit the data almost equally well when evaluated using the variability and standard error statistics. However, there were marked discrepancies among models when calculating the CER of fertilization and the economic returns form Z-test. The quadratic model had a greater CER value (194?kg N ha–1 for rice and 185?kg N ha–1 for wheat) averaged over all sites than the exponential and square root models. The residuals obtained from the quadratic models were closer to a normal distribution than those of the other two models, indicating a less systematic bias. The mean economic uncertainties resulting from the quadratic model were more dependable than the other two models evaluated. These results show that the quadratic model best describes the rice and wheat yield responses and tends to indicate the optimal rates of fertilization while considering the environmental and economic effects of over fertilization for rice and wheat in the Taihu Lake region.  相似文献   

20.
太湖地区黄泥土水稻适宜施氮量研究——长期定位试验   总被引:1,自引:0,他引:1  
在长期定位试验的基础上,研究了黄泥土(太湖地区主要土壤类型)不同肥料配施土壤N供应、植株N吸收及产量之间的关系。结果表明,土壤N供应和植株N吸收、植株N吸收和产量之间呈显著正相关关系。在本试验条件下,稻季N施入161.00~241.00kg/hm2,产量达7285~8172kg/hm2,与该地区大面积产量基本一致;长期不施肥,能维持一定的产量;长期仅施入有机肥,不能满足水稻对N的需要,产量较低;长期不施入P、K,对产量影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号