首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
微孔曝气流量与曝气管长度对水体增氧性能的影响   总被引:4,自引:2,他引:2  
为了探究曝气流量与曝气管长度对增氧性能的影响,在不同曝气流量、不同曝气管长度条件下进行了室内水体底部微孔曝气增氧试验。分析了曝气流量与曝气管长度对氧体积传质系数、增氧量和氧利用率的影响。研究结果表明,当曝气流量为0.27~0.55 m3/s、曝气管长为0.9~1.5 m时,所对应的氧体积传质系数在0.63~1.1 h-1变化,增氧量在6.8~12.9 g/h变化,氧利用率在6.87%~9.28%变化,且在一定的曝气管长度下,氧体积传质系数、增氧量均与曝气流量成正比,而氧利用率则与其成反比关系;在一定的曝气流量下,曝气管长度对氧体积传质系数产生的影响表现为先高后低再高的趋势;氧体积传质系数与修正的饱和溶解氧浓度是否作为增氧量的主要影响因子取决于曝气管长度;曝气流量对氧利用率较曝气管长度更为敏感。研究还发现,微孔曝气系统中存在着最优曝气管长度,使得增氧性能最佳,并建立了最优曝气管长度与曝气流量、水深、输入压力、最优初始气泡直径的相关关系式,为低碳经济下微孔曝气系统的设计和运行提供了理论依据。  相似文献   

2.
曝气增氧微气泡-水界面和水体表面的氧传质的计算分析   总被引:3,自引:3,他引:0  
在水产养殖池塘中微孔曝气充氧系统日益受到关注,为了探究微气泡-水界面与水表面湍动对氧传质的贡献,在不同曝气流量、不同淹没水深条件下进行了水体底部微孔曝气增氧试验。基于氧体积传质理论,采用美国土木工程协会推荐的计算模型和两区氧传质模型进行耦合求解,计算得到了水体底部微孔曝气增氧过程中气泡-水界面和水表面湍动扩散氧体积传质速率。对温度修正后的体积传质速率进行分析,结果表明,在一定的淹没水深下,气泡-水界面和水表面湍动扩散氧体积传质速率均与曝气流量成正比;而在一定的流量下,气泡-水界面和水表面湍动扩散氧体积传质速率与水深成反比。针对于浅型养殖池塘,随着曝气管淹没水深的增加,虽然水表面传质的贡献率有所下降,但是其贡献仍然很大,占到了80%以上。结合微孔曝气式增氧系统具有能耗较低、安装简单等优点,采用微孔曝气式增氧系统对浅型水域增氧和湍动混合具有较大优势,值得推广采用。  相似文献   

3.
池塘微孔曝气和叶轮式增氧机的增氧性能比较   总被引:4,自引:4,他引:0  
为研究池塘养殖中微孔曝气与叶轮式增氧机的增氧性能,用2种增氧机在清水池和鱼类养殖池塘中进行了增氧性能和溶氧值变化的比较研究。结果表明,在清水池中,微孔曝气的增氧能力、动力效率分别高出叶轮式增氧机82%和84%;而在鱼塘中,叶轮式增氧机对整个池塘的平均溶解氧增加值比微孔曝气高94%,且叶轮式增氧机对池塘水体有比较好的混合能力,缩小水层氧差能力比微孔曝气高出45.7%。研究表明在本鱼塘试验中,目前叶轮式增氧机是比同等功率配置的微孔曝气更合适的增氧方式。  相似文献   

4.
从增氧型复合垂直流人工湿地中采集样品,利用间歇曝气法富集好氧反硝化菌,并进行分离纯化,共得到10株好氧反硝化菌。其中编号为B13的菌株在初始硝态氮含量为277.23mg·L-1、碳氮比为5的条件下,24h的硝态氮去除率达92.80%,亚硝态氮积累只有12.57mg·L-1,脱氮速率达到20.58mg·L-·1h-1。16S rDNA序列分析表明,该菌与Pseudomonas stutzeri同源性达100%。选用四因素三水平L(934)正交试验表设计实验,通过测定对硝态氮去除能力和亚硝态氮的积累量,研究碳源、碳氮比(C/N)、pH以及溶解氧含量(DO)4种不同因素对B13号菌株好氧反硝化性能的影响。结果表明,该菌株对硝态氮的去除率最大可达99.88%,几乎没有亚硝态氮积累。对硝态氮去除率影响最大的因素为碳氮比,其次为pH,溶解氧含量和碳源。对应的最优条件是碳源为葡萄糖,碳氮比为10,pH为9,溶解氧含量为1.84~3.57mg·L-1。  相似文献   

5.
NaCl及生物降解活性剂对曝气灌溉水氧传输特性的影响   总被引:1,自引:1,他引:0  
曝气灌溉可有效调节植物根区环境、改善土壤通气性。微咸水中NaCl的存在及活性剂添加对提高曝气灌溉的氧传质效率,实现节能高效的灌溉有重要作用。为研究NaCl介质及生物降解活性剂对纯氧曝气灌溉水氧传输特性的影响,该文采用变压分离制氧技术-氧气扩散系统-空气注射技术耦合系统,分析NaCl介质(未添加和添加)及生物降解活性剂BS1000(醇烷氧基化物质量浓度0、1、2、4 mg/L)2个因素对氧总传质系数、溶氧饱和度、流量均匀系数和溶氧均匀系数的影响。结果表明:BS1000的添加促进氧传质过程的发生,提高了曝气水中的溶氧饱和度;随着BS1000浓度增加,氧总传质系数逐渐增加,而溶氧饱和度呈现下降的趋势;BS1000质量浓度在2 mg/L及以上时,NaCl介质对氧总传质系数的增幅显著;NaCl介质对曝气水中的溶氧饱和度起到抑制作用。各组合条件下,曝气滴灌中流量均匀系数均在95%以上,溶氧均匀系数均在97%以上。添加活性剂BS1000可使氧总传质系数平均提高18.85%以上(P0.05)。无论添加NaCl与否,添加1 mg/L BS1000的溶氧饱和度均最大,故1 mg/L BS1000是适宜的活性剂添加浓度。  相似文献   

6.
一种新型鼓泡曝气装置的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
一种由增强PVC材料制成的微孔曝气软管,外径25mm,其管壁上有不通的锥孔,锥顶接近外表面,大端孔径0.05mm,每米管长有2万个孔。在充气压力下,锥孔打开,并产生0.25~1mm的气泡,额定过流能力为1m/(h·m),试验表明该管有较高的增氧能力和增氧动力效率(4~6kg/kW·h),可广泛用于污水处理和水产养殖  相似文献   

7.
不同增氧方式对精养池塘溶氧的影响   总被引:1,自引:1,他引:0  
当前对于在精养池塘中如何配制和合理使用不同机械增氧方式缺乏系统的比较研究。该文为了探讨高温季节晴好天气不同机械增氧方式对池塘溶氧全天调控的影响,试验设计如下:于夏天高温季节集中对精养池塘应用3种不同增氧方式,在晴好天气的白天和夜间进行增氧效果试验。结果发现:无论增氧机开启与否,池塘的溶氧都存在明显的昼夜起伏,且在午后出现峰值。增氧机的开启增强了上下水层交换,削减了氧差,减少了上层溶氧的逸出损失,提升了下层水体的低溶氧水平。池塘上层溶氧起伏程度大于下层,下层溶氧变化滞后于上层(下层溶氧出现峰值落后于上层约2~5 h),且这种滞后性为增氧机运行所削弱。夜间增氧能向池塘补充溶氧,但仍不足以弥补鱼类和浮游生物的代谢、微生物的生长及有机物的氧化分解造成的溶氧损耗。单从机械增氧能力来看,叶轮式>微孔式>耕水机。综合分析节能和增氧效果,在精养池塘养殖环境下,白天开机增氧选择耕水机较为合适,而夜间应急增氧选择叶轮式更可取。试验通过对不同机械增氧方式增氧效果和能耗的系统比较,为合理选择和使用增氧方式提供了一定的参考价值。  相似文献   

8.
通过对现有曝气装置的分析比较,在双膜理论的基础上,设计了三管引射式曝气装置,研究了各因素对增氧性能的影响,建立了有关回归方程式。试验和回归结果显示,曝气装置的截面积比、进气量、曝气深度以及混合室和扩散器的型式等是影响曝气性能的几个主要因素,选择合适的截面积比可使曝气的动力效率达到某一最佳值,而增大进气量和曝气深度可明显提高动力效率,不同型式的混合室和扩散器对动力效率也有不同的影响。此外,还对该装置进行了污水处理试验,也取得了较好的结果。从而为污水处理提供了一种新型、高效的曝气装置。  相似文献   

9.
循环曝气压力与活性剂浓度对滴灌带水气传输的影响   总被引:10,自引:9,他引:1  
适宜的工作压力及表面活性剂浓度对循环曝气效率的提高及地下滴灌水气传输优化具有重要意义。利用循环曝气系统,设置工作压力和活性剂浓度2因素3水平共9个曝气组合,每组均进行非曝气对照试验,分析曝气组合条件对掺气比例、氧传质效率、滴灌带水气传输均匀性的影响。结果表明:循环曝气条件下,不添加活性剂时,压力提高有利于掺气比例增加,添加后,趋势相反;压力一定时,掺气比例随活性剂浓度升高而增加;滴灌带出水均匀性和出气均匀度分别在95%和70%以上;活性剂浓度及压力对氧传质系数分别起到了促进和抑制作用,活性剂的添加大大缩短了曝气时间;掺气比例计算方法能够准确反映曝气滴灌系统中水气传输特性。研究结果对循环曝气滴灌系统水气传输效率的提高及运行成本的降低有重要指导。  相似文献   

10.
通过对两种规格的倒刺(Sp in ibarbus d enticu la tus)鱼苗在两种水温条件下进行耗氧率与窒息点测定,结果表明:平均体重(3.53±0.10)g的倒刺鱼苗在水温27.3~28.3°C和30.0~31.0°C时耗氧率分别为0.357 7 m g/(g.h)和0.319 9 m g/(g.h),窒息点分别为0.327 0 m g/L和0.313 1 m g/L;平均体重(7.62±0.11)g的倒刺鱼种在水温27.3~28.3°C和30.0~31.0°C耗氧率分别为0.281 9 m g/(g.h)和0.300 9 m g/(g.h),窒息点分别为0.365 9 m g/L和0.478 4 m g/L。倒刺鱼苗的耗氧率昼夜变化不明显,随着鱼体重的增加而降低,而窒息点则随体重的增加而增加。  相似文献   

11.
转速、浸没深度和液位高度对倒伞曝气机曝气性能的影响较大,为了研究各影响参数协同作用下倒伞曝气机曝气性能的变化情况,该文通过试验研究了不同转速、浸没深度和液位高度对曝气性能的影响。研究表明:在相同转速时随着运行时间的增加曝气池溶解氧浓度随之增大,但增幅逐渐降低;随着转速的增加,叶轮对水的做功能力增强,提高了水面的湍动强度及水面下的复氧强度,进而缩短了曝气池达到氧饱和的时间,转速为300 r/min达到氧饱和的时间比150 r/min缩短了约57%。转速、浸没深度和液位高度的改变均会极大地影响倒伞曝气机的性能:转速的增加能够提升倒伞曝气机的标准氧总转移系数和标准充氧能力,但对于标准动力效率的提升有一个上限值,该上限值与浸没深度有关;倒伞曝气机低速运行时,浸没深度和液位高度对标准氧总转移系数和标准充氧能力的影响较小。液位高度的增加会加大倒伞曝气机的标准充氧能力和标准动力效率,但是相同液位高度下,随着转速的增加标准动力效率增幅明显小于标准充氧能力增幅,当液位高度为250 mm时,转速从150增加到300 r/min,标准充氧能力值提高2.91倍而标准动力效率提高1.22倍。该研究可为倒伞曝气机的经济运行提供参考。  相似文献   

12.
移动式太阳能增氧机的增氧性能评价   总被引:4,自引:3,他引:1  
为改善池塘养殖环境,设计了一种移动式太阳能增氧机,由光伏供电装置和水面行走装置搭载涌浪机而成,能在水面沿钢丝绳移动并利用涌浪机的波浪增氧和水层交换作用,大范围扰动水体并为池塘增氧。该研究的目的是通过机械增氧效率检测、提水能力测定和池塘增氧能力测定3个试验,评估太阳能增氧机的机械增氧性能、水层交换性能和实际应用效果,以期全面了解移动增氧机增氧能力。结果表明,该移动式太阳能增氧机最大机械增氧能力为1.24 kg/h,动力效率2.59 kg/(k W·h);最大提水能力1 254.4 m3/h,提水动力效率2 613.3 m3/(k W·h);并在晴好天气白天(09:00—19:00),在对照组底层溶氧为3.1~3.8 mg/L时,大幅度提升池塘底层溶氧水平,最高时达7.8 mg/L,维持池塘上下溶氧均匀度72%~84%,极大改善了底层溶氧环境。数据表明移动式太阳能增氧机具有良好的机械增氧和水层交换性能,因而能有效改善池塘底层溶氧环境,提高上下水体溶氧均匀度。该研究结果可为太阳能增氧机的进一步推广应用提供数据支撑。  相似文献   

13.
几种机械增氧方式在池塘养殖中的增氧性能比较   总被引:15,自引:7,他引:8  
为评价池塘养殖中主要机械增氧方式的性能优劣,该文通过增氧清水试验和水产养殖池塘中实地试验,研究了几种机械增氧方式在清水试验中的增氧能力,动力效率和实际池塘中的溶解氧变化。结果表明,在清水中,叶轮增氧机增氧能力分别高出水车和螺旋桨增氧机4%和264%,动力效率分别高出12.7%和259%;在池塘中,叶轮增氧机对池塘水层的混合均匀时间要比水车和螺旋桨增氧机快40%,对溶解氧的增加值分别高115%和293%。叶轮增氧机综合增氧性能要高于水车和螺旋桨增氧机,螺旋桨增氧机综合增氧性能最差。该研究为在池塘养殖中合理运用机械增氧方式提供了有益的借鉴。  相似文献   

14.
基于氧传质的池塘机械增氧节能技术   总被引:6,自引:3,他引:3  
该文通过对不同形式池塘机械增氧试验与分析,基于氧传质理论,提出了通过改变运行控制状况和使用方法达到池塘机械增氧设备节能的方法,试验结果表明利用该方法可节省能耗平均达4%,配合采用水层交换机械代替增氧机运行部分时间后,与传统增氧机运行方式比较,总体节省能耗达29.2%。该方法对池塘机械增氧节能运用和开展池塘智能化增氧研究具有指导意义。  相似文献   

15.
涌浪机在对虾养殖中的增氧作用   总被引:5,自引:4,他引:1  
溶解氧是对虾正常代谢和生长中所必需的,为了探索对虾养殖增氧方式的新途径,该文进行了涌浪机在高位池凡纳滨对虾高密度养殖条件下增氧情况的研究,并进行了不同天气状况下与水车增氧机增氧效果的对比。试验表明:涌浪机在晴好天气下增氧能力远超同功率水车增氧机。在试验养殖密度约为10000kg/hm2时,0.75kW涌浪机在晴好天气白天时与同功率水车增氧机相比,使池中溶解氧质量浓度平均提高1.24mg/L,但在阴雨天和夜间涌浪机的增氧效果较差,增氧能力与同功率水车增氧机相近。因此,涌浪机在实际应用中需与其他增氧模式相结合使用,将会取得较好的增氧效果。  相似文献   

16.
叶轮式增氧机的研究   总被引:3,自引:1,他引:3  
本文对叶轮式增氧机工作时的池塘溶氧分布作了试验研究;对氧气在气—水界面上的传递与增氧机的功耗作了分析探讨。提出了通过增大气流速度,采用阶递形池底、局部增氧来提高增氧机效率的新论点;为增氧机的研制与应用提供了新的方法和依据。  相似文献   

17.
移动式太阳能增氧机的研制   总被引:2,自引:0,他引:2  
为提高池塘养殖的机械增氧效率,应用Solidworks软件设计了移动式太阳能能增氧机,该设备由太阳能动力组件、水面行走机构、增氧装置和运动控制系统等组成。移动式太阳能增氧机可在水面自主行走,产生波浪和实现上下水层交换。性能测试表明,移动式太阳能增氧机的光照启动强度为17 000 lx,空载噪声为75.3 d B,水面行走机构的行走速度在0.027~0.041 m/s之间波动,无线遥控距离为44.2 m,在增氧装置位置的最大浪高为0.44 m。随着光照强度的增强,增氧装置增氧效率和扰动水体能力增强,最大机械增氧能力为1.24 kg/h,动力效率2.59 kg/(k W·h);最大扰动水体1 254.4 m3/h,扰水动力效率2 613.3 m3/(k W·h)。移动式太阳能增氧机利用太阳能作为能源,在池塘水体中运行面积大、运行时间长,强化了池塘自身的自净能力,具有生态调控的功能,有利于池塘物质循环和水质改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号