首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Abstract. A two year field study was conducted to evaluate the effects of straw management and tillage on the soil profile (1.5m) water storage, nature of the moisture profile, infiltration and sorptivity as influenced by rainfall, evaporativity (E0) and soil texture. The straw mulch treatment stored more moisture under low E0 rainy conditions in three coarse to medium textured soils. Straw incorporation treatment was better under low E0 rain free conditions, as well as under high E0 rainy conditions in the two coarser textured soils. In the coarsest textured soil, tillage and straw mulching were not effective in maintaining greater soil water storage under high E0 because of the very open nature of the soil. The soil moisture profiles showed a sharper increase in water content below the tilled layer in the tillage and straw- incorporation treatments than the untreated and straw mulch treatments. Tillage and straw incorporation treatments increased the sorptivity of the soil compared with untreated and straw mulch treatments respectively. The results of this study suggest that when selecting a suitable soil water conservation practice to increase water storage in the soil profile, information on soil texture and weather (rain and evaporativity) must be considered.  相似文献   

2.
Several previous field studies in temperate regions have shown decreased soil respiration after conventional tillage compared with reduced or no‐tillage treatments. Whether this decrease is due to differences in plant residue distribution or changes in soil structure following tillage remains an open question. This study investigated (1) the effects of residue management and incorporation depth on soil respiration and (2) biological activity in different post‐tillage aggregates representing the actual size and distribution of aggregates observed in the tilled layer. The study was conducted within a long‐term tillage experiment on a clay soil (Eutric Cambisol) in Uppsala, Sweden. After 38 y, four replicate plots in two long‐term treatments (moldboard plowing (MP) and shallow tillage (ST)) were split into three subplots. These were then used for a short‐term trial in which crop residues were either removed, left on the surface or incorporated to about 6 cm depth (ST) or at 20 cm depth (MP). Soil respiration, soil temperature, and water content were monitored during a 10‐d period after tillage treatment. Respiration from aggregates of different sizes produced by ST and MP was also measured at constant water potential and temperature in the laboratory. The results showed that MP decreased short‐term soil respiration compared with ST or no tillage. Small aggregates (< 16 mm) were biologically most active, irrespective of tillage method, but due to their low proportion of total soil mass they contributed < 1.5% to total respiration from the tilled layer. Differences in respiration between tillage treatments were found to be attributable to indirect effects on soil moisture and temperature profiles and the depth distribution of crop residues, rather than to physical disturbance of the soil.  相似文献   

3.
耕作方式与秸秆还田对土壤呼吸的影响及机理   总被引:18,自引:3,他引:18  
为探明耕作方式、秸秆还田以及二者交互对冬小麦-夏玉米一年两熟农田土壤呼吸特征的影响,通过两年田间裂区设计试验,研究了不同土壤耕作方式(常规翻耕、深翻、深松)与秸秆还田(秸秆还田、秸秆不还田)对周年农田土壤呼吸速率、相关土壤理化性状(土壤温度、水分、紧实度、有机碳含量)的影响、两因素的互作效用,以及土壤物理性状与土壤呼吸速率的相关性。结果表明,深耕(深翻和深松)显著增加了全年土壤呼吸速率;秸秆还田增加了冬小麦季的土壤呼吸速率,却显著降低了夏玉米季的土壤呼吸速率;深耕+秸秆还田可使冬小麦季和夏玉米季的土壤呼吸速率分别增加41.9%和21.0%。土壤温度、土壤有机碳与土壤呼吸速率呈正相关,土壤紧实度与土壤呼吸速率呈显著负相关,且土壤温度与土壤呼吸速率相关系数最大。深耕与秸秆还田交互使冬小麦和夏玉米的干物质积累量分别提高34.9%和38.2%,根系干质量密度分别提高45.0%和39.4%,故在秸秆还田的基础上深翻或深松是黄淮海地区适宜的耕作方式。该研究结果可为制定黄淮海地区科学有效的土壤耕作方式提供理论依据。  相似文献   

4.
【目的】黄土旱塬半湿润易旱区是典型的雨养农业区,多数一年一熟或两年一熟制,冬小麦和春玉米是该区主要的粮食作物,平衡施肥是主要的施肥方式。多年研究和生产实践证明,建立与不同作物轮作方式相配套的土壤轮耕技术体系,可以为作物生长发育创造良好的土、 肥、 水、 气、 热的土壤环境条件,保持农田生态健康发展,促进作物增产增收。本文在当地平衡施肥条件下,通过多年耕作模式定位试验,研究在平衡施肥条件下,不同土壤耕作模式对休闲期和作物生育期0200 cm土层蓄水纳墒状况、 作物产量及其经济效益的影响,为黄土旱塬半湿润易旱区建立在一定肥力水平下与作物轮作体系相配套的土壤轮耕模式提供理论依据。【方法】选择位于黄土旱塬半湿润易旱区腹地的陕西省合阳县甘井镇一年一熟旱作冬小麦春玉米轮作田为试验区,采用免耕、 深松和翻耕3种土壤耕作方法组成4种土壤轮耕模式,即: 翻耕免耕翻耕免耕(RT1); 深松翻耕深松翻耕(RT2); 免耕深松免耕深松(RT3); 免耕翻耕深松免耕(RT4); 以连年翻耕(CK1)、 连年深松(CK2)和连年免耕(CK3)为对照,通过连续4年(2007~2011年)定位试验,研究平衡施肥条件下的7种土壤耕作模式对冬小麦春玉米轮作田0200 cm土层土壤贮水量、 土壤水分含量、 作物籽粒产量、 水分利用效率(WUE)和经济效益的影响。【结果】 1)在土壤休闲期,RT3模式下0200 cm土层土壤贮水量最高,其次是RT2。与对照组相比,4种轮耕模式0200 cm土层土壤贮水量均高于CK1; RT3显著高于CK3,但与CK2差异不显著。0200 cm土层土壤剖面含水量,亦以RT3模式最高。2)在冬小麦生育期,0200 cm土层土壤贮水量和土壤含水量,RT3和CK2模式的较高。3)在春玉米生育期,0200 cm土层土壤贮水量和土壤含水量RT3和CK3较高。4)不同耕作模式的作物籽粒产量、 水分利用效率(WUE)和经济效益,以RT2和CK2模式最高。四年平均结果RT2处理较CK1、 CK2和CK3处理增产10.2%、 3.6%和17.1%,增收23.6%(P0.05)、 6.8%(P0.05)和28.3%(P0.05),提高WUE 9.7%(P0.05)、 4.3%和18.6%(P0.05)。【结论】年际间轮流进行深松和翻耕(RT2)处理,虽然其在土壤蓄水保墒效应方面略低于年际间轮流进行免耕和深松(RT3)和连年深松(CK2)处理,但可获得最佳增产增收效果和最高水分利用效率; 连年深松能够增加水分入渗,保护土壤,增加蓄水能力,但产量和经济效益不如RT2处理,也是该区比较适宜的耕作方法。根据实际状况,在平衡施肥条件下的一年一熟作物轮作区,应推荐深松翻耕的轮耕或连年深松的耕作模式。  相似文献   

5.
Based on data from 10-year field experiments on residue/fertilizer management in the dryland farming region of northern China, Century model was used to simulate the site-specific ecosystem dynamics through adjustment of the model's parameters, and the applicability of the model to propose soil organic carbon (SOC) management temporally and spatially, in cases such as of tillage/residue/fertilization management options, was identified v/a scenario analysis.Results between simulations and actual measurements were in close agreement when appropriate applications of stover,manure and inorganic fertilizer were combined. Simulations of extreme C/N ratios with added organic materials tended to underestimate the measured effects. Scenarios of changed tillage methods, residue practices and fertilization options showed potential to maintain and enhance SOC in the long run, while increasing inorganic N slowed down the SOC turnover rate but did not create a net C sink without any organic C input. The Century model simulation showed a good relationship between annual C inputs to the soil and the rate of C sequestration in the top 20 cm layer and provided quantitative estimations of changes in parameters crucial for sustainable land use and management. Conservation tillage practices for sustainable land use should be integrated with residue management and appreciable organic and inorganic fertilizer application, adapted according to the local residue resource, soil fertility and production conditions. At least 50% residue return into the soil was needed annually for maintenance of SOC balance, and manure amendment was important for enhancement of SOC in small crop-livestock systems in which crop residue land application was limited.  相似文献   

6.
Little is known about the long-term effects of tillage and crop residue management on soil quality and organic matter conservation in subarctic regions. Therefore, we quantified wet aggregate stability, bulk density, pH, total organic C and N, inorganic N, microbial biomass C and N, microbial biomass C:N ratio, microbial quotient, and potential C and N mineralization for a tillage/crop residue management study in central Alaska. Soil from no-till (NT), disked once each spring (DO), and disked twice (DT, spring and fall) treatments was sampled to 20 cm depth in spring and fall of the 16th and 17th years of the study. Crop residues were either retained or removed after harvest each year. Reducing tillage intensity had greater impact on most soil properties than removing crop residues with the most notable effects in the top 10 cm. Bulk density was the only indicator that showed significant differences for the 10–20 cm depth, with values of 0.74 Mg m−3 in the surface 10 cm in NT compared to 0.86 in DT and 1.22 Mg m−3 in NT compared to 1.31 in DT for the 10–20 cm depth. Wet aggregate stability ranged from 10% in DT to 20% in NT. Use of NT or DO conserved soil organic matter more than DT. Compared to measurements made in the 3rd and 4th years of the study, the DT treatment lost almost 20% of the soil organic matter. Retaining crop residues on the soil conserved about 650 g m−2 greater C than removing all residues each year. Soil microbial biomass C and mineralizable C were highest in NT, but the microbial C quotient, which averaged only 0.9%, was not affected by tillage or crop residue treatment. Microbial biomass C:N ratio was 11.3 in DT and 14.4 in the NT, indicating an increasing predominance of fungi with decreasing tillage intensity. Barley grain yield, which averaged 1980 kg ha−1 over the entire 17 years of the study, was highest in DO and not significantly different between NT and DT, but weeds were a serious problem in NT. Reduced tillage can improve important soil quality indicators and conserve organic matter, but long-term NT may not be feasible in the subarctic because of weed problems and build up of surface organic matter.  相似文献   

7.
8.
Abstract

Soil carbon sequestration in agricultural lands has been deemed a sustainable option to mitigate rising atmospheric CO2 levels. In this context, the effects of different tillage and C input management (residue management and manure application) practices on crop yields, residue C and annual changes in total soil organic C (SOC) (0–30 cm depth) were investigated over one cycle of a 4-year crop rotation (2003–2006) on a cropped Andisol in northern Japan. For tillage practices, the effects of reduced tillage (no deep plowing, a single shallow harrowing for seedbed preparation [RT]) and conventional deep moldboard plow tillage (CT) were compared. The combination of RT, residue return and manure application (20 Mg ha?1 in each year) increased spring wheat and potato yields significantly; however, soybean and sugar beet yields were not influenced by tillage practices. For all crops studied, manure application enhanced the production of above-ground residue C. Thus, manure application served not only as a direct input of C to the soil, but the greater crop biomass production engendered enhanced subsequent C inputs to the soil from residues. The SOC contents in both the 0–5 cm and 5–10 cm layers of the soil profile were greater under RT than under CT treatments because the crop residue and manure were densely incorporated into the shallow soil layers. Comparatively, neither tillage nor C input management practices had significant effects on annual changes in SOC content in either the 10–20 cm or 20–30 cm layers of the soil profile. When soil C sequestration rates, as represented by annual changes in total SOC (0–30 cm), were assessed on a total soil mass basis, an anova showed that tillage practices had no significant effect on total C sequestration, but C input management practices had significant positive effects (P ≤ 0.05). These results indicate that continuous C input to the soil through crop residue return and manure application is a crucial practice for enhancing crop yields and soil C sequestration in the Andisol region of northern Japan.  相似文献   

9.
10.
冷凉地区不同耕作措施对土壤环境和作物生长发育的影响   总被引:8,自引:0,他引:8  
通过不同耕作措施的实施,比较其对玉米种植地土壤水分、土壤温度、玉米生长发育及产量的影响,从而探讨不同的耕作方式在旱作农业试验区的适宜性。结果表明:不同的保护性耕作措施均可提高土壤水分含量,其中留茬旋耕处理的土壤贮水量最高,达(4.542±0.894)×105L/hm2;在玉米播种前期及苗期,免耕覆盖处理降低土壤温度1~2℃,而整个生育期留茬旋耕处理与传统耕作处理的土壤温度相近;苗期,留茬旋耕处理的玉米株高、根长、鲜重和干重均优于其它处理,促进了玉米的生长发育;不同的保护性耕作措施均可提高玉米的产量,与传统耕作相比可增产4.01%~22.1%。整秆还田和留茬旋耕处理玉米产量较高,两者之间差异不显著。综合考虑不同耕作措施的效应,留茬旋耕处理比整秆还田处理更适宜于冷凉地区的推广、应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号