首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 111 毫秒
1.
成熟甘蔗茎秆积累高浓度蔗糖,其蔗糖积累涉及到蔗糖的合成、分解和运输等生理过程,而调控甘蔗茎中蔗糖积累的关键性因素是存在于快速发育的茎细胞中蔗糖糖代谢相关酶的活性和蔗糖的跨膜运输能力,而不是作为源叶输出光合产物的能力和韧皮部运输蔗糖的效率。为此,本文主要从蔗糖进入茎节的途径、蔗糖在液泡中的积累及其调控等方面作了概述,并指出运用分子生物学、反向遗传学和细胞生物学手段研究有关酶基因、功能性蛋白、糖信号对甘蔗蔗糖运输和积累的作用将是今后的重要研究方向。  相似文献   

2.
农作物叶片对大气沉降重金属的吸收转运和积累机制   总被引:2,自引:0,他引:2  
近年来,农产品的重金属超标问题已经引起了公众的广泛关注,也是国内外学者研究的热点。要实现农产品重金属污染的有效防控,首先需要解决的就是重金属来源问题。目前已有的研究大多集中在根系对土壤中重金属的吸收机制研究,且已基本探明作物根系对重金属的吸收转运机制,包括根际离子的活化,根细胞的吸附和扩散、跨膜运输,根皮层细胞的横向运输,中柱的薄壁细胞到木质部导管的装载,木质部向地上部的转运等一系列过程。但大气沉降对农产品重金属积累的贡献及叶片的吸收、转运和积累机制尚不清楚。若能深入研究农作物叶片对重金属的吸收、转运和存储机制,从分子层面解析其关键作用过程,则可从叶面吸收的角度实现农产品重金属积累的有效阻控,为保证农产品安全提供新的思路。本研究依据已发表文献,归纳并对比了叶片和根系对重金属的吸收、转运、区隔、积累过程及其主要机制,对比两种吸收途径下重金属的迁移、转运系数及对农产品可食部位的贡献率。发现植物可通过根系和叶片两种途径吸收重金属,已有研究中叶片吸收的重金属在作物体内可食部位的迁移和转运系数大大高于根系吸收的重金属,说明大气沉降是农产品重金属积累的重要来源。叶菜和茶叶类作物,由于其食用部位本身就是叶片,根系吸收和叶片直接吸收的大气沉降重金属都会积累在叶片中。因此,未来需要加强对大气沉降的监测,并采取措施控制大气污染,源头阻断是保证农产品安全十分必要的途径。同时还需进一步探明水稻等农作物叶片吸收转运重金属的过程和重要作用机制,以及可食部位累积重金属的关键生育期。并采用分子生物学等手段控制重金属转运蛋白的合成,以及叶片细胞膜的理化性状,降低吸附重金属的活性和转运能力,为寻求有效阻控叶片吸收重金属的措施提供理论和实践指导,保证农产品的安全生产。  相似文献   

3.
用微电极测定水稻根系质外体的pH值   总被引:2,自引:0,他引:2  
质外体是指原生质体以外的所有空间,包括细胞壁、细胞间隙及分化成熟的木质部等。质外体是植物细胞吸收养分离子的必经之路,是养分物质的储存库和缓冲区,对调节细胞内外的物质运输、调节营养平衡有重要作用。张福锁等研究表明,不同基因型植物根质外体Fe的积累量不同,可以作为不同基因型植物Fe营养效率的生理指标;另一方面,质外体pH值的变化还影响着质外体中离子的交换特性,较大程度地影响着许多跨膜转运的过程。  相似文献   

4.
磷对不同玉米品种生长、体内磷循环和分配的影响   总被引:5,自引:2,他引:3  
以杂交玉米蠡玉16和冀单28为供试作物,采用供高磷(250 mol/L)和低磷(5 mol/L)营养液的石英砂培养方法,研究2个玉米品种的各器官干重和磷积累与分配、体内磷在木质部和韧皮部中的循环、流动及磷的吸收和利用效率。结果表明,与供高磷处理相比,低磷处理的2个玉米品种各营养器官的干重、磷含量和木质部中运输的磷量显著降低; 而磷在体内韧皮部的再循环显著增加,并且玉米各部位叶片活化出的磷主要是通过韧皮部循环至根中后,再经过木质部向上部新生叶运输的; 体内光合产物与磷向上部叶的运输是不同步的过程。低磷时,与冀单28相比,蠡玉16的根冠比高010,整株干重和磷含量增加269%和120%,磷吸收和利用效率提高121%和133%,木质部总磷向上部叶运输的比例高306%。说明低磷条件下,磷高效玉米品种生物量大是由于具有较大的根冠比,木质部中更大比例的磷被分配到上部新生叶以及其具有较高的磷吸收和利用效率。  相似文献   

5.
铁肥根系输液矫正果树缺铁失绿症机理   总被引:3,自引:0,他引:3  
邻二氮杂啡铁示踪结果表明 ,铁肥根系输液处理时铁以二价态由根被动吸收 ,并运输到根、茎、和叶的主脉内。运输部位都是靠近形成层的木质部 ,运输速度每小时可达数十厘米。室内营养液培养的八棱海棠苗用59Fe示踪结果表明 ,断根中分配的59Fe为 18.1% ,叶中分配的59Fe占 70 .9% ;断 1、2、3条根的植株59Fe在叶中的分配比例分别为 57.9%、63.6 %、68.0 %。  相似文献   

6.
钾对不同基因型玉米生长、体内钾循环和分配的影响   总被引:2,自引:0,他引:2  
钾素循环和再利用对维持植物生长和提高钾利用效率非常重要。本文以杂交玉米豫玉23和兴农998为供试作物,采用供应高钾(1.85 mmol/L)和低钾(0.1 mmol/L)营养液的石英砂培养方法,研究不同基因型玉米各器官干重和钾积累及分配、 体内钾在木质部和韧皮部中的循环、 流动及钾效率等。结果表明,低钾处理10 d后,与高钾处理相比,低钾降低两玉米品种各器官干重净增量、 钾浓度、 钾积累量、 钾吸收效率和木质部中钾的运输量,增加钾利用效率和源叶中韧皮部输出的钾,提高钾通过韧皮部的再循环量及占木质部运输总量的比例。低钾处理的豫玉23和兴农998上部叶均为钾库,钾积累量的38.5%和70.3%是由各自中、 下部叶韧皮部输出的钾供给,但体内光合产物和钾向上部叶的运输是不完全同步的过程。两品种比较,低钾处理下的豫玉23较兴农998干重净增量提高,在于前者具有较大根量、 较高钾吸收速率和较多钾素吸收量,木质部中有更多的钾通过叶片韧皮部输出进行循环运输进入上部叶;但豫玉23对介质中钾的吸收大于体内钾的再利用。钾营养高效基因型玉米应该具有较强的吸收和利用体内钾的能力。  相似文献   

7.
利用32P示踪测定了玉米成熟叶的细胞质膜囊泡对磷酸根离子的吸收。结果表明,磷饥饿胁迫下对磷的吸收能力(Vmax)显著增强 (P < 0.01);在成熟叶片上进行的32P- KH2PO4溶液施加试验显示,叶细胞从质外体中吸收磷与叶片的磷输出相关;在磷饥饿胁迫下,成熟叶片通过木质部输入的磷明显减少,而通过韧皮部输出的磷相对增加。基于上述结果,本研究认为,在缺磷状况下玉米成熟叶的细胞显著增强磷吸收能力,可能有利于从叶片质外体包括木质部中吸收磷,并对增加叶的磷输出具有意义。  相似文献   

8.
研究了石山棕营养器官的解剖结构,结果表明,石山棕营养器官具有发达的保护组织、输导组织、光合组织和机械组织。主要表现为:叶表皮角质膜发达,复表皮富含丹宁,栅栏组织发达(2.5层);根原生木质部束数多(31原),导管和筛管多,大量的薄壁细胞的细胞壁在根成熟后转化为机械组织;茎、叶柄和叶脉的木质部、韧皮部发达,维管束鞘细胞层次多并高度次生木化加厚,茎、叶柄具较多纤维;根、茎的栓化层发达。石山棕的营养器官具有良好的适应干旱、高温、瘦瘠的岩溶石山环境的生态结构,  相似文献   

9.
植物对重金属镉的吸收转运和累积机制   总被引:22,自引:1,他引:21       下载免费PDF全文
Cd是土壤污染的主要因素之一,痕量的Cd2 不仅对植物生长有毒害作用,同时对人体健康产生极大的危害.研究植物如何从土壤中吸收Cd2 ,并在整个植物体内运输和积累的机理,对开发植物修复技术及生态环境的恢复具有重要意义.近年研究表明:土壤微环境影响植物对Cd2 的吸收;植物根细胞壁通过选择性吸收可以吸附和固定土壤中的Cd2 ,其中大部分Cd2 被截留在细胞壁中,其余的则通过协助扩散或主动运输等方式透过细胞膜进入根细胞中;在根细胞中Cd部分累积在液泡中,部分则通过木质部运输到地上部分;茎叶部的大部分Cd2 通过络合作用被固定在液泡中,少量被截留在细胞壁和细胞质中.在植物结实期,Cd通过韧皮部进入籽实中,而籽粒中的Cd几乎不能运输到其他部分,主要通过食物链进入动物和人体中.本文综述了植物对Cd的吸收和运输机制方面的研究进展.  相似文献   

10.
对龙津蕨的根、茎、叶、孢子囊等进行组织结构观察,对孢子进行电子显微镜扫描观察。研究结果表明:根为二原型。茎为网状中柱,维管束排成一环,木质部两端呈向内的弯勾状。叶柄基部为两个近似哑铃形的维管束,但在叶柄上部逐渐在远轴面连接成一个"V"形维管束,羽轴中也为"V"形维管束,但开口方向的两端明显呈弯勾状。叶片为同形叶肉细胞组成的较均匀的结构。孢子囊具有一条纵向环带。孢子具周壁,为四面体型,极面观为圆角三角形。  相似文献   

11.
Zinc distribution and speciation within different organs (root, petiole, and leaf) of the edible plant Eruca vesicaria L. Cavalieri were determined using synchrotron microbeam X-ray techniques (XRF microtomography and mu-XANES) for plants grown in polluted soil with or without compost amendment. Data on soil derived from different extraction procedures and using mu-XANES analyses on rhizospheric soil indicated that compost amendment did not significantly influence the Zn speciation and availability in soil. However, major differences were observed within the plants. Plants grown in the presence of compost were able to partly block zinc immediately outside the root endodermis in the form of zinc-phytate, while a smaller Zn fraction was allowed to xylem transport as zinc-citrate. In the leaves, zinc was largely excluded from leaf cells, and about approximately 50% was in the form of phosphate precipitates, and the other 50% was complexed by cysteine and histidine residues. The reported data provide new information concerning the mechanisms of zinc tolerance in E. vesicaria L. Cavalieri, a very common edible plant in Mediterranean regions, and on the role of compost in influencing the molecular strategies involved in zinc uptake and detoxification.  相似文献   

12.
The plant nutrient phosphorus (P) is spread throughout the plant within the transpiration stream after uptake in the form of phosphate via the roots. Short‐term distribution is therefore strongly dependent on transpiration rather than on sinks, so that P mainly enters adult leaves. The objective of this work was to investigate the transport of phosphate in leaf veins and its distribution within the leaf. Experiments were performed with broad bean (Vicia faba L. var. Scirocco) using radioactively labeled phosphate. In a relatively new approach, the tracer was monitored by a sensitive imaging plate using Fujifilm's Bioimaging Analyzer System. Radioactive label could be monitored in fresh leaves (without fixing) using exposure times of only 5–20 min. For this reason, the method offered the possibility to obtain several subsequent autoradiographic images of the same sample after different feeding times. Phosphate tracer quickly reached small veins, which were then more intensely labeled than the tissue between them. Within the first 15 min, intercostal fields were only slightly stained. After application of phosphate tracer onto the leaf blade, export from the leaf was pronounced and started within 30 min. Phosphorus is effectively redistributed from adult leaves to sinks such as the terminal bud or growing root tips. Using the imaging method, an impression of the high velocity and effectiveness of this process was obtained. The results furthermore imply that leaf veins may be one of the most important locations where exchange between xylem and phloem transport takes place, although exchange between xylem and phloem was also observed in the shoot axis and in the petioles.  相似文献   

13.
超富集植物是植物修复的基础。迄今虽发现超富集植物480种,但绝大多数属于镍超富集植物(329种),而锰超富集植物仅有13种。还从重金属的活化与吸收、运输与转移及其在植物体内的调控三方面综述了超富集植物的生理生化机制。  相似文献   

14.
Advances in fungal-assisted phytoremediation of heavy metals: A review   总被引:1,自引:0,他引:1  
Trace metals such as manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) are essential for many biological processes in plant life cycles. However, in excess, they can be toxic and disrupt plant growth processes, which is economically undesirable for crop production. For this reason, processes such as homeostasis and transport control of these trace metals are of constant interest to scientists studying heavily contaminated habitats. Phytoremediation is a promising cleanup technology for soils polluted with heavy metals. However, this technique has some disadvantages, such as the slow growth rate of metal-accumulating plant species, low bioavailability of heavy metals, and long duration of remediation. Microbial-assisted phytoremediation is a promising strategy for hyperaccumulating, detoxifying, or remediating soil contaminants. Arbuscular mycorrhizal fungi (AMF) are found in association with almost all plants, contributing to their healthy performance and providing resistance against environmental stresses. They colonize plant roots and extend their hyphae to the rhizosphere region, assisting in mineral nutrient uptake and regulation of heavy metal acquisition. Endophytic fungi exist in every healthy plant tissue and provide enormous services to their host plants, including growth enhancement by nutrient acquisition, detoxification of heavy metals, secondary metabolite regulation, and enhancement of abiotic/biotic stress tolerance. The aim of the present work is to review the recent literature regarding the role of AMF and endophytic fungi in plant heavy metal tolerance in terms of its regulation in highly contaminated conditions.  相似文献   

15.
Elements uptake, histological distributions as well as mycorrhizal and physiological statuses of Atriplex halimus were determined on trace metal and metalloid polluted soils from the surrounding spray zones of a former lead smelter in the South-East coast of Marseille (France). Analyses of heavy metal and arsenic distribution in soil and plant organs showed that A. halimus tolerance is largely due to exclusion mechanisms. No specific heavy metal concentration in leaf or root tissues was observed. However, accumulation of salts (NaCl, KCl, Mg and Ca salts) on leaf bladders and peripheral tissues of roots was observed and may compete with metal element absorption. Occurrence of endomycorrhizal structures was detected in roots and may contribute to lower element transfer from root into the aerial parts of plants. The non-destructive measurements of leaf epidermal chlorophylls, flavonols and phenols showed a healthy state of the A. halimus population on the metal and metalloid polluted sites. Considering the low metal bioaccumulation and translocation factors along with a reduced metal stress diagnosis, A. halimus appeared as a good candidate for phytostabilization of trace metals and metalloids and notably arsenic in contaminated soils of the Mediterranean spray zone. However, its invasive potential has to be determined before an intensive in situ use.  相似文献   

16.
The effect of excess concentrations of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) on water relations in young sunflower (Helianthus annuus L.) plants was studied in water culture under greenhouse conditions. The accumulation of the heavy metals was more intensive in the root than in the shoot. The rates of heavy metal accumulation in root were arranged in the following decreasing order: Cu, Cd, Zn, and Pb. Their transport into the above‐ground parts followed the order: Zn, Cu, Pb, and Cd. Transpiration and relative water content were significantly decreased by excess concentrations of the heavy metals. The number of stomata per unit leaf area was increased while the size of the stomata was decreased. The concentration of free proline significantly increased in the leaves of intact plants as well as in leaf discs incubated in the presence of heavy metals. The concentration of soluble proteins decreased as well, particularly when plants were exposed to high concentrations of the heavy metals. It was concluded that excess concentrations of the heavy metals significantly affected plant water status, causing water deficit and subsequent changes in the plants. The most intensive effect on the plants was exerted by Cd, less intensive by Cu and Zn and the least intensive by Pb.  相似文献   

17.
干旱胁迫及复水对耐旱枸杞水力学特性的影响   总被引:1,自引:1,他引:0  
耐旱枸杞是西北干旱地区重要的经济作物,为进一步明确枸杞水分运输特性,提高农业生产潜力,在甘肃省古浪县农业示范基地(37.09°N,102.79°E)以2年生‘宁杞1号’、‘宁杞5号’和‘蒙杞1号’3个枸杞品种苗木为试验材料,设计3个处理[N:正常水分;M:中度干旱;S:重度干旱],研究干旱胁迫对光合速率、气孔导度、冠层和根系导水率的影响,以及干旱胁迫后复水对枝条导水率的影响。结果表明:随着干旱程度增加,枸杞冠层、枝条和根系导水率均下降,‘宁杞5号’在干旱胁迫后植株导水率的减小和根系导水阻力在整个植株中所占比例的增大最显著;通过拟合木质部脆弱性曲线发现,‘宁杞1号’导水率损失50%时木质部水势显著高于‘宁杞5号’和‘蒙杞1号’。枸杞叶片净光合速率和气孔导度与植株叶片导水速率具有显著相关性。干旱胁迫复水后植物生长主要取决于根系恢复吸水的能力,干旱胁迫复水4 d后苗木导水率呈现不同程度的恢复,‘蒙杞1号’导水率恢复速度最快,并出现显著补偿效应,恢复速度最慢的为‘宁杞5号’。综合分析表明,枸杞耐旱特性与导水能力有关,根系导水对干旱胁迫的敏感性可以反映植株持续抗旱能力,干旱胁迫复水后根系导水率恢复能力和补偿效应对植株在逆境条件下土壤水分利用具有显著影响,调控根系导水率对于提高土壤水分利用率具有重要意义。  相似文献   

18.
Maize is often grown in drought‐prone environments and, thus, drought resistance is an important trait. In order to minimize production losses, plants need to respond and adapt early and fast to moisture loss in the root zone. From experiments under controlled conditions, constituents of the xylem sap, such as the plant hormone abscisic acid (ABA), or xylem pH have long been recognized to act as signals in root–shoot communication. To investigate early signals of field‐grown maize under conditions of progressive drought, a field trial was set up in a field lysimeter for two consecutive years. Although the experimental set‐up was very similar in the two years, plant responses to moisture loss were significantly different in both, the cascade of events and the intensity of responses. The main difference between the two years was in atmospheric vapor‐pressure deficit (VPD), accelerating the drying rate of the soil in the second year. In contrast to observations during the first year, the sudden increase in VPD in the second year caused a strong, transient peak in xylem sap ABA concentration, but no change in xylem pH or leaf ABA concentration was observed. Whereas the water relations of the maize plants remained stable in the first year, they were severely unbalanced in the second. It is argued that the strong xylem‐ABA signal triggered a change from adaptation mechanisms to survival mechanisms. Modulations due to VPD of constituents of the signal cascade induced by drought are discussed with regard to possible resistance strategies, their initiation, and their modification by combining primary environmental signals.  相似文献   

19.
硅增强植物重金属耐性机理研究综述   总被引:4,自引:0,他引:4  
In recent years, due to excessive emission of industrial waste, wastewater irrigation, and unreasonable utilization of fertilizers, pesticides and plastic sheeting, heavy metal pollution is increasing rapidly, resulting in many environmental problems. Silicon (Si), as the second most abundant element in the soil, can not only stimulate plant growth, but alleviate various biotic and abiotic stresses, including heavy metal stress. Here, we reviewed recent advances in the mechanisms for Si-mediated heavy metal tolerance in plants. These mechanisms included reducing active heavy metal ions in growth media, reducing heavy metal transport to the shoot, stimulating enzymatic and non-enzymatic antioxidants, chelation, compartmentation, regulation of the expression of metal transport genes, and structural changes in plants. Further research orientation is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号