首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Diallyl trisulfide (DATS), diallyl sulfide (DAS), and diallyl disulfide (DADS) are the three major organosulfur compounds (OSCs) in garlic oil. In contrast to DADS and DATS, evidence of an anti-inflammatory effect of DATS is limited. In this study compares the efficacy of DATS with those of DAS and DADS on lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in RAW 264.7 macrophages. The NO production in LPS-activated RAW 264.7 macrophages was suppressed by both DADS and DATS in a dose-dependent manner. At 100 muM, the nitrite levels of DADS- and DATS-treated cells were 57 and 34%, respectively, of cells treated with LPS alone. DAS, however, had no influence on NO production even at a concentration of 1 mM. Western blot and Northern blot assays showed that DADS and DATS but not DAS dose-dependently suppressed LPS-induced iNOS protein and mRNA expression in a pattern similar to that noted for NO production. LPS-induced cellular peroxide production was significantly inhibited by DADS and DATS (P < 0.05) but not by DAS. Electrophoresis mobility shift assays further indicated that DADS and DATS effectively inhibited the activation of NF-kappaB induced by LPS. Taken together, these results indicate that the differential efficacy of three major OSCs of garlic oil on suppression of iNOS expression and NO production is related to the number of sulfur atoms and is in the order DATS > DADS > DAS. The inhibitory effect of DATS on LPS-induced iNOS expression is likely attributed to its antioxidant potential to inhibit NF-kappaB activation.  相似文献   

3.
4.
In this study, we have investigated the anti-inflammatory effects of imperatorin, a compound isolated from the roots of Glehnia littoralis, using a lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) in vitro and a carrageenan (Carr)-induced mouse paw edema model in vivo. When RAW264.7 macrophages were treated with imperatorin together with LPS, a significant concentration-dependent inhibition of NO production was detected. Western blotting revealed that imperatorin blocked the protein expression of iNOS and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 macrophages significantly. In the anti-inflammatory test, imperatorin decreased the paw edema at 4 and 5 h after Carr administration and increased the activities of catalase, superoxide dismutase, and glutathione peroxidase in paw edema. We also demonstrated that imperatorin significantly attenuated the malondialdehyde level in the edema paw at the fifth hour after Carr injection. Imperatorin decreased the NO and tumor necrosis factor and prostaglandin E2 levels on serum at 5 h after Carr injection. Western blotting revealed that imperatorin decreased Carr-induced iNOS and COX-2 expressions at 5 h in edema paw. An intraperitoneal injection treatment with imperatorin also diminished neutrophil infiltration into sites of inflammation as did indomethacin. The results suggested that imperatorin had anti-inflammatory effects in LPS-stimulated RAW 264.7 cells and Carr-injected mice, respectively. In addition, inhibition of elevated iNOS and COX-2 protein expression as well as neutrophil infiltration of Carr-injected paws may be involved in the beneficial effects of imperatorin.  相似文献   

5.
6.
Mushrooms have become an important source of natural antitumor, antiviral, antibacterial, immunomodulatory, and anti-inflammatory agents. Golden oyster mushroom, Pleurotus citrinopileatus , is a common mushroom in oriental countries for human consumption. The present study investigated the anti-inflammatory reaction of the bioactive nonlectin glycoprotein (PCP-3A) isolated from the fresh fruiting body of this mushroom. Western blot analysis on LPS-induced iNOS, COX-2, and NF-κB expressions in RAW 264.7 cells as affected by PCP3-A was performed to elucidate the mechanism of NO and PGE2 reduction. The results showed that PCP-3A failed to affect RAW 264.7 viability at a concentration up to 6.25 μg/mL, but inhibited LPS (1 μg/mL)-induced expression, and that PCP-3A inhibited the production of NO and PGE2 in LPS-activated macrophages via the down-regulation of certain pro-inflammatory mediators, including iNOS and NF-κB.  相似文献   

7.
8.
In recent years much attention has been focused on the pharmaceutical relevance of bioflavonoids, especially hesperidin and its aglycon hesperetin in terms of their antioxidant and anti-inflammatory actions. However, the bioactivity of their metabolites, the real molecules in vivo hesperetin glucuronides/sulfates produced after ingestion, has been poorly understood. Thus, the study using an ex vivo approach is aimed to compare the antioxidant and anti-inflammatory activities of hesperidin/hesperetin or hesperetin metabolites derived from hesperetin-administered rat serum. We found that hesperetin metabolites (2.5-20 μM) showed higher antioxidant activity against various oxidative systems, including superoxide anion scavenging, reducing power, and metal chelating effects, than that of hesperidin or hesperetin. The data also showed that pretreatment of hesperetin metabolites (1-10 μM) within the range of physiological concentrations, compared to hesperetin, significantly inhibited nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production, as evidenced by the inhibition of their precursors, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels without appreciable cytotoxicity on LPS-activated RAW264.7 macrophages or A7r5 smooth muscle cells. Concomitantly, hesperetin metabolites dose-dependently inhibited LPS-induced intracellular reactive oxygen species (ROS). Furthermore, hesperetin metabolites significantly downregulate LPS-induced nuclear factor-κB (NF-κB) activation followed by the suppression of inhibitor-κB (I-κB) degradation and phosphorylation of c-Jun N-terminal kinase1/2 (JNK1/2) and p38 MAPKs after challenge with LPS. Hesperetin metabolites ex vivo showed potent antioxidant and anti-inflammatory activity in comparison with hesperidin/hesperetin.  相似文献   

9.
The anti-inflammatory effect of miyabenol A, a stilbene isolated from Vitis thunbergii, on lipopolysaccaride (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages was studied. Miyabenol A inhibited NO production (EC 50: 2.7 muM) and iNOS protein and mRNA expression in a parallel concentration-dependent manner. LPS-evoked NF-kappaB nuclear translocation and associated IkappaB degradation were abrogated by miyabenol A treatment. Phosphorylations of IKKalpha/beta, ERK1/2, JNK p38 MAPK, and Akt were observed in LPS-stimulated cells; nevertheless, miyabenol A selectively blocked IKKalpha/beta, p38, and Akt phosphorylation. Furthermore, LPS-stimulated IKKalpha/beta and Akt phosphorylation was abolished by p38 inhibitor SB203580. Wortmannin (a PI3K inhibitor) also attenuated LPS-induced IKKalpha/beta phosphorylation, although to a less extent than SB203580, but failed to affect p38 phosphorylation. These observations suggested that PI3K/Akt might lie downstream of p38 MAPK to coregulate LPS-induced IKKalpha/beta phosphorylation. Taken together, miyabenol A acted via interfering with p38 MAPK-related signal pathways to down-regulate IKK/IkappaB activation and NO production.  相似文献   

10.
Excess production of nitric oxide (NO) by inducible NO synthase (iNOS) in activated macrophages is linked to acute and chronic inflammation. Thus, it would be valuable to develop inhibitors of NO production and/or iNOS for potential therapeutic use. This study investigated the anti-inflammatory effects of 6β-acetoxy-7α-hydroxyroyleanone (AHR), a compound isolated from the bark of Taiwania cryptomerioides Hayata, using lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW 264.7) ex vivo and carrageenan (Carr)-induced mouse paw edema model in vivo. When RAW 264.7 macrophages were treated with different concentrations of AHR (0, 0.31, 0.62, 1.25, and 2.50 μg/mL) together with LPS (100 ng/mL), a significant concentration-dependent inhibition of NO production was detected. Western blotting revealed that AHR blocked protein expression of iNOS and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophages, significantly. In the anti-inflammatory test, AHR (1.25 and 2.50 mg/kg) decreased paw edema at 4 and 5 h after λ-carrageenan (Carr) administration and increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the liver tissue. It was also demonstrated that AHR significantly attenuated the malondialdehyde (MDA) level in the edema paw at 5 h after Carr injection. AHR (0.62, 1.25, and 2.50 mg/kg) decreased the NO levels on both edema paw and serum at 5 h after Carr injection. Also, AHR diminished the serum tumor necrosis factor (TNF-α) at 5 h after Carr injection. Western blotting revealed that AHR (2.50 mg/kg) decreased Carr-induced iNOS and COX-2 expressions at 5 h in the edema paw. An intraperitoneal (ip) injection treatment with AHR also diminished neutrophil infiltration into sites of inflammation, as did indomethacin (Indo). The anti-inflammatory activities of AHR might be related to the decrease in the levels of MDA, iNOS, and COX-2 in the edema paw and to the increase in the activities of CAT, SOD, and GPx in the liver through the suppression of TNF-α and NO.  相似文献   

11.
Inflammation plays important roles in the initiation and progress of many diseases including cancers in multiple organ sites. Herein, we investigated the anti-inflammatory effects of two dietary compounds, nobiletin (NBN) and sulforaphane (SFN), in combination. Noncytotoxic concentrations of NBN, SFN, and their combinations were studied in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The results showed that combined NBN and SFN treatments produced much stronger inhibitory effects on the production of nitric oxide (NO) than NBN or SFN alone at higher concentrations. These enhanced inhibitory effects were synergistic based on the isobologram analysis. Western blot analysis showed that combined NBN and SFN treatments synergistically decreased iNOS and COX-2 protein expression levels and induced heme oxygenase-1 (HO-1) protein expression. Real-time polymerase chain reaction analysis indicated that low doses of NBN and SFN in combination significantly suppressed LPS-induced upregulation of IL-1 mRNA levels and synergistically increased HO-1 mRNA levels. Overall, our results demonstrated that NBN and SFN in combination produced synergistic effects in inhibiting LPS-induced inflammation in RAW 264.7 cells.  相似文献   

12.
13.
Artocarpus heterophyllus Lam is a large evergreen tree cultivated throughout Southeast Asia for its fruits. Its leaves and roots have been used for medicinal purposes. The aim of this work was to study the in vitro anti-inflammatory effects of phenolic compounds isolated from the ethyl acetate extracts of the fruits of Artocarpus heterophyllus. Three phenolic compounds were characterized as artocarpesin [5,7,2',4'-tetrahydroxy-6-(3-methylbut-3-enyl) flavone] ( 1), norartocarpetin (5,7,2',4'-tetrahydroxyflavone) ( 2), and oxyresveratrol [ trans-2,4,3',5'-tetrahydroxystilbene] ( 3) by spectroscopic methods and through comparison with data reported in the literatures. The anti-inflammatory effects of the isolated compounds ( 1- 3) were evaluated by determining their inhibitory effects on the production of proinflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. These three compounds exhibited potent anti-inflammatory activity. The results indicated that artocarpesin ( 1) suppressed the LPS-induced production of nitric oxide (NO) and prostaglandin E 2 (PGE 2) through the down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions. Thus, artocarpesin ( 1) may provide a potential therapeutic approach for inflammation-associated disorders.  相似文献   

14.
15.
Genistein, daidzein, and glycitein, as primary isoflavones in soybeans, are reported to have beneficial effects on atherosclerosis, chronic inflammatory diseases, and cancers that are conducted by nitric oxide (NO) injury. The objectives of this study were to investigate the effects and mechanisms of these soy isoflavones on the inducible nitric oxide synthase (iNOS) system in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Genistein, daidzein, and glycitein dose-dependently suppress NO production (IC(50) = 50 microM) in supernatants of LPS-activated macrophages as measured on the basis of nitrite accumulation. In addition, direct inhibition of iNOS activity, determined by means of the conversion of L-[(3)H]arginine to L-[(3)H]citrulline, and markedly reduced iNOS protein and mRNA levels, evaluated by means of Western blot and RT-PCR, respectively, were found in homogenates of LPS-activated cells treated with each isoflavone. Moreover, genistein was found to have a greater inhibitory effect on NO production but no significant effect on iNOS activity or protein and gene expression to daidzein and glycitein. These observations reveal that the suppression of NO production by genistein, daidzein, and glycitein might be due to the inhibition of both the activity and expression of iNOS in LPS-activated macrophages. The result suggests that soy isoflavones might attenuate excessive NO generation at inflammatory sites.  相似文献   

16.
Data from a number of researchers have shown that conjugated linoleic acid (CLA) has some beneficial health activities in animal models. Because inflammatory responses are associated with pathophysiology of many diseases, the aim of this study is to explore the effect and mechanism of CLA in the regulation of lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages. The addition of increasing levels of CLA proportionally augmented the incorporation of CLA in cultures. CLA diminished LPS-induced mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) as well as subsequent production of nitric oxide and prostaglandin E(2), respectively. We further examined the effect of CLA on LPS-induced NF-kappaB activation by Western blot and the electrophoretic mobility shift assay. The addition of CLA at 200 microM significantly diminished LPS-induced protein expression of the cytoplasmic phosphorylated inhibitor kappaBalpha and nuclear p65 as well as NF-kappaB nuclear protein-DNA binding affinity. In conclusion, our data suggest that CLA may inhibit LPS-induced inflammatory events in RAW 264.7 macrophages and this inhibitory activity of CLA, at least in part, occurs through CLA modulating the NF-kappaB activation and therefore negatively regulating expression of inflammatory mediators.  相似文献   

17.
Sargassum hemiphyllum , a kind of brown seaweed generally found along coastlines in East Asia, has long served as a traditional Chinese medicine. S. hemiphyllum has shown an anti-inflammatory effect; however, its mechanism has not been elucidated clearly. This study explored S. hemiphyllum for its biomedical effects. S. hemiphyllum sulfated polysaccharide extract (SHSP) was first prepared; the mouse macrophage cell line (RAW 264.7) activated by lipopolysaccharide (LPS) was used as a model system. The secretion profiles of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α, and NO, were found significantly to be reduced in 1-5 mg/mL dose ranges of SHSP treatments. RT-PCR analysis suggested SHSP inhibits the LPS-induced mRNA expressions of IL-β, iNOS, and COX-2 in a dose-dependent manner. At protein levels, Western blot analysis demonstrated a similar result for NF-κB (p65) in cytosol/nuclear. Taken together, the anti-inflammatory properties of SHSP may be attributed to the down-regulation of NF-κB in nucleus.  相似文献   

18.
19.
Acacia confusa Merr. (Leguminosae) is traditionally used as a medicinal plant in Taiwan. In the present study, anti-inflammatory activity of extracts from the heartwood of A. confusa were investigated for the first time. Results demonstrated that ethanolic extracts of A. confusa heartwood strongly suppressed NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Among all fractions derived from ethanolic extracts, the EtOAc fraction exhibited the best inhibitory activity. Following column chromatography and reverse-phase high-performance liquid chromatography, 13 specific phytocompounds including 5 new flavonoids (i.e., 7,8,3',4'-tetrahydroxy-4-methoxyflavan-3-ol, 7,8,3',4'-tetrahydroxyflavone, 7,8,3'-trihydroxy-3,4'-dimethoxyflavone, 7,3',4'-trihydroxyflavone, and 7,3',4'-trihydroxy-3-methoxyflavone) were isolated and identified from the EtOAc fraction. In addition, melanoxetin (3,7,8,3',4'-pentahydroxyflavone), a major compound in the EtOAc fraction, markedly suppressed LPS-induced NO and prostaglandin E 2 (PGE 2) production. Moreover, melanoxetin completely suppressed gene expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) at 50 and 100 microM, respectively. This is the first report to identify the inhibitory bioactivities of melanoxetin on iNOS and COX-2.  相似文献   

20.
An azaphilonidal derivative monaphilone A (MA) was recently isolated from the fermented products of Monascus purpureus NTU 568 by our laboratory. We report here the exploration of apoptosis-related and anti-inflammatory properties of MA and ankaflavin (AK) by some experiments about inducing death of human laryngeal carcinoma cell line HEp-2 and reducing inflammatory responses on murine macrophage RAW 264.7 cells. We employed a ssDNA enzyme-linked immunosorbent assay (ELISA) kit to investigate the nuclear changes of early apoptosis induced by AK and MA on HEp-2 cells and used a western blot and an enzyme activity assay to demonstrate the activation of caspase-3, caspase-8, and caspase-9 by MA and AK. Our studies revealed that AK and MA may decrease lipopolysaccharide (LPS)-induced inflammatory responses, including nitrite productions and expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) in RAW 264.7 cells. All evidence support that azaphilonidal derivatives from M. purpureus NTU 568, such as AK and MA, are suitable for the development of chemotherapy or chemopreventive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号