首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Inadequate soil use and management practices promote commonly negative impacts on the soil constituents and their properties, with consequences to ecosystems. As the soil mineralogy can be permanently altered due to soil use, this approach can be used as a tool to monitor the anthropogenic pressure. The objective of the present study was to assess the mineralogical alterations of a Brazilian regosol used for grape production for 40?years in comparison with a soil under natural vegetation (forest), aiming to discuss anthropogenic pressure on soils.

Material and methods

Soil samples were collected at depths of 0?C0.20 and 0.20?C0.40?m from vineyard production and natural vegetation sites. Physical and chemical parameters were analysed by classic approaches. Mineralogical analyses were carried out on <2?mm, silt and clay fractions. Clay minerals were estimated by the relative percentage of peak surface area of the X-ray patterns.

Results and discussion

Grape production reduced the organic matter content by 28?% and the clay content by 23?% resulting in a decreasing cation exchange capacity. A similar clay fraction was observed in both soils, containing kaolinite, illite/mica and vermiculite with hydroxy-Al polymers interlayered. Neither gibbsite nor chlorite was found. However, in the soil under native vegetation, the proportion of illite (79?%) was higher than vermiculite (21?%). Whereas, in the soil used for grape production during 40?years, the formation of vermiculite was promoted.

Conclusions

Grape production alters the proportions of soil constituents of the regosol, reducing clay fraction and organic matter contents, as well as promoting changes in the soil clay minerals with the formation of vermiculite to the detriment of illite, which suggests weathering acceleration and susceptibility to anthropogenic pressure.

Recommendations and perspectives

Ecosystems in tropical and subtropical climates can be more easily and permanently altered due to anthropogenic pressure, mainly as a consequence of a great magnitude of phenomena such as temperature amplitude and rainfall that occurs in these regions. This is more worrying when soils are located on steep grades with a high anthropogenic pressure, like regosols in Southern Brazil. Thus, this study suggests that changes in soil mineralogy can be used as an important tool to assess anthropogenic pressure in ecosystems and that soil quality maintenance should be a priority in sensible landscapes to maintain the ecosystem quality.  相似文献   

2.

Purpose  

Increasing soil organic matter content is important in improving soil fertility; however, conventional farming practices generally lead to a reduction in such organic material. A comparative study of organic and conventional arable farming systems was conducted in Shanghai, China, to determine the influence of management practices on soil chemistry, microbial activity, and biomass. Soils used in greenhouses and open field cultivation were obtained from plots subjected to organic farming methods for 3 years or from conventionally farmed fields in the same area.  相似文献   

3.
We investigated changes in soil carbon (C) cycling with reforestation across a long-term, replicated chronosequence of tropical secondary forests regrowing on abandoned pastures. We applied CP MAS 13C NMR spectroscopy and radiocarbon modeling to soil density fractions from the top 10 cm to track changes in C chemistry and turnover during secondary forest establishment on former pastures. Our results showed that inter-aggregate, unattached, particulate organic C (free light fraction) and particulate C located inside soil aggregates (occluded light fraction) represent distinct soil C pools with different chemical composition and turnover rates. The signal intensity of the O-alkyl region, primarily representing carbohydrates, decreased, and alkyl C, attributed to recalcitrant waxy compounds and microbially resynthesized lipids, increased from plant litter to soil organic matter and with incorporation into soil aggregates. The alkyl/O-alkyl ratio, a common index of humification, was higher in the occluded than in the free light fraction. Greater variability in the chemical makeup of the occluded light fraction suggests that it represents material in varied stages of decomposition. Mean residence times (14C-based) of the free light fraction were significantly shorter (4 ± 1 years) than for the heavy fraction. We report two scenarios for the occluded light fraction, one fast-cycling in which the occluded and free light fractions have similar turnover rates, and one slow-cycling, in which the occluded light fraction resembles the heavy fraction. Mean residence times of the occluded light fraction and heavy fraction in active pastures and 10-year old secondary forests in the earliest stage of succession were longer than in older secondary forests and primary forests. This is likely due to a preferential loss of physically unprotected C of more labile composition in the pastures and in the youngest successional forests, resulting in an increase in the dominance of slow-cycling C pools. Soil carbon turnover rates of the mineral-associated C in secondary forests recovering from abandoned pasture resembled those of primary forests in as little as 20 years of succession.  相似文献   

4.

Purpose

Soil aggregates play an important role in promoting soil fertility, as well as increasing the sink capacity and stability of soil carbon. In this study, we consider the following research questions:1. Under field conditions, do different dosages of biochar increase the soil aggregation after 3 years of application?2. How does the application of biochar affect the concentration and distribution of soil total organic carbon (TOC) and total nitrogen (TN) in different sizes of aggregates?3. Can the application of biochar alter the composition of organic carbon in soil aggregates?

Materials and methods

Different amounts of biochar (up to 90 t ha?1) were applied to a calcareous soil in a field experiment in 2009 along with the application of chemical fertilizer annually and the returning of winter wheat and summer maize straws. After 3 years, 0–20-cm soil samples were taken to measure the size distribution of soil water-stable aggregates by wet sieving, the concentrations of TOC and TN in whole aggregates and light or heavy fractions by elemental analysis equipment, and composition of TOC by Fourier transform infrared (FTIR) and pyrolysis-gas chromatography/mass spectrometer (Py–GC/MS).

Results and discussion

(1) The 3 years of biochar application had no significant effects on degree of soil aggregation but reduced the breakage of large soil aggregates (>1000 μm); (2) biochar significantly increased the contents of TOC and TN in soil macro-aggregates (>250 μm), as well as their ratios to total soil amount. Biochar also significantly increased the contents of TOC and TN in light fractions as well as the C/N ratio, which made the soil organic matter more active. The biochar dosage showed a significant positive correlation with organic carbon, total nitrogen, and C/N ratio in light fraction components of aggregates (>250 μm). Biochar mainly affected the organic matter in the heavy fraction components of macro-aggregates; (3) from the Py–GC/MS results, biochar increased the CO2 content originated from active organic carbon.

Conclusions

Long-term application of biochar improved the stability of soil aggregates, increased the contents of TOC and TN as well as organic carbon and total nitrogen in macro-aggregates, and usually increased the contents of CO2 originated from active organic carbon in light fractions. The findings were helpful in evaluating the effects of biochar on soil aggregation and organic matter stability.
  相似文献   

5.

Background, aim, and scope  

Land-use change can significantly influence carbon (C) storage and fluxes in terrestrial ecosystems. Soil–plant systems can act as sinks or sources of atmospheric CO2 depending on formation and decomposition rates of soil organic matter. Therefore, changes in tropical soil C pools could have significant impacts on the global C cycle. This study aims to evaluate the impacts of long-term sugarcane cultivation on soil aggregation and organic matter, and to quantify temporal dynamics of soil organic matter in cultivated sugarcane plantation soils previously under a tropical natural secondary forest.  相似文献   

6.
Forest soils contain about 30% of terrestrial carbon (C) and so knowledge of the influence of forest management on stability of soil C pools is important for understanding the global C cycle. Here we present the changes of soil C pools in the 0-5 cm layer in two second-rotation Pinus radiata (D.Don) plantations which were subjected to three contrasting harvest residue management treatments in New Zealand. These treatments included whole-tree harvest plus forest floor removal (defined as forest floor removal hereafter), whole-tree, and stem-only harvest. Soil samples were collected 5, 10 and 15 years after tree planting at Kinleith Forest (on sandy loam soils) and 4, 12 and 20 years after tree planting at Woodhill Forest (on sandy soils). These soils were then physically divided into light (labile) and heavy (stable) pools based on density fractionation (1.70 g cm−3). At Woodhill, soil C mass in the heavy fraction was significantly greater in the whole-tree and stem-only harvest plots than the forest floor removal plots in all sampling years. At Kinleith, the soil C mass in the heavy fraction was also greater in the stem-only harvest plots than the forest floor removal plots at year 15. The larger stable soil C pools with increased residue return was supported by analyses of the chemical composition and plant biomarkers in the soil organic matter (SOM) heavy fractions using NMR and GC/MS. At Woodhill, alkyl C, cutin-, suberin- and lignin-derived C contents in the SOM heavy fraction were significantly greater in the whole-tree and stem-only harvest plots than in the forest floor removal plots in all sampling years. At Kinleith, alkyl C (year 15), cutin-derived C (year 5 and 15) and lignin-derived C (Year 5 and 10) contents in the SOM heavy fraction were significantly greater in stem-only harvest plots than in plots where the forest floor was removed. The analyses of plant C biomarkers and soil δ13C in the light and heavy fractions of SOM indicate that the increased stable soil C in the heavy fraction with increased residue return might be derived from a greater input of recalcitrant C in the residue substrate.  相似文献   

7.

Purpose  

Returning of rice straw into paddy field, which not only can increase the organic carbon content of soil but also can introduce dissolved organic matter (DOM) into soil, is a popular farm management strategy. However, chemical and structural heterogeneities of DOM derived from rice straw are not well characterized. The aim of this paper was to study the chemical and structural characteristics of DOM derived from rice straw at the different stages of decay.  相似文献   

8.
《Applied soil ecology》2011,48(3):210-216
Labile soil organic matter (SOM) can sensitively respond to changes in land use and management practices, and has been suggested as an early and sensitive indicator of SOM. However, knowledge of effects of forest vegetation type on labile SOM is still scarce, particularly in subtropical regions. Soil microbial biomass C and N, water-soluble soil organic C and N, and light SOM fraction in four subtropical forests were studied in subtropical China. Forest vegetation type significantly affected labile SOM. Secondary broadleaved forest (SBF) had the highest soil microbial biomass, basal respiration and water-soluble SOM, and the pure Cunninghamia lanceolata plantation (PC) the lowest. Soil microbial biomass C and N and respiration were on average 100%, 104% and 75%, respectively higher in the SBF than in the PC. The influence of vegetation on water-soluble SOM was generally larger in the 0–10 cm soil layer than in the 10–20 cm. Cold- and hot-water-soluble organic C and N were on average 33–70% higher in the SBF than in the PC. Cold- and hot-soluble soil organic C concentrations in the coniferous-broadleaved mixed plantations were on average 38.1 and 25.0% higher than in the pure coniferous plantation, and cold- and hot-soluble soil total N were 51.4 and 14.1% higher, respectively. Therefore, introducing native broadleaved trees into pure coniferous plantations increased water-soluble SOM. The light SOM fraction (free and occluded) in the 0–10 cm soil layer, which ranged from 11.7 to 29.2 g kg−1 dry weight of soil, was strongly affected by vegetation. The light fraction soil organic C, expressed as percent of total soil organic C, ranged from 18.3% in the mixed plantations of C. lanceolata and Kalopanax septemlobus to 26.3% in the SBF. In addition, there were strong correlations among soil organic C and labile fractions, suggesting that they were in close association and partly represented similar C pools in soils. Our results indicated that hot-water-soluble method could be a suitable measure for labile SOM in subtropical forest soils.  相似文献   

9.
The objective of this study was to evaluate changes in distribution and quality of organic matter in light and heavy fractions of a medium-texture Red Latosol under different uses and management practices in Capinópolis, Brazil. Soil samples were collected from different layers in the profile (0–5, 5–10, and 10–20 cm). The following treatments were evaluated: NTs, no till (no tillage) for 4 years with maize (silage)?/?soybean in succession; NTg, no till for 4 years with maize/maize/maize/soybean in succession; NTtf, no till for 3 years with tifton (hay) and soybeans in the last year; CS, about 30 years with conventional cultivation system (maize/soybean) with only soybean in the past 4 years; and NF, native forest. The heavy fraction contributed 75–98% of total carbon and 94–99% of total nitrogen, indicating that most carbon and nitrogen in the soil are associated with the mineral fraction, which is fundamental for the maintenance of their stocks. Tifton grass in no tillage was efficient in increasing the amounts of light fraction (free and occluded). Increases of occluded light fraction in no-till systems were greater than in conventional cultivation system. The light fraction was shown to be sensitive to soil cultivation and can be considered indicative of soil degradation. Light-fraction analysis by Fourier transform infrared spectroscopy (FTIR) allowed the study of changes in the chemical structure of these fractions under different uses and management practices. Occluded light fraction was shown to be more recalcitrant and condensed than the free light fraction. The surface layer in the conventional cultivation system has a more aromatic and condensed free light fraction than in no-tillage system. In general, the upper layers were less aromatic than the deepest ones.  相似文献   

10.

Purpose

It has been widely recognized that land use changes can cause significant alterations of soil organic matter (SOM) of various ecosystems. Forest conversion, a common land use change, and its effects on SOM have been a hot research topic during the past two decades. However, the mechanisms of the effects of forest conversion on SOM dynamics, particularly in deep soils, largely remain uncertain. This study aimed to examine the impacts of forest conversion on SOM stabilization through the analysis of soil aggregate and density fractionation, microbial composition, and functions in deep soils.

Materials and methods

Soil C and microbes were sampled in soil layers of 0–20 and 60–80 cm under broadleaved secondary forest and two coniferous plantations (Cunninghamia lanceolata and Pinus massoniana). Aggregate and density fractionation techniques were used to analyze C accumulation in non-protected, physically, chemically, and biochemically protected C fractions. A 90-day laboratory mineralization incubation experiment with and without 400-mg C kg?1 soil glucose and phenol was conducted to determine the potential mineralizable C, utilization of substrate capacity, and metabolic quotient (qCO2).

Results and discussion

Conversion of secondary forests into coniferous plantations significantly decreased bulk soil C, especially in the deep soils. Forest conversion significantly decreased non-protected, physically, and chemically protected C fractions in both topsoil and deep soil and biochemically protected C fraction in deep soils. The soil organic carbon (SOC) of topsoils was dominated by non-protected fraction while in deep soil which was dominated by protected fraction. Compared with the topsoils, soil microbes in the deep soils tend to preferentially use labile soil organic matter with lower substrate use efficiency (higher values of qCO2), which indicates that a r-strategy dominates of microbes. The increased respiration rate in the deep soils caused by forest conversion, when normalized to soil C, indicates that deep SOM may be more prone to decomposition and destabilization than top SOM.

Conclusions

Forest conversion can cause a significant alteration of SOC stabilization through the changes of physically, chemically, and biochemically protected SOC fractions. The mechanisms for the changes in non-protected or/and protected SOC fractions may be associated with the redistribution of r-strategy- and K-strategy-dominated microbes due to changes in litter inputs and priming effects.
  相似文献   

11.

Purpose  

The aim of this work was to study the effect of ‘trace element-rich litter’ on the properties of two reforested polluted soils of different pH values (acidic and neutral) in terms of (1) availability of trace elements and (2) chemical and biochemical properties of the soil at different pH. We hypothesized that this litter would affect several parameters related to the organic matter cycle in soils, depending on initial soil pH.  相似文献   

12.
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   

13.

Purpose  

Biogeochemical interfaces, the 3D association of minerals, soil organic matter, and biota, are hotspots of soil processes because they exhibit strong biological, physical, and chemical gradients. Biogeochemical interfaces have thicknesses from nanometers to micrometers and separate bulk immobile phases from mobile liquid or gaseous phases. The aim of this contribution is to review advanced microscopic and spectroscopic characterization techniques that allow for spatially resolved analysis of composition and properties of biogeochemical interfaces or their visualization.  相似文献   

14.

Purpose  

Best management practices encompass diverse artificial groundwater recharge (AGR) systems that heavily rely upon the capacity of the soil and vadose zone to retain large quantities of organic matter generated during stormwater runoff on urban catchments. However, the supply of stormwater-derived dissolved organic carbon (DOC) at the water-table region of aquifers can enhance the rate of biogeochemical processes by fueling heterotrophic microbial metabolism. This study examined changes in the abundance and activity of sediment biofilm in response to increased DOC supply at the water table of an urban aquifer intentionally recharged with stormwater. Changes in microbial abundance and activity under field conditions were compared with those measured in laboratory slow filtration columns supplied with an easily biodegradable source of DOC.  相似文献   

15.
We know much about the influence of management on stocks of organic matter in subtropical soils, yet little about the influence on the chemical composition. We therefore studied by CPMAS 13C NMR spectroscopy the composition of the above-ground plant tissue, of the organic matter of the whole soil and of silt- and clay-size fractions of the topsoil and subsoil of a subtropical Acrisol under grass and arable crops. Soil samples were collected from three no-till cropping systems (bare soil; oats−maize; pigeon pea + maize), each receiving 0 and 180 kg N ha−1 year−1, in a long-term field experiment. Soil under the original native grass was also sampled. The kind of arable crops and grass affected the composition of the particulate organic matter. There were no differences in the composition of the organic matter in silt- and clay-size fractions, or of the whole soil, among the arable systems. Changes were observed between land use: the soil of the grassland had larger alkyl and smaller aromatic C contents than did the arable soil. The small size fractions contain microbial products, and we think that the compositional difference in silt- and clay-size fractions between grassland and the arable land was induced by changes in the soil's microbial community and therefore in the quality of its biochemical products. The application of N did not affect the composition of the above-ground plant tissue nor of the particulate organic matter and silt-size fractions, but it did increase the alkyl C content in the clay-size fraction. In the subsoil, the silt-size fraction of all treatments contained large contents of aromatic C. Microscopic investigation confirmed that this derived from particles of charred material. The composition of organic matter in this soil is affected by land use, but not by variations in the arable crops grown.  相似文献   

16.
Heavy density fractions of soil contain organic matter tightly bound to the surface of soil minerals. The chemical composition and ecological meaning of non-metabolic decomposition products and microbial metabolites in organic–mineral bonds is poorly understood. Therefore, we investigated the heavy fraction (density > 2 g cm–3) from the topsoil of a Gleysol (Bainsville, Ottawa, Canada). It accounted for 952 g kg–1 of soil and contained 19 g kg–1 of organic C. Pyrolysis-field ionization mass spectra showed intensive signals of carbohydrates, and phenols and lignin monomers, alkylaromatics (mostly aromatic) N-containing compounds, and peptides. These classes of compound have been proposed as structural building blocks of soil organic matter. In comparison, the light fraction (density > 2 g cm–3) was richer in lignin dimers, lipids, sterols, suberin and fatty acids which clearly indicate residues of plants and biota. To confirm the composition and stability of mineral-bound organic matter, we also investigated the heavy fraction (density > 2.2 g cm–3) from clay-, silt- and sand-sized separates of the topsoil of a Chernozem (Bad Lauchstädt, Germany). These heavy size separates differed in their mass spectra but were generally characterized by volatilization maxima of alkylaromatics, lipids and sterols at about 500°C. We think that the observed high-temperature volatilization of these structural building blocks of soil organic matter is indicative of the organic–mineral bonds. Some unexpected low-temperature volatilization of carbohydrates, N-containing compounds, peptides, and phenols and lignin monomers was assigned to hot-water-extractable organic matter which accounted for 7–27% of the carbon and nitrogen in the heavy fractions. As this material is known to be mineralizable, our study indicates that these constituents of the heavy density fractions are degradable by micro-organisms and involved in the turnover of soil organic matter.  相似文献   

17.
Andosols are characterised by high organic matter (OM) content throughout the soil profile, which is mainly due to the stabilisation of soil organic matter (SOM) by mineral interactions. The aim of the study was to examine whether there were differences in the chemical composition of mineral-associated SOM and free OM in the top A horizon and in the subsoil (horizons below the A11 horizon). Our experimental approach included the replicated sampling of a fulvic and an umbic Andosol under pine and laurel forest located on the island of Tenerife with a Mediterranean sub-humid climate. We determined the extent of the organo-mineral interactions by comparing the sizes of the light (free) and heavy (dense) soil fractions obtained by physical separation through flotation in a liquid with a density of 1.9 g cm–3. We determined the elemental and isotopic composition of both fractions and analysed their chemical composition by analytical pyrolysis. The elemental and isotopic composition showed similar values with depth despite the different vegetation and climatic conditions prevailing at the two sites. Carbon (C) stabilised by mineral interactions increased with depth and represented 80–90% of the total C in the lowest horizons. The heavy fractions mainly released N-containing compounds upon analytical pyrolysis, whereas lignin-derived and alkyl compounds were the principal pyrolysis products released from the light fractions of the top- and subsoil horizons. Principal component analysis showed that the chemical composition of OM stabilised by mineral interaction differs in the different horizons of the soil profile. In the A horizons, the chemical composition of this OM was similar to those of the light fractions, i.e. litter input. There was a gradual change in the bulk molecular composition from a higher contribution of plant-derived molecules in the light and heavy fractions of the A horizon to more microbial-derived molecules as well as black C-derived molecules at depth. We conclude that transport processes in addition to decomposition and possibly in situ ageing affect the chemical composition of mineral-associated OM in subsoils.  相似文献   

18.
Occluded, or intra-aggregate, soil organic matter (SOM) comprises a significant portion of the total C pool in forest soils and often has very long mean residence times (MRTs). However, occluded C characteristics vary widely among soils and the genesis and composition of the occluded organic matter pool are not well understood. This work sought to define the major controls on the composition and MRT of occluded SOM in western U.S. conifer forest soils with specific focus on the influence of soil mineral assemblage and aggregate stability. We sampled soils from a lithosequence of four parent materials (rhyolite, granite, basalt, and dolostone) under Pinus ponderosa. Three pedons were excavated to the depth of refusal at each site and sampled by genetic horizon. After density separation at 1.8 g cm−3 into free/light, occluded and mineral fractions, the chemical nature and mean residence time of organics in each fraction were compared. SOM chemistry was explored through the use of stable isotope analyses, 13C NMR, and pyrolysis GC/MS. Soil charcoal content estimates were based on 13C NMR analyses. Estimates of SOM MRT were based on steady-state modeling of SOM radiocarbon abundance measurements. Across all soils, the occluded fraction was 0.5–5 times enriched in charcoal in comparison to the bulk soil and had a substantially longer MRT than either the mineral fraction or the free/light fraction. These results suggest that charcoal from periodic burning is the primary source of occluded organics in these soils, and that the structural properties of charcoal promote its aggregation and long-term preservation. Surprisingly, aggregate stability, as measured through ultrasonic dispersion, was not correlated with occluded SOM abundance or MRT, perhaps raising questions of how well laboratory measurements of aggregate stability capture the dynamics of aggregate turnover under field conditions. Examination of the molecular characteristics of the occluded fraction was more conclusive. Occluded fraction composition did not change substantially with soil mineral assemblage, but was increasingly enriched in charcoal with depth relative to bulk SOM. Enrichment levels of 13C and 15N suggested a similar degree of microbial processing for the free/light and occluded fractions, and molecular structure of occluded and free/light fractions were also similar aside from charcoal enrichment in the occluded fraction. Results highlight the importance of both fire and aggregate formation to the long-term preservation of organics in western U.S. conifer forests which experience periodic burning, and suggest that the composition of occluded SOM in these soils is dependent on fire and the selective occlusion of charcoal.  相似文献   

19.

Purpose

To better understand the effect of fertilizer practices on soil acidification and soil organic matter (SOM) stocks in a rice-wheat system, a field experiment was conducted to (i) investigate the influence of fertilizer practices on the Al forms in solid phases and the distribution of Al species in water extracts and (ii) explore the relationship between the Al forms, the quantity and composition of SOM, and soil acidity.

Materials and methods

Seven fertilizer treatments including CL (no fertilizer), NK, PK, NPK, N2PK (PK and 125 % of N), NP2K (NK and 125 % of P), and organic fertilizer (OF) were applied to induce various changes in pH and SOM composition (i.e., total C and N contents, C/N ratio, and SOM recalcitrant indices) in a rice-wheat system. After 6-year cultivation, different pools of Al forms (i.e., amorphous Al; organically bound Al of varying stability; exchangeable Al; water-soluble inorganic Al3+, Al-OH, Al-F, Al-SiO3, and Al-SO4; and organic Al monomers) were quantified and related with SOM composition and soil pH during the wheat phase.

Results and discussion

Fertilizer types significantly changed soil pH and SOM composition and which explained 84 % of the variance of Al forms using redundancy analysis. An interaction between soil pH and SOM quality on Al forms also existed but only accounted for a very small (6 %) portion of the variation. Compared to CL and chemical fertilizer, OF practice with relative low SOM stabilization is likely to favor the formation of amorphous Al in order to bind more SOM. The decrease in exchangeable acidity and water-extractable Al via hydroxyl-Al precipitation but not in the form of organo-aluminum complexes evidenced this phenomenon. In contrast, chemical fertilizer input increased exchangeable Al and water extract Al (especially Al3+), partly at the expense of organically bound Al. The destabilization of organic-aluminum complexes was a mechanism of pH buffering evidenced by the increased soluble Al-dissolved organic matter (DOM) as soil pH decreases. Further, the magnitude of this trend was much greater for elevated N input compared with P input.

Conclusions

Chemical fertilizer with relative high SOM stabilization favored the formation of exchangeable Al and soluble Al resulting in soil acidification, whereas OF with relative low SOM stabilization tended to transform exchangeable Al and soluble Al to amorphous Al, thereby alleviating soil acidification and enhancing C stocks in a rice-wheat system.
  相似文献   

20.
In the Caribbean, Pterocarpus officinalis swamp forest, a coastal freshwater wetland, has been locally transformed by human activities into Colocasia esculenta monoculture (under the swamp forest) or pasture (where deforestation has occurred). The aim of this study was to evaluate the impact of three land uses of this tropical wetland (swamp forest, Cesculenta monoculture and pasture) on soil abiotic and biological features. We hypothesized that increasing the level of ecosystem alteration by agricultural intensification would negatively impact soil chemical characteristics, soil fauna diversity and carbon mineralization. As expected, land use significantly affected soil characteristics and changes followed the increasing intensity of land use. The ‘undisturbed system’, that is swamp forest, was characterized by a large soil organic matter content, a high level of soil moisture, a small phosphorus content and a slightly lower pH. These characteristics were correlated with a small faunal abundance and diversity and slow carbon (C) mineralization. The ‘low disturbance system’, that is C. esculenta monoculture, was the closest to swamp forest characteristics and changes between the both systems principally concerned a very slight decrease in organic matter content and very small increase in C mineralization and Coleoptera diversity. By contrast, all parameters (soil chemical characteristics, C mineralization and faunal abundance and diversity) were impacted in the most intensive land‐use, pasture. Our study confirmed that agricultural practices have an influence on soil fauna and C mineralization processes in wetlands. Moreover, our study suggested that a C. esculenta traditional agroecosystem under swamp forest cover could be considered as an ‘eco‐friendly’ agricultural practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号