首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水田重金属污染对粮食生产和人体健康造成严重危害,喀斯特矿区周边土壤受到地质和工矿活动的双重污染,而备受关注。为探讨贵阳市开阳县喀斯特矿区水田土壤重金属污染来源,应用绝对主成分得分-多元线性回归(APCS-MLR)与地统计学分析相结合,对水田土壤中重金属Cd、Hg、As、Pb、Cr、Cu、Zn、Ni的来源进行解析。结果表明:研究区Hg的变异系数最强(384.56%),其均值(1.51 mg/kg)是贵州省土壤背景(0.11 mg/kg)的13.73倍,表现出很高的外源Hg富集;8项重金属均有点位超农用地土壤污染风险筛选值,Cd超的比例最高(47.54%),污染风险最为突出。Cd、Cr、Cu、Zn和Ni的高值区主要分布于中部,且位置相对一致;Hg的高值区分布于西南部;As的高值区分布于西北部、中部和西南部,具有明显的连续性;Pb的高值区主要分布在西部。各重金属在空间分布上具有一定的相似特征,高值区以点状形式分布,并未出现明显的大范围聚集区域。通过分析最终解析出3个主要污染源,Cd、Cr、Cu和Ni主要受自然源影响,其中Cd的污染来源较为复杂,受人为源的影响也较大;Pb和Zn主要是受工矿业与农业混合源的影响;Hg和As主要受到大气沉降与农业混合源,特别是Hg受到极强的人为活动影响,应引起相关部门的重视,采取措施对其进行污染防治。研究结果可为喀斯特高背景矿区水田重金来源解析、水田土壤重金属综合防控和水稻安全生产提供参考和科学依据。  相似文献   

2.
Phosphorus (P) is necessary for growth and nitrogen fixation, and thus its deficiency is a major factor limiting legume production in most agricultural soils. The effect of phosphorus supply on nodule development and its role in soybeans (Glycine max L.) was studied in a nutrient solution. Plants were inoculated with Bradyrhizobium japonicum and grown for 35 days in a glasshouse at a day and night temperature of 25℃ and 15℃, respectively. Although increasing P supply increased the concentrations of P and N in the shoots and roots, the external P supply did not significantly affect the P concentration in the nodules, and the N fixed per unit nodule biomass decreased with increasing P supply. The nitrogen content in the shoots correlated well with the P content (r=0.92**). At an inoculation level of 10^2 cells mL^-1, the P supply did not affect the number of nodules; however, at inoculation levels of 10^3.5 and 10^5 cells mL^-1, increasing P supply increased both the number and size of nodules. Irrespective of the inoculation level, increasing P supply increased the nodule biomass relative to the biomass of the host plant. It is suggested that the P deficiency specifically inhibited the nodule development and thereby the total N2 fixation.  相似文献   

3.
研究5·12汶川地震后土壤Cu、Zn空间分布特征及影响因素,其结果对指导灾后农业生产和居民生活恢复,以及保障新型农村居民点的生态安全性具有十分重要的现实意义。以典型地震灾区彭州市新黄村为例,采用常规重金属测定方法,并用GIS研究了5·12汶川地震后土壤Cu、Zn空间分布特征及影响因素。结果表明,在水平方向上Cu含量([38.23±15.21)mg·kg-1]自中东部-北部和中东部-南部逐渐增加;Zn含量([109.01±29.68)mg·kg-1]从北到南先减少后增加,从东到西表现为先增加后减少;虽然两者均未超过国家土壤环境质量二级标准,但地震后帐篷安置点、生活垃圾堆放点、房屋倒塌点土壤Cu、Zn含量明显高于未受地震影响处;在垂直方向上,帐篷压实水田土壤耕作层和犁底层Cu、Zn含量大多高于自然水田,心土层和底土层二者含量差异不明显。影响因素分析结果表明,不同土地利用类型中水田和荒地土壤Cu含量显著高干旱地土壤,水田土壤Zn含量显著高于荒地和旱地土壤;有机质含量与Cu、Zn含量呈极显著正相关,相关系数分别为r=0.639**和r=0.561**;Cu含量与pH呈显著正相关(r=0.459*),Zn含量与pH相关性不强(r=0.380);人类活动对土壤中Cu、zn含量有一定影响。  相似文献   

4.
三江平原典型区水田时空变化及驱动因素分析   总被引:1,自引:1,他引:0  
为阐明区域水田时空变化特征及其驱动因素,该文以三江平原典型地区富锦市为例,运用网格单元法和地理探测器模型分析不同时段(1989—2002年、2002—2015年)水田时空变化特征及驱动因素,探讨各驱动因子在水田时空变化中的作用及其相互关系。结果表明:1)1989—2015年富锦市水田扩张明显,新增水田34.99万hm~2,垦区水田化进程早于农区。1989—2002年,东部垦区水田扩张度较高,南部次之;2002—2015年,水田扩张度较高的地区主要分布在西南部农区与北部垦区。2)1989—2002年,水田扩张的主要驱动因素为政策因素和土壤类型,各因子间的交互作用大部分是双因子增强;2002—2015年,自然因素对水田变化影响减弱,水田扩张的主要驱动因素是到河流距离和到铁路距离,各因子间的交互作用大部分是非线性增强,水田化发展到成熟阶段。富锦市水田时空变化差异是由多种驱动因子共同作用的结果,研究结果可为三江平原耕地资源合理利用及水田规模科学管控提供借鉴和参考。  相似文献   

5.
Zhang  Zhaoxue  Zhang  Nan  Li  Haipu  Lu  Yi  Wang  Qiang  Yang  Zhaoguang 《Journal of Soils and Sediments》2019,19(12):4042-4051
Purpose

This study aimed to reveal spatial distribution of As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, V, and Zn in paddy soils in the Zijiang River basin and to evaluate its pollution status and potential ecological risks, and thus to provide basic information for rational utilization of paddy soils in the study area.

Materials and methods

The heavy metal(loid) concentrations in one hundred and thirty-five paddy soil samples (these samples were collected from the top 0–20 cm layer) were measured by inductively coupled plasma-optical emission spectrometry. The spatial distribution characteristics of the heavy metal(loid)s were depicted by the Ordinary Kriging interpolation analysis. The contamination degree and potential ecological risks of the heavy metal(loid)s in paddy soils were assessed by Nemerow’s comprehensive index, geoaccumulation index, potential ecological risk factor, and potential ecological risk index. The potential sources of the heavy metal(loid)s were deduced by Pearson’s correlation analysis, hierarchical cluster analysis, and principal component analysis.

Results and discussion

The mean concentrations of the heavy metal(loid)s decreased in the order of Mn?>?V?≈?Zn?>?Cr?>?Ni?≈?Pb?>?Cu?≈?Sb?>?As?>?Cd. Except for Cd and Sb, the mean concentrations of As, Cr, Cu, Mn, Ni, Pb, V, and Zn were close to the background reference values. The concentration of Cd in 94.8% of samples exceeded the soil quality standard value (grade II, 5.5?<?pH?<?6.5, GB 15618–1995). According to the assessments of pollution and potential ecological risks for the heavy metal(loid)s, 45.2% and 46.7% of samples were severely polluted and moderately polluted, respectively. The potential sources analysis indicated that Cd, Sb, and Zn mainly originated from agricultural, mining, and smelting activities; As, Cu, and Pb mainly originated from agricultural activities, while coal combustion by-products was another major source of these heavy metal(loid)s in paddy soils near the thermal power plant in the southwest corner of the study area; Cr, V, Mn, and Ni mainly originated from natural source.

Conclusions

Cadmium and Sb are the main contaminants in paddy soils in the study area, and there are hot-spot pollution areas.

  相似文献   

6.
Abstract

In Vietnam, the Co Dinh mine is the largest chromite mine in the country. Mining, ore dressing and disposal of the tailings provide obvious sources of heavy metal contamination in the mine area. The present study examined the influence of chromite mining activities on the adjacent lowland paddy field by investigating heavy metal and As levels in the mine tailings, sediments, paddy soils and water. At paddy fields located near the mine tailings, the total contents of Cr, Co and Ni were 5,750, 375 and 5,590?mg?kg?1, and the contents of their water-extractable form were 12.7, 1.16 and 32.3?mg?kg?1, respectively. These results revealed severe contamination of lowland paddy soils with Cr, Co and Ni as a result of mining activity, suggesting serious health hazards through agricultural products, including livestock in this area. The principal source of the pollution was sediment inflow owing to the collapse of the dike, which was poorly constructed by heaping up soil. Moreover, water flowing out from the mining area was also polluted with Cr and Ni (15.0–41.0 and 20.0–135?μg?L?1, respectively). This might raise another problem of heavy metal pollution of watercourses in the area, indicating the need for further investigation and monitoring of fluctuations of water quality with seasonal changes.  相似文献   

7.
Levels and chemical forms of heavy metals in forest, paddy, and upland field soils from the Red River Delta, Vietnam were examined. Forest soils contained high Cr and Cu levels that were higher in subsurface than in surface layers. Levels of Cu, Pb, and Zn that exceeded the limits allowed for Vietnamese agricultural soils were found in the surface layer of a paddy field near the wastewater channel of a copper casting village. High amounts of Zn accumulated in the surface soil of paddy fields close to a fertilizer factory and an industrial zone. In these cases, larger proportions of Cu, Pb, and Zn were found in the exchangeable and acid-soluble fractions compared to the low-metal soils. We conclude that no serious, large-scale heavy metal pollution exists in the Red River Delta. However, there are point pollutions caused by industrial activities and natural sources.  相似文献   

8.
[目的]稻田土壤重金属污染是当前农产品安全生产关注的重要问题.本文比较分析工业和农业污染源稻田土壤重金属的赋存形态及水稻吸收运移,以期为稻田土壤重金属污染控制提供参考.[方法]在长江中下游地区调查选取工业源和农业源重金属污染稻田各27块,在水稻成熟期使用抖根法采集根际土壤及水稻根系和籽粒样品,采用Tessier七步提取...  相似文献   

9.
【目的】通过研究冀东平原水稻田土壤中重金属来源、污染现状、空间分布特征和潜在的生态风险,实现重金属污染农田土壤的安全利用管控。【方法】以实地采集的水稻田土壤表层样品(0~20 cm)为研究对象,测定土壤中铬(Cr)、镍(Ni)、铜(Cu)、锌(Zn)、镉(Cd)、铅(Pb)、汞(Hg)和砷(As) 8种重金属元素含量。采用单因子污染指数法、内梅罗综合污染指数法和主成分分析、聚类分析等多元统计分析方法测算区域土壤重金属污染程度,并进一步分析重金属污染来源。【结果】以《土壤环境质量农用地土壤污染风险管控标准(试行)(GB 15618—2018)》中的风险筛选值为重金属污染评价基准,冀东平原水稻田土壤部分区域受到明显污染威胁,从单一的重金属元素来看,Cd污染不容忽视,其超标率达到了23.2%,是区域内土壤污染的主要元素。从土壤重金属元素的空间分布来看,重金属污染主要分布在研究区的中部和西部,其中Cd污染严重区主要分布在中部区域。重金属污染元素来源解析结果表明,冀东平原水稻田土壤污染主要受人为活动影响,其次是成土母质,其中Cr和Zn主要以成土母质影响为主,Ni、Pb、Cu、Hg和As是成土母质...  相似文献   

10.
广东省东南部菜地水田砷含量空间分布   总被引:4,自引:1,他引:3  
针对稀疏采样条件下农用地土壤砷含量空间分布难以高效准确识别的问题,以广东省东南部农用地为例,采集表层土壤(0~20 cm)样本104个,借助空间分析与多元回归建模手段,分菜地、水田和果园3类农用地分析土壤砷含量统计特征、模拟揭示土壤砷含量空间分异的成因与空间分布格局。结果表明:1)研究区农用地土壤砷含量总体上达标,但个别样点土壤砷含量值高达137.80 mg/kg,显著高于国家土壤环境质量二级标准(GB156182-1995);2)3类农用地中菜地土壤砷含量最高、水田次之、果园相对较低,均值分别为11.04、9.89和2.54 mg/kg;3)各类农用地土壤砷污染来源不同,菜地砷污染主要在不同地形条件下,受河流污水灌溉和烟囱排放的废气沉降随地表径流累积影响,在空间上呈现北部偏高、其他地区偏低的分布格局;4)水田砷污染受河流污水灌溉影响显著,空间上呈现南北部偏高、中部地区偏低的污染格局。研究结果对在稀疏采样监测地区开展农用地土壤重金属污染制图与精细防控策略的制定提供了一种行之有效的方法。  相似文献   

11.
贵州万山汞矿区某农田土壤重金属污染特征及来源解析   总被引:12,自引:0,他引:12  
研究采集万山汞矿区典型农田土壤样品,分析测试其Hg、As、Cd、Cr、Pb、Cu、Zn、Ni含量,利用综合污染指数法、地累积指数法和潜在生态危害指数法评估农田土壤的污染状况及生态风险,结合相关分析和主成分分析解析农田土壤中重金属的来源。结果表明,该农田土壤Hg、As、Cd、Cr、Pb、Cu、Zn、Ni的平均含量分别为4.29、117.6、0.43、59.06、48.99、43.77、29.13、18.80 mg kg~(-1)。土壤重金属综合污染指数为7.16,表明该农田土壤重金属重度污染,其中100%的位点Hg、As重度污染,66.7%的位点Pb轻度污染,25%的位点Cd轻度污染。土壤重金属的综合潜在生态危害指数为469.0,生态风险强,Hg对综合潜在生态危害指数的贡献率为78.30%,是该农田土壤生态风险的主要来源。该农田中重金属的来源包括:交通运输源、矿业污染源、农业污染源和自然活动源,主要污染物Hg来源于矿业活动,As来源于交通运输和矿业活动,Cd来源于农业活动,Pb来源于交通运输。  相似文献   

12.
内蒙古草原白乃庙铜矿区土壤重金属污染特征研究   总被引:4,自引:0,他引:4  
对位于内蒙古荒漠草原上的白乃庙铜矿采选矿区土壤和尾矿区周围土壤重金属污染状况进行了调查研究。结果表明,矿区土壤中Cu、Cr、Ni、Fe和Mn浓度均高于内蒙古土壤平均值。单因子指数法评价结果表明,五个调查区域土壤都受到了重金属Cu、Cr、Ni、Mn、Fe的污染,其中Cu为重污染,Cr、Ni、Mn、Fe为轻污染,Pb为安全级别,Zn和As只对某些区域有轻污染。综合污染指数法评价结果表明,五个调查区域的土壤重金属污染等级均属重污染,主要贡献元素是Cu,其次是Cr、Ni、Mn、Fe,这与尾矿砂中这些重金属的浓度是相对应的。由于周边地形复杂,多为低山丘陵,所以该地区主导风向对于尾矿库区不同方向土壤重金属污染水平的影响差异并不显著。  相似文献   

13.
石门雄黄矿周边农田土壤重金属污染及健康风险评估   总被引:8,自引:2,他引:8  
杨敏  滕应  任文杰  黄阳  徐德福  傅赵聪  马文亭  骆永明 《土壤》2016,48(6):1172-1178
湖南石门雄黄矿区环境污染及风险是当前国家环保部门和地方政府极为关注的重要环境问题之一。本研究以该矿区周边农田表层土壤为研究对象,调查分析了矿区周边农田土壤重金属污染状况及其空间分布特征,并采用美国EPA土壤健康风险模型评估了其对人体的健康风险。土壤重金属污染评价结果显示:该区土壤受到中度的As污染和Cd污染,As平均含量为80.26 mg/kg,Cd平均含量为0.55 mg/kg;Cu、Zn、Pb含量均未超过国家《土壤环境质量》的二级标准;综合污染指数显示研究区域为中度污染。美国EPA模型评估结果显示:成人和儿童的日暴露量及非致癌健康风险主要途径均为经手–口摄入,Cd对成人和儿童均不存在非致癌风险和总风险,As对儿童非致癌总风险指数为3.36,造成严重的非致癌健康威胁;经呼吸暴露的致癌风险,Cd对儿童和成人均不造成致癌健康影响,As对成人和儿童的平均致癌风险指数为3.13×10~(-4)和5.58×10~(-4),均存在显著的致癌健康风险,且As、Cd对儿童的健康威胁均高于成人。可见,该矿区周边农田土壤中As、Cd污染及其风险应加强控制与治理。  相似文献   

14.
以苏南某冶炼厂原址场地附近土壤、水稻为对象,研究了土壤及水稻籽粒中重金属(Cu、Pb、Cd)污染状况及其迁移、累积特征。结果表明,研究区土壤重金属综合污染指数均大于3,污染等级超过5级,属重度污染且各重金属间污染程度呈现Cd〉Cu〉Pb的特征,水稻籽粒中重金属Pb、Cd超标严重。在迁移、累积方面,表层土壤重金属呈现出由东南向西北方向扩散的趋势,且向下迁移及在水稻籽粒中累积的趋势明显,各重金属在水稻籽粒中富集能力的大小顺序为Cu〉Cd〉Pb。  相似文献   

15.
[目的]探讨磷石膏堆场周边耕地土壤重金属含量的变化、成因及污染风险,为磷化工产业可持续发展及水土环境重金属污染的治理提供科学依据。[方法]通过对贵州省中部磷石膏堆场进行实地调查与采样开展分析和研究。[结果]磷石膏堆场排水、侵蚀冲沟水及洼地积水中Cd,Hg,As的含量都超过农田灌溉水质一类标准(水作)水质限值,特别是Cd。在磷石膏堆场周边50~300 m范围内,玉米地、蔬菜地、水稻土中Cd的含量分别超过农用地土壤污染风险筛选值的4.87~9.43倍、8.83~19.13倍和3.83~13.42倍,堆场周边旱作土主要是Cd,As,Zn的污染风险,而水稻土则主要是Cd,As,Hg,Zn的污染风险;大部分蔬菜地土壤和水稻土中Cd的含量超过农用地土壤污染风险管控值。[结论]天然降雨对露天磷石膏堆场产生的侵蚀及淋溶作用是重金属迁移的主要原因,在地表水流方向上耕地重金属污染风险随着堆场距离的增加而逐步减小。兴修排灌设施及调整种植结构是减少磷石膏堆场周边耕地重金属污染的有效途径。  相似文献   

16.
Abstract

To evaluate arsenic (As) levels in agricultural soils of the Red River Delta in northern Vietnam, surface (0–5 cm) and subsurface (20–25 cm) soil samples were collected from 18 paddy and six upland fields on both sides of the river. As a reference, forest soils were also sampled at two sites of the upper river basin. The total As contents of approximately 80% of the surface paddy and upland soils exceeded the maximum allowable limit for Vietnamese agricultural soils (12 mg kg?1). Arsenic contents higher than 35 mg kg?1 were found in soils from the Hungyen and Hanam provinces, where high As levels in the groundwater have also been reported. Sequential fractionation of As in these soils indicated that the amounts of As in the phosphate-extractable and residual fractions were higher than those in the forest soils. Elevated total As contents were also detected in the surface soil of a paddy field near a fertilizer factory in Hanoi (site P10). The amount of HCl-extractable As in the surface soil at P10 corresponded to 84% of the total As, while the proportion never exceeded 40% at other locations. In the surface soil at P10, most of the As was part of the phosphate-extractable fraction. Significant correlations between the total As contents of the upland soils and their non-crystalline Fe oxide contents (r = 0.652, P ≤ 0.05) and between As levels of paddy soils and their crystalline Fe oxide contents (r = 0.544, P ≤ 0.01) were observed. Overall, the present study indicated that although serious As pollution was not found in the studied area, there were some point pollutions caused by industrial activities, in addition to some non-point pollutions resulting from high As concentrations in the groundwater. In addition, Fe oxides in the soils are important factors affecting the As contents of agricultural soils in the Red River Delta.  相似文献   

17.

Purpose

With widely applied water-saving irrigation techniques, the transformation and availabilities of copper (Cu) as both a micronutrient and a toxic metal are changed. However, little information is available on the binding forms, bioavailability, and fate of Cu in paddy fields with different irrigation management. Thus, we investigated the effects of irrigation management on the binding forms and the fate of Cu in a non-polluted paddy soil.

Materials and methods

Field experiments were conducted in 2011 on non-polluted rice fields in Kunshan, East China. Non-flooding controlled irrigation (NFI) was applied in three replications, with flooding irrigation as a control. Samples of soil, soil solution, irrigation water, and rice plants were collected. Fresh soil samples were digested using the modified European Community Bureau of Reference sequential extraction procedure and the dried crop samples digested at 160 °C using concentrated HNO3. Cu contents in irrigation water, soil solution, extraction for different binding fractions, and the digested solutions were measured using inductively coupled plasma optical emission spectrometry. Leaching loss of Cu was calculated based on the Cu contents in 47- to 54-cm soil solutions and deep percolation rates, which were calculated using the field water balance principle.

Results and discussion

NFI led to multiple dry–wet cycles and high soil redox potential in surface soil. The dry–wet cycles in NFI soil resulted in higher Cu contents in acid-extractable and oxidizable forms and lower Cu in residual form. High decomposition and mineralization rates of soil organic matter caused by the dry–wet cycles partially accounted for the increased Cu in acid-extractable form in NFI soils. The frequently high contents of Cu in reducible form in NFI fields might be due to the enhanced transformation of Fe and Mn oxides. As a result, Cu uptakes in NFI fields increased by 8.1 %. Meanwhile, Cu inputs by irrigation and loss by leaching in NFI fields were reduced by 47.6 and 46.6 %.

Conclusions

NFI enhanced the transformation of Cu from residual to oxidizable and acid-extractable forms. The oxidizable form plays a more important role than the reducible form in determining the transformation of Cu from the immobile to the mobile forms in NFI soils. NFI helps improve availability and decreases leaching loss of Cu as a micronutrient in a non-polluted paddy soil, but leads to a high concentration of Cu in rice.  相似文献   

18.

Purpose

The Qixia mine is one of the largest lead-zinc mines in Eastern China and has been operational for approximately 60 years. Source identification for trace element contamination of soils in the Qixia mining area has been lacking. This report details the evaluation and source identification of trace element contamination (including Cu, Zn, Pb, Cd, Hg, Cr, As, and Ni) of soils in this area.

Materials and methods

Thirty-three soil samples from roadsides and fields in the study area were collected and analyzed. The index of geo-accumulation (I geo) was employed to evaluate contamination. Methods of multivariate statistical analysis were used to determine the probable sources of the pollutants.

Results and discussion

The analysis showed that the levels of contamination ranked in the following order: Cd > Pb/Zn> > As/Cu> > Hg > Cr/Ni. In the sampling area nearest the mine, soil samples collected from roadsides showed much higher levels of contamination than those collected from fields away from the roadways. Trace element contamination decreased as the distance from the mine increased. Contamination extended to a distance of approximately 700 m from mineral transportation routes, with the area of greatest impact at 200 m or less. Multivariate statistical analysis and ore composition data suggest that the Cu, Zn, Pb, Cd, and As found in the soil samples originate from anthropogenic sources. Ni and Cr are considered to be at natural background concentrations.

Conclusions

This study distinguished between natural and anthropogenic sources of trace element contamination in the soils of the Qixia mining area. The contamination of Cu, Zn, Pb, Cd, and As is linked to the mining activities and is likely due to the transportation of ore concentrates and tailings.  相似文献   

19.
Pig-biogas residue is widely used as organic fertilizer for rice (Oryza sativa L.) in China. To evaluate the risk of heavy metal contamination in paddy soil and rice grains caused by long-term pig-biogas residue fertilization, this study was conducted in paddy fields which had been fertilized continuously with pig-biogas residue for 8 years. We found that pig-biogas residues contained high concentrations of arsenic (As), cadmium (Cd), copper (Cu) and zinc (Zn). As a result, the concentrations of these four metals in paddy soils and rice grains sampled from biogas residue fertilized fields were significantly higher than those from control fields. In addition, in biogas residue fertilized fields, the concentrations of these four metals rapidly increased in the tillage layer compared with those in deep soil layers, and biological availability was significantly higher than in control fields. Moreover, we found that the accumulation of these four metals in paddy soils and rice grains increased in the second year compared with the first year. To reduce heavy metal accumulation in rice grains, we screened for rice genotype among 20 local rice genotypes. We found obvious genotypic differences in grains’ accumulation of heavy metals, and identified some rice genotypes which had low accumulation of multiple heavy metals. These low-accumulating genotypes predicate the possibility to reduce heavy metal accumulation in rice grains grown in pig-biogas residue fertilized fields.  相似文献   

20.
土壤中的砷会经作物和径流等途径转移,甚至进入食物链而对人产生危害。为了解影响农用地土壤中砷含量的因素,选择江苏昆山农地为研究对象,探讨地理区位、土地利用方式、土壤特性与农用地土壤砷含量的关系,并用逐步回归法建立了昆山农地土壤砷含量与土壤理化参数关系的回归方程。研究表明:地形和农田的氧化还原环境会改变土壤砷含量,因此,地势高处的土壤砷含量高于地势低处,旱地高水田低。不同利用方式的旱地土壤的砷含量也不同,林地>抛荒地>菜地>玉米-西瓜田>苗圃。此外,土壤砷含量还与化肥施用量正相关,并与土壤黏粒呈正相关,却与土壤pH、有机质、全氮和细砂粒含量呈负相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号