首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 87 毫秒
1.
水产养殖自动导航无人明轮船航向的多模自适应控制   总被引:1,自引:2,他引:1  
为降低水产养殖行业劳动作业强度和人力成本,解决劳动力日益匮乏的问题、提高鱼塘投饵效率和投饵均匀度,对适用于水产养殖的水面作业艇-明轮船的航行控制进行研究。为克服明轮船运动过程中航速、航向强耦合,给出改进的明轮船控制系统方案,实现航向、航速之间的解耦,建立明轮船航向系统的动态响应数学模型。根据明轮船的工作特点,对明轮船进行多模自适应控制,用计算机软件进行仿真和实船试验,并与PD(proportion differentiation)控制进行比较。通过仿真和试验的结果,证明所设计的控制器能解除明轮船的耦合效应,船速超调量不超过5%,稳态误差在3%以内,直线航行时的航向误差在3?以内。数据表明多模自适应控制方法能够对明轮船航行进行较好的控制,效果优于PD控制。  相似文献   

2.
基于无线传感器网络的节能型水产养殖自动监控系统   总被引:1,自引:5,他引:1  
水产养殖的规模化发展和人力成本的不断上升迫切需要建立水质参数的无人值守自动监控系统。该文提出了一种基于改进型低能耗分层分群协议(LEACH)的Zigbee无线传感网络的水质监测和基于西门子PLC的变频增氧控制系统。在LEACH-C通信协议中,由基站根据各节点剩余能量的估算值选定簇首,达到各节点供电电池剩余能量的均衡,同时从系统的实际控制精度出发,当节点测量到的溶解氧浓度值与上次发送值误差在0.02 mg/L范围内时,不向簇首发送数据,达到节约供电电池能量的目的,经试验发现采用优化后的LEACH-C协议,比采用常规的LEACH协议网络有效寿命延长33.33%。适合鲈鱼生长的水体溶解氧质量浓度大于4.5 mg/L,但随着浓度的上升增氧效率将逐步降低,因此设定应急增氧的区间为4.5~5.5 mg/L。控制系统根据无线传感网络测量的溶解氧质量浓度值,采用PI-PID控制水体溶解氧浓度。保证了水体溶解氧质量浓度始终适合鱼类生长。通过试验验证,与人工粗略控制相比,这种控制方法大幅降低了人力成本和节约了51%的电能。该文可为水产养殖自动控制研究提供参考。  相似文献   

3.
基于流程编码的水产养殖产品质量追溯系统的构建与实现   总被引:21,自引:6,他引:15  
以水产品为研究对象,基于养殖产品流程个体编码技术、XML Web服务的数据传递技术和角色控制的权限动态分配技术,建立了多层次多用户多权限的水产养殖产品质量追溯系统,为生产者、检验者、监督者和消费者提供食品生产、流通和消费各环节信息交互平台,并以电话、网络、短信向公众提供追溯查询服务、认证监管服务和防伪服务,具有较好的推广应用前景.  相似文献   

4.
基于水质监测技术的水产养殖安全保障系统及应用   总被引:7,自引:4,他引:3  
为解决水产养殖中的风险问题,设计了基于水质监测技术的水产养殖安全保障系统。系统由水质监测与信息处理系统、电路控制系统、增氧和投饲设备组成,系统根据养殖水体的溶氧变化调控增氧、水层交换和投饲。常规淡水鱼池塘养殖情况下,安全增氧时间不低于6.2 h/W·d·kg,机械增氧下限为3 mg/L,上限为5 mg/L,上限运行时滞为0.5~1 h,水层交换时滞为1~2 h。应用表明,系统比传统增氧方式节约运行时间33.4%,平均降低饲料系数21.6%,系统具有节能、节饲和保障养殖安全的效果。  相似文献   

5.
基于AT89C51水产养殖环境参数自动监测系统设计与实现   总被引:1,自引:0,他引:1  
针对水产养殖中溶解氧、pH值、温度等重要水质参数的监测,采用PC机为上位机,AT89C51微控制器为下位机,设计了一种水产养殖环境参数自动监测系统。该系统实现了对溶解氧、pH值、温度的实时采集、显示和存储,同时还提供了超限报警、历史数据查询等功能。试验结果表明,系统运行稳定、能够准确地采集和显示水产养殖环境参数,且具有操作简便、界面友好、性价比高和易扩展等优点。  相似文献   

6.
该文基于ZigBee无线传感器网络技术,设计了一种节能型水产养殖环境监测系统,用于实时监测水的温度、pH值、溶解氧浓度和浊度等参数。系统采用CC2530为核心处理器设计无线传感器节点;运用开源的Z-stack协议栈开发了节点应用程序,提高了系统的稳定性和可靠性;使用9 V锂电池为无线传感器节点供电,实现了系统的无线化;采用C/S和B/S混合编程模式开发了简单直观的本地用户监测界面和远程监测网站,实现了系统的本地监测和远程监测;采用分时、分区供电的方式和数据融合技术延长了节点的生存时间。该文介绍了系统软硬件设计方法,并重点阐述了软件和硬件的节能策略。实验室测试表明,采用方案4(传感器不一直工作,数据全部发送),节点数据采集周期为10 min,节点能正常工作94 d,实际系统上线时,节点数据采集周期为30 min,节点预计能正常工作280 d左右;运用节能策略后,节点寿命延长了1倍。在甘肃省某虹鳟鱼养殖基地进行了实地测试,路由节点剩余能量约占总能量的47%,终端节点剩余能量约占总能量的33%,路由节点能量消耗较快,距离汇聚节点最近的16号路由节点的寿命预估只有134 d。结果表明该系统具有功耗低、运行稳定、网络寿命长等优点,能实现水产养殖环境的实时监测,具有很好的市场前景和推广价值。  相似文献   

7.
基于物联网Android平台的水产养殖远程监控系统   总被引:15,自引:10,他引:5  
为了促进江苏省智能农业的发展,该文开发了一种基于物联网Android平台的水产养殖远程监控系统,实现了对多传感器节点的信息(pH值、温度、水位、溶解氧等环境参数)远程采集和数据存储功能,实现了对多控制节点的远程控制。系统不受时间地域限制,用户可以在任何具备网络覆盖的地方从手机上浏览并获取数据,将数据从数据库中导出到用户的SD卡上,以TXT格式存储,系统多手机用户客户端可以共享一台服务器,具有很高的性价比。系统采用CC2430作为底层管理芯片,控制部分采用模糊PID控制算法,系统通过在江苏省溧阳长荡湖实验基地系统的实际调试,各项指标均达到要求,温度测量精度达到0.5℃,pH值测量精度达到0.3,溶解氧的控制精度在±0.3 mg/L以内,水位波动控制在平均±1 cm左右,能够满足水产养殖的需要。  相似文献   

8.
养殖温室是设施水产养殖的关键装备,对养殖环境调控和系统运行能耗有极大的影响。在浙江大学的校园内,设计建造了一个设施水产养殖试验温室,用于研究基于可再生能源的供热系统和养殖温室围护结构保温特性。试验温室长13.46 m,宽4.96 m,南墙高0.8 m,北墙高2.5 m。北墙和屋顶各设置有4个独立的洞口,尺寸分别为2.2?m×2.2?m和2.2?m×4.8?m,用于研究各种墙体和屋顶保温构造的湿热性能。太阳能集热器面积可在10~50 m2之间变化,试验温室冬季室内空气温度可控制在15~35°C。可用于测试养殖温室的太阳能-热泵联合集热、围护结构的湿热传递、废水余热回收、养殖新水增温和温室室内采暖等性能。  相似文献   

9.
基于无线传感网络的规模化水产养殖智能监控系统   总被引:4,自引:8,他引:4  
为了解决规模化水产养殖中有线监控系统带来的不利影响,并能实现对环境因子的准确测量与控制,该文介绍了一种基于无线传感网的智能监控系统在规模化水产养殖中的应用。系统利用对协议栈进行小幅的修改,完成了人工设置每个养殖池为一个簇,并通过适当修改路由协议,将自动选择簇头的工作变为人工设置固定簇头,大幅减少节点本身的计算工作,从而实现节能目的。控制器利用模糊控制与神经网络相结合的算法对数据进行处理分析,实现闭环控制。结果表明,系统内数据通信通畅,温度误差在±0.5℃范围内,溶氧量误差在±0.3 mg/L范围内,pH值误差在±0.3范围内。各养殖关键环境因子均满足控制精度,达到了设计要求,能够满足规模水产养殖智能化的需要。  相似文献   

10.
基于养殖流程的水产品质量追溯系统编码体系的构建   总被引:1,自引:0,他引:1  
本文以HACCP体系为指导原则,从分析水产养殖品的业务流程入手,提出了一种产品编码与过程编码相结合编码方法,建立了适用于国情同时又符合国际标准的水产养殖产品质量追溯编码方案。并以此为基础,首次在国内建立了水产养殖产品质量追溯技术体系。  相似文献   

11.
袁凯  庄保陆  倪琦  吴凡 《农业工程学报》2012,28(23):169-176
为了提高室内工厂化水产养殖自动投饲系统定时、定量精度,并减少养殖过程中的饲料浪费,降低劳动强度,运用轨道传动、滑轨供电、超声波定位、无线通讯和计算机软件等技术开发了新型轨道式自动投饲系统。计算分析得,当选用HW100×100型钢制作轨道,以直径为0.06 m的T型锻钢轨道轮、减速比为20∶1的2级传动齿轮组和24 V直流电机驱动系统行走时,电机功率需0.2 kW以上,转速为2 000 r/min,输出扭矩要求0.58 N·m以上。应用Solidworks软件设计了轨道式自动投饲系统样机,并进行了投饲量精度和定位误差性能测试试验,结果表明:该系统可以顺利完成自动启停与运行控制,其行走速度达到19 m/min,定位误差在58~118 mm范围内,料仓储料量20 kg,投饲能力3 kg/min,投饲量误差在0.5%~2.2%范围内。研究结果可为轨道式自动投饲系统设计与后续研究提供参考。  相似文献   

12.
室内工厂化水产养殖自动投饲系统设计与试验   总被引:6,自引:7,他引:6  
为了提高室内工厂化水产养殖自动投饲系统定时、定量精度,并减少养殖过程中的饲料浪费,降低劳动强度,运用轨道传动、滑轨供电、超声波定位、无线通讯和计算机软件等技术开发了新型轨道式自动投饲系统。计算分析得,当选用HW100×100型钢制作轨道,以直径为0.06m的T型锻钢轨道轮、减速比为20:1的2级传动齿轮组和24V直流电机驱动系统行走时,电机功率需0.2kW以上,转速为2000r/min,输出扭矩要求0.58N.m以上。应用Solidworks软件设计了轨道式自动投饲系统样机,并进行了投饲量精度和定位误差性能测试试验,结果表明:该系统可以顺利完成自动启停与运行控制,其行走速度达到19m/min,定位误差在58~118mm范围内,料仓储料量20kg,投饲能力3kg/min,投饲量误差在0.5%~2.2%范围内。研究结果可为轨道式自动投饲系统设计与后续研究提供参考。  相似文献   

13.
基于动特性分析法的海上养殖平台多点系泊系统设计   总被引:2,自引:2,他引:0  
养殖平台是深水养殖过程中的浮式管理基站,对其在海面位置进行约束是正常使用的先决条件,系泊系统是平台安全且准确定位的关键所在。针对使用海域浅水深、多种限制条件下的小尺度、浅吃水海上养殖平台,对其系泊系统进行了设计,采用以三维势流理论及非线性时域耦合分析法的数值计算方法对其位移、锚泊系统预张力、最大张力等方面进行仿真校核。结果表明:浅水情况下,单一钢链的悬链式系泊系统和单一纤维绳的张紧式系泊系统不能满足该平台的系泊要求;重新设计的系泊系统采用1?6的布置方式可以较均匀分配环境载荷,系泊半径95 m的情况下,选用95 m(15 m锚链+80 m纤维绳)锚腿组成的系统较好地满足了该平台的系泊要求;通过验算,传统的悬挂小质量水泥块(约15 kg/块)的方式对所设计系泊系统的产生的效果不显著,不建议对设计的系泊系统增配质量;浅水效应对系泊系统安全性的影响以及系泊平台六自由度的运动响应情况还有待深入研究。  相似文献   

14.
基于语义本体的柑橘肥水管理决策支持系统   总被引:2,自引:2,他引:2  
利用信息技术实现柑橘精准生产管理是果树信息化管理的重点和难点。该文针对山地果园肥水信息化精准管理问题,研发了基于语义本体的柑橘肥水管理决策支持系统。柑橘肥水语义本体是决策支持系统的核心,它以资源描述框架三元组整合涉农信息。系统实现了施肥、生理病害防治和排灌监测3个功能。系统验证结果表明:1)施肥查询模块能够根据树龄、施肥时期、土壤质地、地形和产量5个因素计算氮、磷、钾施肥量,经216组数据验证其输出正确率100%;2)经100组涵盖12种营养素缺乏和过剩生理病害数据验证,病症查询模块能够根据输入病症正确判断生理病害;3)排灌检测模块能根据不同土壤质地对排灌实时监测,经小型气象站获取的土壤含水率数据验证,系统正确预警率达100%。经361组性能测试数据结果表明系统平均响应时间在0.23 s(浏览器端应用)和0.58 s(手机端应用)内,具备较优性能。该研究为农业领域知识建模和异构多源数据整合等问题提供了可行方案。  相似文献   

15.
基于无线传感器网络的水产养殖池塘溶解氧智能监控系统   总被引:2,自引:6,他引:2  
为了便于对规模化水产养殖池塘溶解氧的监控,该文研制了一种基于无线传感网的水产养殖池塘溶解氧智能监控系统,实现对池塘溶解氧的分布测量、智能控制和集中管理。针对常规模糊PID控制器自适应能力低,提出了一种可变论域模糊PID控制器,根据溶解氧误差和误差变化的大小动态调整模糊控制单元的输入输出变量论域,能较好地解决了模糊控制规则数量与溶解氧控制精度之间的矛盾,实现了PID控制器参数的自整定。根据池塘溶解氧变化的非线性、大时滞和大惯性等特点,设计基于变论域模糊PID控制器与增氧机转速PID调节器构成的池塘溶解氧串级控制系统,溶解氧控制器的输出为增氧机转速调节器的输入,增氧机转速调节器输出改变增氧机转速使溶解氧浓度快速跟踪目标值。根据溶解氧测量数值序列的变化趋势,基于灰色理论和权重构建组合灰色溶解氧预测模型,以预测值作为变论域模糊PID控制器的反馈值,实现对溶解氧的预测控制,起到超前调节的目的。在试验池塘和对照池塘分别采用变论域模糊PID控制器和模糊PID控制器对池塘溶解氧进行调控,对照池塘溶解氧的响应时间比试验池塘延长15 min左右,超调量扩大2.96倍,对照池塘溶解氧的标准差、均方差、最大误差和最小误差指标比试验池塘扩大3~4倍。试验结果表明可变论域模糊PID控制器能够改善池塘溶解氧控制系统的动态性能,提高控制系统的稳态精度,有效地抑制影响池塘溶解氧稳定的诸多不确定因素的干扰,满足水产养殖对池塘溶解氧的要求,为解决非线性和大时滞复杂对象的控制问题提供一个新的控制思路。  相似文献   

16.
为了解循环水养殖系统生物过滤器内微生物群落结构,明确其内部微生物的多样性。该文采用Illumina-Mi Seq高通量测序技术对石斑鱼循环水养殖系统3级浸没式生物滤池内微生物群落结构及多样性进行分析。研究结果表明:3个浸没式生物滤池的样品分别获得712,635,865个Operational Taxonomic Unit(OTU),共同包含的OTU为488个,其中3号滤池的微生物群落丰富度和多样性高于1号和2号生物滤池,且1号生物滤池和2号生物滤池内微生物群落结构相似度较高。在门的水平,3个滤池以变形菌门Proteobacteria、拟杆菌门Bacteroidetes为优势菌;在属的水平,发现3个滤池中起硝化作用的细菌主要是亚硝化单胞菌Nitrosomonas和硝化螺菌Nitrospira。该试验为揭开生物滤池这个"黑匣子"提供数据基础,对研究海水循环水养殖生物滤池的构建及其脱氮效率具有重要的指导意义。  相似文献   

17.
基于人工湿地的循环水产养殖系统工艺设计及净化效能   总被引:28,自引:3,他引:25  
该研究首次将复合垂直流人工湿地同池塘养殖结合,通过构建养殖-湿地生态系统,验证人工湿地对水产养殖用水和废水净化与回用的可行性。近9个月的新建人工湿地运行结果表明,水力负荷从313、469、625 mm/d增加到781 mm/d,人工湿地对TSS、CODCr和BOD5去除率的变动范围分别为80.5%~82.9%、45.2%~64.2%和61.0%~77.0%,对NH4-N、NO-3-N、TN去除率的变动范围分别为51.5%~67.8%、-90.6%~40.0%和29.1%~68.6%,对TP和IP的去除率为72.7%~89.1%和0~33.3%,对细菌总数、总大肠菌群、藻类等生命物质也有较好的去除效果,湿地出水水质除溶氧外能达到国家渔业水质标准。初步结果表明人工湿地应用于水产养殖用水处理和回用具有广阔的前景。  相似文献   

18.
浅海围网养殖是一种生态型养殖模式,桩柱式围网是其中最为典型的模式之一,主体由排桩和网片组成。围网网衣系统安全是决定围网工程安全的关键所在。针对桩柱式围网,采用数值模拟方法对其主要构成部件单元网片在波浪条件下的变形和受力等水力特性进行了研究,重点分析了波高(1、2、3、4、5 m)和波向(10°、30°、50°、70°、90°)条件下围网网片的网线张力分布、结节偏移和桩柱系缚点受力特性及影响关系。结果表明,桩柱式围网单元网片的网线最大张力部位主要出现在网片上端两侧位置,应用时建议强化顶部纲绳的设计考虑;波向为30°~70°时,网线最大张力有一段较小的增加量,而结节最大偏移随波向的增大而增大;网片与桩柱系缚点的最大受力呈现两端大中间小的现象,建议强化顶部和底部系缚点。以上研究结果可为桩柱式围网工程设计与安装提供参考。  相似文献   

19.
针对海岛环境中水产养殖区域分散、工作环境恶劣、人工巡检不便等问题,设计了基于低功耗广域物联网的海岛养殖环境监测系统。系统包括集成Arduino和传感器的终端采集节点,通过LoRa技术实现数据汇总和远距离传输的汇聚网关,利用Python与PostgreSQL开发用于数据接收、存储、处理、访问和控制的后台监测系统。通过对网络拓扑复杂度、能耗等方面的评估,表明在海岛环境下部署水产养殖环境监测系统,相比传统Zigbee多跳无线传感网,采用LoRaWAN,其单跳节点覆盖范围更大,而网络复杂度、能耗等更优。测试表明该系统能以较低功耗实现整片区域内远距离数据采集,有效传输养殖区水体环境数据。网络生存期与传输可靠性测试表明,当传感器节点采用3.7 V/4 200 mAh锂电池,上传周期为30 min时,监测网络的有效生存期理论上可达2.4 a;在800 m通信范围内,发射功率为20 mW时,节点丢包率小于3.6%,具有较高的通信可靠性。该研究可为水产养殖生产和物联网应用研究提供有效参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号