首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interrill erosion depends on soil detachment and sediment transport, which are affected by seal formation and runoff. The objective of this study was to investigate the effect of wetting rate (WR) on runoff and soil erosion in semi-arid Israeli soils varying in clay content and exchangeable sodium percentage (ESP). Six soils, ranging in clay content between 90 and 680 g kg−1 and ESP between 0.9 and 20, were packed in 0.2 m×0.4 m trays, wetted at 3 WRs (2, 8, or 64 mm h−1), and thereafter exposed to 60 mm of distilled water rain in a laboratory rainfall simulator. Under non-sodic conditions (ESP<2), highest runoff and erosion were obtained from loam (220 g kg−1 clay and 350 g kg−1 silt) which was ascribed to its high susceptibility to seal formation, runoff and detachability. Runoff and erosion increased with an increase in ESP and WR. The effect of WR on runoff and erosion was negligible in loamy sand and generally increased with an increase in clay content. In clay soils (>600 g kg−1 clay), WR played a greater role in determining runoff and erosion compared with raindrop impact. A linear type dependence existed between erosion and runoff for soils with ESP<5 or when slow WR was used. For high ESP soils, or when medium or fast WR were used, an exponential type relation described better the dependence of erosion on runoff. It is suggested that for sodic soils or for conditions favoring aggregate slaking, runoff level and its velocity were high enough to initiate rill erosion that supplemented raindrop detachment in markedly increasing erosion.  相似文献   

2.
Soil is a potential C sink and could offset rising atmospheric CO2. The capacity of soils to store and sequester C will depend on the rate of C inputs from plant productivity relative to C exports controlled by microbial decomposition. Management practices, such as no-tillage and high intensity cropping sequences, have the potential to enhance C and N sequestration in agricultural soils. An investigation was carried out to study the influence of long-term applications of fertilizers and manures on different organic C fractions in a Typic Haplustept under intensive sequence of cropping with maize–wheat–cowpea in a semi-arid sub-tropic of India. In 0–15 cm, the bulk density was lowest (1.52 Mg m−3) in plots treated with 100% NPK + FYM, while the control treatment showed the highest value (1.67 Mg m−3). Balanced application of NPK (100% NPK) showed significantly lower bulk density (1.56 Mg m−3) over either 100% N (1.67 Mg m−3) or 100% NP (1.61 Mg m−3) in surface soils. The application of super-optimal dose of NPK (150% NPK) showed higher total organic C (TOC) (12.9 g C kg−1) over either 50% NPK (9.3 g C kg−1) or 100% NPK (10.0 g C kg−1) in 0–15 cm soil layer. There was an improvement in TOC in 100% NPK or 100% NP (9.3 g C kg−1) over 100% N (8.7 g C kg−1) in the same depth. The application of FYM with 100% NPK showed 15.2, 9.9 and 5.2 g C kg−1 in 0–15, 15–30 and 30–45 cm, respectively. Application of graded doses of NPK from 50 to 150% of recommendation NPK significantly enhanced other organic C fractions like, microbial biomass C (MBC), particulate organic C (POC) and KMnO4 oxidizable C (KMnO4–C) in all the three soil depths. The TOC in 0–45 cm soil depth in 150% NPK (63.5 Mg C ha−1) was increased by 39% over that in 50% NPK treatment (51.5 Mg C ha−1) and 29% over that in 100% NPK treatment (54.1 Mg C ha−1). Integrated use of farmyard manure with 100% NPK (100% NPK + FYM) emerged as the most efficient management system in accumulating largest amount of organic C (72.1 Mg C ha−1) in soil. Nevertheless, this treatment also sequestered highest amount of organic C (731 kg C ha−1 year−1). Particulate organic carbon, a physically protected carbon pool in soil, could well be protected in sub-surface soil layers than in surface soil layer as a means of carbon aggradations. Microbial metabolic quotient (qCO2) was significantly lower in 100% NPK + FYM over other treatments to indicate this to be the most efficient manuring practice to preserve organic carbon in soil where it facilitates aggradations of more recalcitrant organic C in soil. As compared to POC, total TOC proved to be a better predictor of MBC as it strongly correlated with total carbon mineralized from soil.  相似文献   

3.
Increased use of conservation tillage is being considered as a way to sequester atmospheric C in the soil. However, little information exists on the effect of rotation and its interaction with tillage on soil organic carbon (SOC). A research trial with combinations of rotations and tillage treatments was sampled 20 years after its establishment to assess the effects on SOC sequestration in a typic Hapludalf in southern Ontario, Canada. The cropping treatments included continuous corn (zea mays L.), six rotations comprised of 2 years of corn following 2 years of another crop or crop sequence, and continuous alfalfa (Medicago sativa L.). Each rotation was split into either fall moldboard plow (MP) or fall chisel plow (CP) treatments. Continuous alfalfa was plowed and replanted every 4 years. Soil samples were taken incrementally to a depth of 40 cm and SOC and bulk density determined. The average SOC concentration (0–40 cm) was greatest in continuous alfalfa (18.0 g C kg−1). The treatments of soybean (Glycine max L.Merr.)+winterwheat (Triticum aestivum L.) or barley+barley (Trifolium pratense L.) (interseeded with red clover) followed by 2 years of corn had higher SOC concentrations (17.2–17.3 g C kg−1) than continuous corn and the treatments of 2 years of corn following 2 years of alfalfa or soybean (16.4–16.5 g C kg−1). The rotation of 2 years of barley followed by 2 years of corn had the lowest SOC concentrations (15.2 g C kg−1). On an equivalent mass basis, the rotations of soybean+winterwheat or barley+barley (underseeded with red clover) followed by 2 years of corn, had 2–9 Mg ha−1 more C than the other corn-based rotations. Including red clover in the winter wheat seemed to accelerate the rate of C mineralization compared to winter wheat without red clover; whereas interseeding red clover with barley increased SOC contents compared to excluding red clover in the barley rotation. More SOC was found in the top 10 cm and less in the 10–20 cm depth of the CP than in the MP soils. However, the CP did not increase the SOC content (0–20 cm) above that of MP indicating that this form of reduced tillage did not increase C sequestration in any of the rotations on this soil.  相似文献   

4.
How do different soil tillage systems influence soil quality over the years? Under moist cool conditions is it possible in the long term to reduce dramatically soil tillage intensity without experiencing reductions in yield or other problems? In 1987, the Swiss Federal Research Station for Agricultural Economics and Engineering in Tänikon initiated a long-term soil tillage trial to clarify these questions. The trial compared mouldboard plough, chisel, paraplow, shallow tillage and no-tillage systems on a well-drained Orthic Luvisol with 160 g kg−1 clay, 310 g kg−1 silt, and under a climate that has a mean annual precipitation of 1180 mm. The tillage treatment effects were evaluated by measuring several biological, chemical, and physical soil quality indicators. Reduced soil tillage increased earthworm populations, reduced Pseudocercosporella herpotrichoides infection in wheat (Triticum aestivum) and increased plant colonisation by arbuscular mycorrhizal fungi. Yields for no-tillage and other ploughless cultivation techniques were on par with those obtained by ploughing. An exception was direct-drilled maize (Zea mays), where no-tillage decreased yield by more than 10% over the course of 14 years. In the first 7 years of the trial, the level of soil organic carbon in all the tillage regimes was approximately 40% lower than natural grassland (initial situation 1987=75 Mg SOC ha−1). The no-tillage method did not differ from the others in respect of bulk density, but it showed an increased preconsolidation stress and hence better trafficability. Under Switzerland’s moist cool climatic conditions, it is possible to reduce soil tillage intensity without substantial reductions in yield, and at the same time improve soil quality.  相似文献   

5.
Soil organic matter (SOM) is strongly related to soil type and management practices. Changes in government policy have brought drastic changes in farm management practices in the last two decades in rural China. This study investigates changes in SOM in two different soils: Ustepts and Udolls. Ustepts, in the North China Plain where the climate is warm and sub-humid, developed from an alluvial flood plain with organic matter <10 g kg−1. Udolls, in Northeastern China where the climate is cool and sub-humid, developed from loess-like materials with organic matter >20 g kg−1. Two locations for Ustepts and three locations for Udolls were used to collect 567 soil samples in 1980–1982 and again in 2000 for SOM analysis. Soil organic matter increased for Ustepts and decreased for Udolls soils over the sampling period, resulting from differences in fertilizer rates and crop residue input to soil. Higher fertilizer input and crop intensity and initially very low SOM content in Ustepts all contributed to greater OM input than oxidation release. In contrast, lower fertilizer input and crop intensity, and initially high SOM content in the Udolls, led to lower OM input than oxidation release. Increasing SOM content through higher mineral fertilizer input is a valuable option for sustainable agriculture production in areas where SOM is low and there is a shortage or potential shortage of food supply.  相似文献   

6.
This study examined the variations in soil physical, chemical and biological properties from Agave angustifolia fields in three sites with different topographic conditions (valley, hill and mountain), in Oaxaca, Mexico, associated with the tillage systems, disk ploughing (DP), animal drawn ploughing (ADP) and minimum tillage (MT), respectively. Plant ages were 1.5–3.5 years (class 1), 3.6–5.5 years (class 2) and 5.6–7.5 years (class 3). Soil samples were taken at two soil depths (0–20 and 21–40 cm) from plots of 4000 m2 within each site and plant age classes, during the spring of 2005. The main changes in soil properties were found in the mountain site. Soil bulk density (2.0 g cm−3), cone penetration resistance (CPR) (3.96 MPa), 0.7 and 1.0 mm water stable aggregates (WSA) (28.3 g kg−1 and 102.2 g kg−1, respectively) were higher in the mountain site than in the hill and valley fields. This result is consistent with the rocky substrate beneath the shallow soil. Soil organic carbon (SOC) (23.9 g kg−1), available N (23.1 mg kg−1) and soil microbial biomass carbon (SMBC) (969.6 μg g−1) at the mountain site showed the highest values, suggesting that MT practiced in this topographic condition favours the organic matter accumulation and biological activity. Soil microbial biomass carbon and SOC seem to be the soil properties that were mainly affected by the sites and soil management associated with them. For the three sites, SOC, POlsen, available N, exchangeable Na+ and SMBC were higher at 0–20 cm depth than at 21–40 cm depth within each site. Exchangeable Ca2+ and K+, POlsen and CPR increased with plant age. In contrast, available N decreased. Soil chemical properties were more affected by the age of the plant than physical and biological properties. Results reported here represent a reference of the fertility properties of soils cultivated with A. angustifolia, which could be used in further studies focused on management and tillage systems.  相似文献   

7.
The half-moon technique has been recently introduced in northern Burkina Faso as a method for the rehabilitation of sealed and crusted bare soils locally called zipellé. As this technique, like zaï and mulching practices, interested many farmers, a trial was conducted to study the effect on soil productivity of half-moon technique in association with different sources of nutrients. The experimental design consisted of treatments in which the half-moon was combined with organic or mineral fertilisers. The soil was a Ferric Lixisol with a rooting depth of 30 cm, low contents of organic matter (12 g kg−1), nitrogen (0.6 g kg−1) and available phosphorus (6.6 mg kg−1). Applying compost or animal manure allowed yields from 900 to 1600 kg ha−1 of sorghum grain, i.e. 20–39 times the yield obtained in the half-moon treatment without any amendment. Combining local rock phosphate to compost in the half-moon basins increased sorghum grain yield by 10% the first year and 26% the second year. This study showed that restoring favourable soil moisture conditions by breaking up the surface crust to improve water infiltration was not enough to improve sorghum production on the degraded zipellé. Removal of the water constraint by destroying the surface hard pan revealed the second major constraint, i.e. soil acidity and nutrient deficiency. Well-decomposed organic matter such as animal manure and compost supplied in the half-moons were good substrates that provided sorghum with the nutrients required for growth. Moreover, adding local rock phosphate to compost appeared to be an alternative for improving soil productivity. It is concluded that in the Sahelian zone, half-moon technique with appropriate nutrient management could be an effective method for the rehabilitation of degraded soil productivity.  相似文献   

8.
Soil organic matter (SOM) and its different pools have key importance in optimizing crop production, minimizing negative environmental impacts, and thus improving soil quality. The objective of this study was to evaluate the soil C and N contents in bulk soil and in different SOM pools (light and heavy fractions) of a clayey Rhodic Ferralsol after 13 years of different tillage and crop rotations in Passo Fundo, State of Rio Grande do Sul, Brazil. Soil samples were collected from no-tillage (no soil disturbance except for sowing; NT) and conventional tillage (disc plough followed by light disc harrowings; CT) applied to wheat/soybean (W/S) and wheat/soybean–vetch/maize (W/S–V/M) rotations. As reference, soil was sampled from a non-cultivated area adjacent to the field experiment. The greatest soil C and N contents were found in non-cultivated soils in the 0–5 cm depth (45 g C kg−1 soil and 3.6 g N kg−1 soil). Crop cultivation led to a decrease in SOM content which was higher for CT soils (approx. 60% decrease in C and N contents) than NT soils (approx. 43% decrease in C and N contents) at 0–5 cm. Tillage had the greatest impact on soil C and N storage. Soils under NT did not contain higher C and N storage than CT soils below 5 cm depth. Significantly, higher amounts of organic carbon of FLF in CT (0.5–0.7 g C kg−1 soil) than in NT soils (0.2 g C kg−1 soil) at 10–20 cm depth were also observed and the differences in C and N storage between CT and NT soils in the 0–30 cm layer were not significant. Silt and clay fractions contained the largest amount of organic carbon (60–95% of total organic carbon), and free light fraction was the most sensitive pool of organic carbon to detect changes in SOM due to soil tillage and crop rotations.  相似文献   

9.
Cultivation machinery applies large amounts of mechanical energy to the soil and often brings about a decrease in soil organic carbon (SOC). New experiments on the effects of mechanical energy inputs on soil respiration are reported and the results discussed. In the laboratory, a specific energy, K, of 150 J kg−1, similar to that experienced during typical cultivation operations, was applied to soil aggregates using a falling weight. Respiration (carbon dioxide, CO2 emission) of the samples was then measured by an electrical conductimetric method. Basal respiration (when K=0) measured on Chromic Luvisol aggregates, was found to increase with increasing SOC, from 1.88 μg CO2 g−1 h−1 for a permanent fallow soil (SOC=11 g kg−1) to 8.25 μg CO2 g−1 h−1 for a permanent grassland soil (SOC=32 g kg−1). Basal respiration of a Calcic Cambisol, more than doubled (2.0–5.2 μg CO2 g−1 h−1) with increasing gravimetric soil water contents. Mechanical energy inputs caused an initial burst of increased respiration, which lasted up to 4 h. Over the following 4–24 h period, arable soils with lower SOC contents, (11–21 g kg−1), respiration rates dropped back to a level, approximately 1.14 times higher than the basal value. However, grassland soils with higher SOC contents (28–32 g kg−1), increases in this longer-term respiration rate following 150 J kg−1 of energy, were negligible. A field experiment, in which CO2 was measured by infra-red absorption, also showed that tillage stimulated increased levels of soil respiration for periods ranging from 12 h to more than one week. The highest respiration rates, 80 mg CO2 m−2 h−1 were associated with high energy, powered tillage on clay soils. On the same soil, low energy draught tillage resulted in a respiration rate of approximately half this value. The results of these experiments are discussed in relation to equilibrium levels of soil organic matter. The application of known quantities of mechanical energy to soil aggregates under laboratory conditions, in order to simulate the effect of different cultivation practices, when combined with the subsequent measurement of soil respiration, can provide useful indication of the likely consequences of soil management on SOC.  相似文献   

10.
Wheat (Triticum aestivum L.) yield and quality is influenced by management of the previous crop but is highly dependent on current year management. The objective of this study was to evaluate the response of winter wheat seeded in two tillage systems [conventional tillage (CT) and no-till (NT)] to four N rates applied to a previous cotton (Gossypium hirsutum L.) crop (0, 67, 134, and 202 kg ha−1). The experiment with wheat was conducted on a Dothan sandy loam (fine, loamy siliceous, thermic Plinthic Kandiudults) at the University of Florida North Florida Research and Education Center near Quincy, FL from 1995 to 1997. For most plant characteristics, there was a tillage x N x year interaction. Greater plant emergence (79.4 vs. 65.3%) and grain N (23.5 vs. 21.5 g kg−1), and lower grain moisture (139 vs. 142 g kg−1) were obtained under NT than CT, respectively, in one out of two years. Nitrogen applied to a previous cotton crop increased wheat grain yields, plant height and seed number under NT in 1995–1996 and CT in 1996–1997, head density under NT in both years, harvest index under CT in 1996–1997, and grain N concentration in 1995–1996 and 1996–1997 due to residual plant and soil N. With every 1 kg N applied to a previous cotton crop, wheat grain yields increased by 5.38 kg ha−1 under NT, whereas grain yield under CT was not influenced by N application to cotton in 1995–1996. In 1996–1997, grain yields increased by 4.96 and 4.23 kg ha−1 for wheat grown in NT and CT, respectively. Generally, wheat seeded in NT following cotton did not decrease stand or yields compared to CT and wheat grain yields and grain N content increased with N fertilization of the previous crop. However, we would have to apply about 134 kg N ha−1 to a previous cotton crop to maximize wheat production under NT and CT.  相似文献   

11.
Soil erosion and depositional processes in relation to land use and soil management need to be quantified to better understand the soil organic carbon (SOC) dynamics. This study was undertaken on a Miamian soil (Oxyaquic Hapludalfs) under on-farm conditions in western Ohio with the objectives of evaluating the effects of degree of erosion on SOC stock under a range of tillage systems. Six farms selected for this study were under: no-till (NT) for 15, 10, 6 and 1.5 years; chisel till every alternate year with annual manure application (MCT); and annual chisel till (ACT). A nearby forest (F) site on the same soil was chosen as control. Using the depth of A horizon as an indicator of the degree of erosion, four erosion phases identified were: uneroded (flat fields under F, NT15, and on the summit of sloping fields under NT10, NT6, NT1.5 and MCT); deposition (NT10, NT6, NT1.5 and ACT); slight (NT10, MCT and ACT); and moderate erosion (NT10 and ACT). Core and bulk soil samples were collected in triplicate from four depths (i.e., 0–10, 10–20, 20–30 and 30–50 cm) for each erosional phase in each field for the determination of bulk density, and SOC concentrations and stocks. SOC concentration in NT fields increased at a rate of 5% year−1 for 0–10 cm and 2.5% year−1 for 10–20 cm layer with increasing duration under NT. High SOC concentration for NT15 is indicative of SOC-sequestration potential upon conversion from plow till to NT. SOC concentration declined by 19.0–14.5 g kg−1 in MCT and 11.3–9.7 g kg−1 in NT10 between uneroded and slight erosion, and 12.0–11.2 g kg−1 between slight and moderate erosion in ACT. Overall SOC stock was greatest in the forest for each of the four depths. Total SOC stock for the 50 cm soil layer varied in the order F (71.99 Mg ha−1) > NT15 (56.10 Mg ha−1) > NT10 (37.89 Mg ha−1) = NT6 (36.58 Mg ha−1) for uneroded phase (P < 0.05). The lack of uneroded phase in ACT indicated high erosion risks of tillage, as also indicated by the high SOC stock for deposition phase from 0 to 50 cm soil layer (ACT (56.56 Mg ha−1) > NT1.5 (42.70 Mg ha−1) > NT10 (30.97 Mg ha−1)). Tillage increased soil erosion and decreased SOC stock for top 10 cm layer for all erosional phases except deposition.  相似文献   

12.
Soil organic carbon (SOC) and its different labile fractions are important in minimizing negative environmental impacts and improving soil quality. However, very little is known of the dynamics of SOC and its labile fractions after the cultivated wetlands have been abandoned in northeast China. The objectives of this study were (1) to estimate the dynamics of SOC after the abandonment of cultivated soil, (2) to investigate the most sensitive fraction for detecting changes in organic C due to the abandonment of cultivated soil, and (3) to explore the key factors affecting the dynamics of soil C after the abandonment of cultivated soil in the freshwater marsh region of northeast China. Our results showed that the abandonment of cultivated wetlands resulted in an increase in SOC and the availability of C. The SOC content increased to 31, 44, and 107 g kg−1 after these cultivated wetlands were abandoned for 1, 6, and 13 years, respectively, as compared to an SOC content of 28 g kg−1 in the soil that had been cultivated on for 9 years. In northeast China, where a cultivated wetland was abandoned, the initial regeneration of SOC pools was considerably rapid and in accordance with the Boltzmann equation. An analysis of the stepwise regression indicated that the dynamics of SOC (g kg−1) can be quantitatively described by a linear combination of the root density and the mean soil temperature 5 cm underground in the growing season, as expressed by the following relationship: TOC = 0.008 root density −3.264T + 96.044 (R2 = 0.67, n = 9, p < 0.05. T is the mean soil temperature 5 cm underground in the growing season), indicating that approximately 67% of the variability in SOC can be explained by these two parameters. The root biomass was the key factor affecting SOC concentration according to the observation made during the recovery of cultivated soil that was abandoned. Soil temperature indirectly influenced the SOC concentration by affecting soil microbial activity. The abandonment of cultivated wetlands resulted in an increase in the light-fraction organic C (LF-OC), microbial biomass C (MBC), and dissolved organic C (DOC) concentration. The rate of increase in LF-OC was considerably higher than that in SOC and HF-OC. Similarly, the rate of increase in MBC was also considerably higher than that in SOC in cultivated soils abandoned for 4–8 years. However, the rate of increase in DOC was far lower than that in SOC. The R2 value for the correlation between the increments of the LF-OC and SOC was significantly higher than that for the correlation between DOC and MBC (0.99 vs. 0.90), indicating that LF-OC was the most sensitive fraction for detecting changes in organic C due to the abandonment of cultivated soil.  相似文献   

13.
This study investigated the effects of mineral-N addition and intensive mixing (analogous to disturbance by plowing) on decomposition of 14C-labelled maize (Zea mays L.) residue and soil organic matter (SOM). Soils were collected from the upper 5 cm of three land use types at Edelweiler, Germany: plow tillage (PT), reduced tillage (RT), and grassland (GL). Soils were incubated for 112 days at 20 °C, with or without 14C-labelled maize residue (4 g DM kg−1 soil), with or without nitrogen (100 mg N kg−1 soil as NH4NO3) and with or without intensive mixing.

The effect of mineral-N on maize residue decomposition differed depending on the stage of decomposition and land use type. Nitrogen accelerated residue decomposition rates in the first 5 days in RT and GL soils, but not in PT soil, and decreased residue decomposition rate in all three land use types after 11 days. At the end of the incubation, N suppressed 14CO2 efflux in RT and PT soils, but not in GL soil. Mineral-N did not increase SOM decomposition independently on the land use types.

Intensive mixing stimulated decomposition of both plant residue and SOM in all three land use types. However, effects were smaller in GL soil than in RT or PT soil, presumably because stronger soil aggregates in GL would have been less affected by mixing and allowed greater protection of SOM and plant residue against decomposition.  相似文献   


14.
Soil erosion is a major threat for Ferralsols in Cameroon. The influence of traditional intercropping (TI), disk-harrow ploughing (DH), no-tillage (NT), and Wischmeier bare fallow (BF) on runoff coefficient, soil loss, organic carbon (OC) content and bulk density was evaluated in topsoils of a forest Ferralsol in Yaoundé region, Central Cameroon, using erosion plots. This was to ensure the best conditions for the determination of the soil properties to be assessed. After two years of cropping, the mean runoff coefficient remained very low for TI (<2% of the rain) as compared with NT (14%) and DH (15%). The same held true for soil loss which was in the order of 2, 68 and 109 Mg ha−1 for TI, NT, and DH respectively, and bulk density which was 1.06, 1.18 and 1.21 Mg m−3 respectively. Comparing the latter with the measurements obtained from BF (1.23 Mg m−3) and the adjacent secondary forest (SF) (1.04 Mg m−3) showed that the disk-harrow treatment was the most degraded among the three. The same comparison was made for the OC content. It was found that while in SF, OC was as high as 30 g kg−1, it was only 11, 13, 15 and 18 g kg−1 in BF, DH, TI, and NT respectively. On the average and for the time frame considered, TI adversely affected topsoil properties less than NT, DH and BF in this order. Based on the above, it can be concluded that TI is more conservative than the three other land management techniques investigated.  相似文献   

15.
In the dry savannas of west and central Africa, where low soil fertility is major constraint to maize production, the development of tropical maize genotypes with high and stable yield under low-nitrogen condition is very important, since access to these improved genotypes may be the only affordable alternative to many small scale farmers.

Field trials were conducted at Samaru (Typic Haplustalfs) to investigate the response of low-N tolerant maize cultivars to nitrogen (N) fertilizer. Nitrogen application rates were 0, 30, 60, 90 kg N ha−1 and four maize cultivars (Low-N pool C2, ACR 8328 BN C7, Super Oba II and TZR-SR). Maize leaf area index, intercepted radiation, leaf area and stover weights were increased due to nitrogen application at flowering. For most of the parameters, 60 kg N ha−1 appeared to have the significantly high values. However, there was no significant difference between application rates of 60 and 90 kg N ha−1 in stem weight, stover weight, grain yield and shelling percent at harvest. Genotypic variation observed in the maize agronomic traits were not significant except in leaf weight and grain yield. The amount of nitrogen taken by maize increased with increase in fertilizer rates. Application of 30 and 90 kg N ha−1 to soil increased the maize grain N concentration and total N uptake. About 45.3 kg ha−1 and 8.8 g N kg−1 nitrogen uptake was obtained in maize shoot and grain, respectively, at the application of 90 kg N ha−1. Low-N pool C2 genotype had the highest grain N concentration and shoot uptake significantly higher than TZB-SR. Nitrogen fertilizer applied accounted for 97% variation in soil nitrate. There existed a positive and significant correlation between maize grain yield and leaf nitrogen uptake (r = 0.33, P < 0.01). Averagely, nitrogen fertilizer applied accounted for 86% variations in maize grain yield.  相似文献   


16.
Under semi-arid Mediterranean conditions, limited moisture is the main constraint to rainfed cropping with wheat (Triticum aestivum), barley (Hordeum vulgare), and food and forage legumes. With increasing land-use pressure, moisture-conserving fallowing is being replaced by continuous cropping, which is considered an unsustainable practice. Thus, a long-term trial with durum wheat (T. turgidum var. durum) was established in 1983 at Tel Hadya, Aleppo, Syria (mean annual rainfall 330 mm) to assess alternative rotation options to fallow and continuous cropping. Nitrogen (N) and grazing/residue management were secondary factors. Soil aggregation, infiltration, hydraulic conductivity, and total soil organic matter and component fractions (fulvic and humic acids and polysaccharides) were determined at the end of 12 years. Some rotations, e.g., medic (Medicago sativa) and vetch (Vicia faba), significantly increased soil organic matter (12.5–13.8 g kg−1 versus 10.9–11 g kg−1 for continuous wheat and wheat/fallow). All measurements, or indices, indicated parallel trends with increasing organic matter, e.g., coefficients of macro-structure, micro-aggregation, and water-stable aggregates, and decreasing dispersion. Similarly, legume rotations had higher infiltration rates (16.2–21.8 cm h−1 versus 13.9–14.4 cm h−1 with continuous wheat and wheat/fallow) and hydraulic conductivity rates (8.7–12.4 cm h−1 versus 6.2–7.4 cm h−1 with continuous wheat and wheat/fallow). We conclude that cereal/legume rotations, in addition to being biologically and economically attractive, also enhance soil quality and thus promote soil use sustainability in fragile semi-arid areas as in the Mediterranean zone.  相似文献   

17.
Soil puddling in advance of rice (Oryza sativa L.) transplanting disperses surface aggregates and generates compaction at depth. As a management scheme for rice, puddling is typically considered advantageous for maximizing resource availability and yield. However, some experimental findings suggest a conflict between edaphic conditions created by this establishment technique and the performance of subsequent non-rice crops like wheat (Triticum aestivum L.). At a site in the mid-hills region of Nepal on a silt loam soil with vertic characteristics, we compared the impact of six rice tillage (surface tillage—T1, shank subsoiler—T2, shank subsoiler + moldboard plough—T3) and establishment (soil puddling + transplanting—TPR, direct seeding—DSR) combinations on soil physical properties over two cycles of the rice–wheat rotation. For the rice season, 0–20 cm saturated hydraulic conductivity (Ksat) in the DSR plots was 2.6 and 4.3 times higher than their TPR counterparts in the first (Y1) and second (Y2) years, respectively (TPR-Y1 = 93 mm day−1, DSR-Y1 = 241 mm day−1, TPR-Y2 = 133 mm day−1, DSR-Y2 = 582 mm day−1), whereas tillage method did not significantly influence Ksat in this soil layer. The impact of rice establishment method was reflected in higher TPR bulk densities in the 5–10 (DSR = 1.19 g cm−3, TPR = 1.24 g cm−3) and 10–15 cm (DSR = 1.24 g cm−3, TPR = 1.29 g cm−3) depth increments in the wet season. Although none of the treatments significantly influenced the position or thickness of the plough sole, penetration resistance profiles suggest that vertical fractures with reduced soil strength were created within the pan region by deep tillage (T2 and T3), although these features were not associated with higher hydraulic conductivities from 20 to 50 cm. As the soils dried at the end of the rice season, crack propagation in the deep tilled plots (T2 and T3) was more pervasive. During the wheat season, comparable bulk density profiles and soil moisture retention characteristics across the treatments suggest that many of the edaphic changes induced by contrasting rice tillage and establishment practices did not persist in the self-mulching, vertic soils at our site. Conversely, significant increases in Ksat among the DSR plots from Y1 to Y2 (Y1 = 241 mm day−1, Y2 = 582 mm day−1) imply a temporal element to soil structural regeneration with adoption of direct seeding.  相似文献   

18.
In view of their potential benefits, reduced or no tillage (NT) systems are being advocated worldwide. Concerns about impairment of some soil conditions, however, cast doubt on their unqualified acceptance. We evaluated the effects of 6 years of tillage and residue management on bulk density, penetration resistance, aggregation and infiltration rate of a Black Chernozem at Innisfail (loam, 65 g kg−1 organic matter, Udic Boroll) and a Gray Luvisol at Rimbey (loam, 31 g kg−1 organic matter, Boralf) cropped to monoculture spring barley (Hordeum vulgare L.) in a cool temperate climate in Alberta, Canada. Tillage systems were no tillage and tillage with rototilling (T), and two residue levels were straw removed (−S) and straw retained (+S). Bulk density (BD) of the 0–7.5 and 7.5–15 cm depths was significantly greater under NT (1.13–1.58 Mg m−3) than under T (0.99–1.41 Mg m−3) in both soils, irrespective of residue management. In both soils, penetration resistance (PR) was greater under NT than under T to 15 cm depth. Residue retention significantly reduced PR of the 0–10 cm soil in NT, but not in T. In the 0–5 cm depth of the Black Chernozem, the >2 mm fraction of dry aggregates was highest under NT + S (72%), and lowest under T − S (50%). The wind-erodible fraction (dry aggregates <1 mm size) was smallest (18%) under NT + S and largest (39%) under T − S. Soil aggregation benefited more from NT than from residue retention. Proportion of wind-erodible aggregates was generally greater in the Gray Luvisol than in the Black Chernozem. In the Black Chernozem, steady-state infiltration rate (IR) was significantly lower (33%) under NT than under T. Residue retention improved IR in both NT and T. In the Gray Luvisol, IR was not significantly affected by tillage and residue management. Despite firmer soil, NT and residue retention are recommended to improve aggregation in the cool temperate region of Western Canada.  相似文献   

19.
An 8-yr (1998–2005) field experiment was conducted on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada, to determine the effects of tillage (no-tillage – NT and conventional tillage – CT), straw management (straw retained – R and straw not retained – NR) and N fertilizer (0, 40, 80 and 120 kg N ha−1, except no N to pea (Pisum sativum L.) phase of the rotation) on seed and straw yield, mass of N and C in crop, organic C and N, inorganic N and aggregation in soil, and nitrous oxide (N2O) emissions for a second 4-yr rotation cycle (2002–2005). The plots were seeded to barley (Hordeum vulgare L.) in 2002, pea in 2003, wheat (Triticum aestivum L.) in 2004 and canola (Brassica napus L.) in 2005. Seed, straw and chaff yield, root mass, and mass of N and C in crop increased with increasing N rate for barley in 2002, wheat in 2004 and canola in 2005. No-till produced greater seed (by 51%), straw (23%) and chaff (13%) yield of barley than CT in 2002, but seed yield for wheat in 2004, and seed and straw yield for canola in 2005 were greater under CT than NT. Straw retention increased seed (by 62%), straw (by 43%) and chaff (by 12%) yield, and root mass (by 11%) compared to straw removal for barley in 2002, wheat in 2004, and seed and straw yield for pea in 2003. No-till resulted in greater mass of N in seed, and mass of C in seed, straw, chaff and root than CT for barley in 2002, but mass of N and C were greater under CT than NT for wheat in 2004 and for canola in 2005 in many cases. Straw retention had greater mass of N and C in seed, straw, chaff and root in most cases compared to straw removal for barley in 2002, pea in 2003 and wheat in 2004. Soil moisture content in spring was higher under NT than CT and with R than NR in the 0–15 cm depth, with the highest moisture content in the NT + R treatment in many cases. After eight crop seasons, tillage and straw management had no effect on total organic C (TOC) and N (TON) in the 0–15 cm soil, but light fraction organic C (LFOC) and N (LFON), respectively, were greater by 1.275 Mg C ha−1 and 0.031 Mg N ha−1 with R than NR, and also greater by 0.563 Mg C ha−1 and 0.044 Mg N ha−1 under NT than CT. There was no effect of tillage, straw and N fertilization on the NH4-N in soil in most cases, but R treatment had higher NO3-N concentration in the 0–15 cm soil than NR. The NO3-N concentration in the 0–15, 15–30 and 30–60 cm soil layers increased (though small) with increasing N rate. The R treatment had 6.7% lower proportion of fine (<0.83 mm diameter) and 8.6% greater proportion of large (>38.0 mm) dry aggregates, and 4.5 mm larger mean weight diameter (MWD) compared to NR treatment. This suggests a lower potential for soil erosion when crop residues are retained. There was no beneficial effect of elimination of tillage on soil aggregation. The amount of N lost as N2O was higher from N-fertilized (580 g N ha−1) than from zero-N (155 g N ha−1) plots, and also higher in CT (398 g N ha−1) than NT (340 g N ha−1) in some cases. In conclusion, retaining crop residues along with no-tillage improved some soil properties and may also be better for the environment and the sustainability of high crop production. Nitrogen fertilization improved crop production and some soil quality attributes, but also increased the potential for NO3-N leaching and N2O-N emissions, especially when applied in excess of crop requirements.  相似文献   

20.
Long-term tillage and nitrogen (N) management practices can have a profound impact on soil properties and nutrient availability. A great deal of research evaluating tillage and N applications on soil chemical properties has been conducted with continuous corn (Zea Mays L.) throughout the Midwest, but not on continuous grain sorghum (Sorghum bicolor (L.) Moench). The objective of this experiment was to examine the long-term effects of tillage and nitrogen applications on soil physical and chemical properties at different depths after 23 years of continuous sorghum under no-till (NT) and conventional till (CT) (fall chisel-field cultivation prior to planting) systems. Ammonium nitrate (AN), urea, and a slow release form of urea were surface broadcast at rates of 34, 67, and 135 kg N ha−1. Soil samples were taken to a depth of 15 cm and separated into 2.5 cm increments. As a result of lime applied to the soil surface, soil pH in the NT and CT plots decreased with depth, ranging from 6.9 to 5.7 in the NT plots and from 6.5 to 5.9 in the CT plots. Bray-1 extractable P and NH4OAc extractable K was 20 and 49 mg kg−1 higher, respectively, in the surface 2.5 cm of NT compared to CT. Extractable Ca was not greatly influenced by tillage but extractable Mg was higher for CT compared to NT below 2.5 cm. Organic carbon (OC) under NT was significantly higher in the surface 7.5 cm of soil compared to CT. Averaged across N rates, NT had 2.7 Mg ha−1 more C than CT in the surface 7.5 cm of soil. Bulk density (Δb) of the CT was lower at 1.07 g cm−3 while Δb of NT plots was 1.13 g cm−3. This study demonstrated the effect tillage has on the distribution and concentration of certain chemical soil properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号