首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Desert ecosystems are characterized by sparse vegetation that affects both abiotic parameters and soil biota along the soil profile.This study was conducted in 2010–2011 in a loess plain in the northern Negev Desert highlands, Israel, to test two main hypotheses:1) the abundance and diversity of microarthropods would vary seasonally in the top 30-cm soil layer, but would be relatively stable at soil depths between 30 and 50 cm and 2) soil microarthropods would be more abundant in soils under shrubs with large litter accumulations than under shrubs with less litter or bare soil. Soil samples were collected each season from the 0–50 cm profile at10-cm intervals under the canopies of Hammada scoparia and Zygophyllum dumosum and from the bare interspaces between them.Soil moisture and soil organic carbon in the top 30-cm layers varied seasonally, but there was little variation in the soil layers deeper than 30 cm. Soil mites were most abundant in the top 30-cm soil layer in autumn and winter, with the highest number of families found in winter. There were no differences in soil microarthropod abundance attributable to the presence or absence of shrubs of either species. The microarthropod communities of the microhabitats studied consisted of Acari, Psocoptera, and Collembola. The Acari were mostly identified to the family level and were dominated by Oribatida(55%) and Prostigmata(41%) in all seasons and microhabitats, while the psocopterans were most abundant in summer. These results are opposite to those obtained in other studies in similar xeric environments. Moreover, our findings were not in line with our hypothesis that a better microhabitat played a major role in microarthropod community composition, diversity, and density.  相似文献   

2.
不同种植模式和土壤类型条件下土壤健康的定量评价   总被引:2,自引:0,他引:2  
Soil health assessment is an important step toward understanding the potential effects of agricultural practices on crop yield, quality and human health. The objectives of this study were to select a minimum data set for soil health evaluation from the physical, chemical and biological properties and environmental pollution characteristics of agricultural soil and to develop a soil health diagnosis model for determining the soil health status under different planting patterns and soil types in Chongming Island of Shanghai, China. The results showed that the majority of the farmland soils in Chongming Island were in poor soil health condition, accounting for 48.9% of the survey samples, followed by the medium healthy soil, accounting for 32.2% of the survey samples and mainly distributed in the central and mid-eastern regions of the island. The indicators of pH, total organic carbon, microbial biomass carbon and Cd exerted less influence on soil health, while the soil salinization and nitrate accumulation under a greenhouse cropping pattern and phosphate fertilizer shortage in the paddy field had limited the development of soil health. Dichlorodiphenyltrichloroethanes, hexachlorocyclohexanes and Hg contributed less to soil health index (SHI) and showed no significant difference among paddy field, greenhouse and open-air vegetable/watermelon fields. The difference of the SHI of the three soil types was significant at P = 0.05. The paddy soil had the highest SHI values, followed by the gray alluvial soil, and the coastal saline soil was in a poor soil health condition, indicating a need to plant some salt-tolerant crops to effectively improve soil quality.  相似文献   

3.
基于小白菜Cd吸收推算土壤Cd安全阈值   总被引:3,自引:0,他引:3  
Cadmium(Cd), a common toxic heavy metal in soil, has relatively high bioavailability, which seriously threatens agricultural products. In this study, 8 different soils with contrasting soil properties were collected from different regions in China to investigate the Cd transfer coefficient from soil to Chinese cabbage(Brassica chinensis L.) and the threshold levels of Cd in soils for production of Chinese cabbage according to the food safety standard for Cd. Exogenous Cd(0–4 mg kg~(-1)) was added to the soils and equilibrated for 2 weeks before Chinese cabbage was grown under greenhouse conditions. The influence of soil properties on the relationship between soil and cabbage Cd concentrations was investigated. The results showed that Cd concentration in the edible part of Chinese cabbage increased linearly with soil Cd concentration in 5 soils, but showed a curvilinear pattern with a plateau at the highest dose of exogenous Cd in the other 3 soils. The Cd transfer coefficient from soil to plant varied significantly among the different soils and decreased with increasing soil p H from 4.7 to 7.5. However, further increase in soil pH to 8.0 resulted in a significant decrease in the Cd transfer coefficient. According to the measured Cd transfer coefficient and by reference to the National Food Safety Standards of China, the safety threshold of Cd concentration in soil was predicted to be between 0.12 and 1.7 mg kg~(-1) for the tested soils. The predicted threshold values were higher than the current soil quality standard for Cd in 5 soils, but lower than the standard in the other 3 soils. Regression analysis showed a significant positive relationship between the predicted soil Cd safety threshold value and soil p H in combination with soil organic matter or clay content.  相似文献   

4.
Soil quality is a major concern in the management of urban parks. In this study, the soils at 0–3, 3–13, and 13–23 cm depths were sampled from six urban parks, differing in reconstruction intensity(mainly changes made during conversion of natural forests into parklands), in the Pearl River Delta, China to determine how reconstruction intensity influenced the extent of acidification and heavy metal levels in the soils of urban parks in a humid subtropical environment. High reconstruction intensity(HRI) was practiced in three parks and low reconstruction intensity(LRI) in three other parks. The LRI soils were strongly to extremely acidic(with low exchangeable Ca, Mg, and K concentrations) while the HRI soils were much less acidic. Both total and extractable concentrations of soil heavy metals were related to the specific management practices and age of the park, but did not differ significantly between LRI and HRI parks or among soil depths. Soil p H was significantly related to soil exchangeable cation concentrations and base saturation but was weakly related or unrelated to soil heavy metal levels. Our results suggest that high intensity but not low intensity reconstruction significantly reduces the extent of soil acidification in the urban parks in a humid subtropical environment.  相似文献   

5.
Limited availability of organic matter is a problem to sustain crop growth on sodic soil. Organic soil amendments are a costeffective source of nutrients to enhance crop growth. A field study was conducted to evaluate the effect of an organic soil amendment bioaugmented with plant growth-promoting fungi(SF_(OA) ) in combination with gypsum on soil properties and growth and yield attributes of Withania somnifera, one of the most valuable crops of the traditional medicinal system in the world, on a sodic soil at the Aurawan Research Farm of CSIR-National Botanical Research Institute, Lucknow, India. The SF_(OA) used was prepared by pre-enriching farm waste vermicompost with plant growth-promoting fungi before mixing with pressmud and Azadirachta indica seed cake. The application of SF_(OA) at 10 Mg ha~(-1)after gypsum(25.0 Mg ha~(-1)) treatment significantly(P 0.05) increased root length(by 96%) and biomass(by 125%) of Withania plants compared to the control without SF_(OA) and gypsum. Similarly, the highest withanolide contents were observed in leaves and roots of Withania plants under 10 Mg ha~(-1)SF_(OA) and gypsum. Combined application of SF_(OA) and gypsum also improved physical, chemical and enzymatic properties of the soil, with the soil bulk density decreasing by 25%, water-holding capacity increasing by 121%, total organic C increasing by 90%, p H decreasing by 17% and alkaline phosphatase, β-glucosidase, dehydrogenase and cellulase activities increasing by 54%, 128%, 81% and 96%, respectively, compared to those of the control. These showed that application of the SF_(OA) tested in this study might reclaim sodic soil and further support Withania cultivation and results were better when the SF_(OA) was applied after gypsum treatment.  相似文献   

6.
Soils result from the interaction of five independent formation factors.If one factor varies,while the others remain constant,different soils can be produced.Herein,we demonstrated an opposing trend,wherein two soils were similar,despite considerable differences in all factors of soil formation.We sampled two Inceptisols (Oxic Dystrudepts) formed on different parent materials (gneiss vs.mica schist),climate (tropical altimontane vs.warmer,drier plateau),topography (1 650 m,45% slope vs.1000 m,8% slope),time (rejuvenated vs.old,stable surface),and vegetation (rainforest vs.Cerrado savanna).The two soils had similar chemical properties,whereas the soil on mica schist had finer particle size distribution,lower porosity,and lower saturated hydraulic conductivity.These properties were related to a coarser blocky microstructure compared to the soil on gneiss.Both soils presented active mineral weathering and pronounced pedoplasmation,demonstrated by clay contents > 300 g kg-1,although only the Dystrudept on gneiss possessed coarse rock fragments.The C horizons of both soils presented fragmented clay coatings suggestive of argilluviation,likely relict,because they were not observed in the B horizons.The similarities in many properties of the two Dystrudepts,despite contrasting factors of soil formation,suggest converging evolution and that soil classification at the subgroup level was efficient in grouping similar formative processes in tropical conditions.Moreover,this work revealed that similar pedogenic processes acting on different factors of soil formation can result in similar soil properties,at least for Inceptisols where further soil development is hindered by topographic limitations.  相似文献   

7.
Aggregation and structure play key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon(C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol(from Colorado,USA) dominated by 2:1 clays and an Alfisol(from Virginia,USA) containing weathered mixed 1:1 and 2:1 mineralogy,to evaluate the effect of biochar addition on soil characteristics.The biochar was applied at 4 levels,0,25,50,and 100 g kg~(-1),to the soils grown with wheat in a growth chamber experiment.The changes in soil strength and water-holding capacity using water release curves were measured.In the Colorado soil,the proportion of soil occurring in large aggregates decreased,with concomitant increases in small size fractions.No changes in aggregate size fractions occurred in the Virginia soil.In the Colorado soil,C content increased from 3.3 to 16.8 g kg~(-1),whereas in the53 μm fraction C content increased from 5.7 to 22.6 g kg~(-1) with 100 g kg~(-1)biochar addition.In the Virginia soil,C content within aggregate size fractions increased for each size fraction,except the2 000 μm fraction.The greatest increase(from 6.2 to 22.0 g kg~(-1)) occurred in the 53–250 μm fraction.The results indicated that C was incorporated into larger aggregates in the Virginia soil,but remained largely unassociated to soil particles in the Colorado soil.Biochar addition had no significant effect on water-holding capacity or strength measurements.Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport,compared with the soils dominated by 2:1 clays and low native soil organic content.  相似文献   

8.
CHEN Yue  HUANG Yao  SUN Wenjuan 《土壤圈》2017,27(5):890-900
Regression models for predicting soil bulk density (BD) have usually been related to organic matter content,but it remains unknown whether soil acidity modifies this relationship,particularly for afforested/reforested soils.We measured soil BD along with organic matter content and pH in an afforested/reforested area in Northwest and Northeast China.Using these measurements,we parameterized and validated three BD models:the Adams equation,and exponential and radical models.Model validation showed that the Adams equation failed to predict the BD of the afforested/reforested soils,producing a large overestimation.Incorporation of soil pH into the Adams equation significantly improved its performance.The exponential and radical models parameterized by the measured data simulated soil BD quite well,particularly when soil pH was incorporated.However,incorporation of soil texture variables into these models did not improve model performance compared with the pH-modified models.This led to the conclusion that the Adams equation,exponential,and radical models with pH modification are applicable to afforested/reforested soils with various acidities.  相似文献   

9.
集约化管理的温室土壤养分现状研究   总被引:2,自引:0,他引:2  
Nine districts covering the main greenhouse vegetable areas in Tianjin Municipality of the North China Plain were selected for the soil investigation in 2010 to survey the current soil nutrient status (soil available N, P and K), acidification and salinization due to excessive input of fertilizers in greenhouses in Tianjin. The study showed that, in particular, soil available P content increased with the age of greenhouses. In contrast, our results did not reveal higher K accumulation and lowered pH in the greenhouse soils compared with cultivation in open fields. Over-fertilization, causing high NO 3 accumulation, most likely resulted in salinity problems in the greenhouses. Ninety percent of the investigated greenhouse soils had electrical conductivity values of saturated paste extracts of 2-10 d S m-1 , which might affect the yields of vegetable crops like green bean, pepper, cabbage, carrot, eggplant, lettuce, spinach, celery, cucumber and tomato. The findings of our survey of the current fertility and salinity problems in greenhouse soils suggest that there is an urgent need to improve the farmers’ practices and strategies in fertilization management in greenhouses of China. Because education and the agricultural technical extension services may play a more important role in avoiding overuse of fertilizers, we suggest that current nutrient management practices should be improved in the near future through training of local farmers in farmers’ schools and through strengthening the agricultural extension services with practical techniques.  相似文献   

10.
Bulk density (BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions (PTFs), have replaced direct measurement and can acquire the missing data of BD during routine soil surveys. In this study, multiple linear regression (MLR) and artificial neuron network (ANN) methods were used to develop PTFs for predicting BD from soil organic carbon (OC), texture and depth in the Three-River Headwater region of Qinghai Province, China. The performances of the developed PTFs were compared with 14 published PTFs using four indexes, the mean error (ME), standard deviation error (SDE), root mean squared error (RMSE) and coefficient of determination (R2). Results showed that the performances of published PTFs developed using exponential regression were better than those developed using linear regression from OC. Alexander (1980)-B, Alexander (1980)-A and Manrique and Jones (1991)-B PTFs, which had good predictions, could be applied for the soils in the study area. The PTFs developed using MLR (MLR-PTFs) and ANN (ANN-PTFs) had better soil BD predictions than most of published PTFs. The ANN-PTFs had better performances than the MLR-PTFs and their performances could be improved when soil texture and depth were added as predictor variables. The idea of developing PTFs or predicting soil BD in the study area could provide reference for other areas and the results could lay foundation for the estimation of soil water retention and carbon pool.  相似文献   

11.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

12.
The roles of microbial biomass (MBC) and substrate supply as well as their interaction with clay content in determining soil respiration rate were studied using a range of soils with contrasting properties. Total organic C (TOC), water-soluble organic carbon, 0.5 M K2SO4-extractable organic C and 33.3 mM KMnO4-oxidisable organic carbon were determined as C availability indices. For air-dried soils, these indices showed close relationship with flush of CO2 production following rewetting of the soils. In comparison, MBC determined with the chloroform fumigation-extraction technique had relatively weaker correlation with soil respiration rate. After 7 d pre-incubation, soil respiration was still closely correlated with the C availability indices in the pre-incubated soils, but poorly correlated with MBC determined with three different techniques—chloroform fumigation extraction, substrate-induced respiration, and chloroform fumigation-incubation methods. Results of multiple regression analyses, together with the above observations, suggested that soil respiration under favourable temperature and moisture conditions was principally determined by substrate supply rather than by the pool size of MBC. The specific respiratory activity of microorganisms (CO2-C/MBC) following rewetting of air-dried soils or after 7 d pre-incubation was positively correlated with substrate availability, but negatively correlated with microbial pool size. Clay content had no significant effect on CO2 production rate, relative C mineralization rate (CO2-C/TOC) and specific respiratory activity of MBC during the first week incubation of rewetted dry soils. However, significant protective effect of clay on C mineralization was shown for the pre-incubated soils. These results suggested that the protective effect of clay on soil organic matter decomposition became significant as the substrate supply and microbial demand approached to an equilibrium state. Thereafter, soil respiration would be dependent on the replenishment of the labile substrate from the bulk organic C pool.  相似文献   

13.
The effect of drying and rewetting (DRW) on C mineralization has been studied extensively but mostly in absence of freshly added residues. But in agricultural soils large amounts of residues can be present after harvest; therefore, the impact of DRW in soil after residue addition is of interest. Further, sandy soils may be ameliorated by adding clay‐rich subsoil which could change the response of microbes to DRW. The aim of this study was to investigate the effect of DRW on microbial activity and growth in soils that were modified by mixing clay subsoil into sandy top soil and wheat residues were added. We conducted an incubation experiment by mixing finely ground wheat residue (20 g kg–1) into top loamy sand soil with clay‐rich subsoil at 0, 5, 10, 20, 30, and 40% (w/w). At each clay addition rate, two moisture treatments were imposed: constantly moist control (CM) at 75% WHC or dry and rewet. Soil respiration was measured continuously, and microbial biomass C (MBC) was determined on day 5 (before drying), when the soil was dried, after 5 d dry, and 5 d after rewetting. In the constantly moist treatment, increasing addition rate of clay subsoil decreased cumulative respiration per g soil, but had no effect on cumulative respiration per g total organic C (TOC), indicating that the lower respiration with clay subsoil was due to the low TOC content of the sand‐clay mixes. Clay subsoil addition did not affect the MBC concentration per g TOC but reduced the concentration of K2SO4 extractable C per g TOC. In the DRW treatment, cumulative respiration per g TOC during the dry phase increased with increasing clay subsoil addition rate. Rewetting of dry soil caused a flush of respiration in all soils but cumulative respiration at the end of the experiment remained lower than in the constantly moist soils. Respiration rates after rewetting were higher than at the corresponding days in constantly moist soils only at clay subsoil addition rates of 20 to 40%. We conclude that in presence of residues, addition of clay subsoil to a sandy top soil improves microbial activity during the dry phase and upon rewetting but has little effect on microbial biomass.  相似文献   

14.
Respiration rate of soils manured by seabirds and seals on sub-Antarctic Marion Island (47°S, 38°′E) is considerably higher than that of unmanured soils, and the main objective of this study was to determine whether this is caused by an enhanced supply of inorganic nutrients (N and P) or organic C substrates, or both. The effect of soil moisture content was also investigated. Soils from five habitats were studied: Mesic fellfield, Dry mire, Closed fernbrake, Coastal herbfield and Cotula herbfield. The latter two are strongly influenced by manuring. Respiration rate increased with soil moisture content up to full water holding capacity, and the response of respiration to moisture increased strongly with temperature (especially above 10 °C). Respiration Q10 increased with soil moisture content. Glucose addition markedly stimulated soil respiration rate in all the soils, despite the fact that they all possessed substantial concentrations of organic C, a wide range of N and P concentrations and a 2-fold variation in C:N ratio. This suggests that the primary factor limiting soil respiration on the island is the supply of labile carbon substrate. Soil N and P status is also important, since adding glucose with N and/or P to soils with low N and P concentrations resulted in a significantly greater stimulation of respiration rate than adding glucose alone. In fact, for the Mesic fellfield and Dry mire soils (especially poor in N and P) adding N and P stimulated respiration rate even without added glucose. For soils with adequate endogenous concentrations of N and P (the Coastal herbfield and Cotula herbfield soils), adding further N and P did not stimulate respiration, and adding N and P with glucose did not enhance respiration more than adding glucose alone. It is proposed that manuring results in a whole syndrome of consequences for soil respiration rate, including increased litter input and root exudation due to higher primary production, higher quality of litter and soil organic matter, larger, more active and more diverse soil microbial populations and larger numbers of microbivores that stimulate microbial activity and turnover.  相似文献   

15.
Soil pH and calcium carbonate contents are often hypothesized to be important factors controlling organic matter turnover in agricultural soils. The aim of this study was to differentiate the effects of soil pH from those related to carbonate equilibrium on C and N dynamics. The relative contributions of organic and inorganic carbon in the CO2 produced during laboratory incubations were assessed. Five agricultural soils were compared: calcareous (74% CaCO3), loess (0.2% CaCO3) and an acidic soil which had received different rates of lime 20 years ago (0, 18 or 50 t ha−1). Soil aggregates were incubated with or without rape residues under aerobic conditions for 91 days at 15 °C. The C and N mineralized, soil pH, O2 consumption and respiratory quotient (RQ=ΔCO2/ΔO2) were monitored, as well as the δ13C composition of the evolved CO2 to determine its origin (mineral or organic). Results showed that in non-amended soils, the cumulative CO2 produced was significantly greater in the limed soil with a pH>7 than in the same soil with less or no lime added, whereas there was no difference in N mineralization or in O2 consumption kinetics. We found an exponential relationship between RQ values and soil pH, suggesting an excess production of CO2 in alkaline soils. This CO2 excess was not related to changes in substrate utilization by the microbial biomass but rather to carbonates equilibrium. The δ13C signatures confirmed that the CO2 produced in soils with pH>7 originated from both organic and mineral sources. The contribution of soil carbonates to CO2 production led to an overestimation of organic C mineralization (up to 35%), the extent of which depended on the nature of soil carbonates but not on the amount. The actual C mineralization (derived from organic C) was similar in limed and unlimed soil. The amount of C mineralized in the residue-amended soils was ten times greater than in the basal soil, thus masking the soil carbonate contribution. Residue decomposition resulted in a significant increase in soil pH in all soils. This increase is attributed to the alkalinity and/or decarboxylation of organic anions in the plant residue and/or to the immobilization of nitrate by the microbial biomass and the corresponding release of hydroxyl ions. A theoretical composition (C, O, H, N) of residue and soil organic matter is proposed to explain the RQ measured. It emphasizes the need to take microbial biomass metabolism, O2 consumption due to nitrification and carbon assimilation yield into account when interpreting RQ data.  相似文献   

16.
Global warming in the Arctic may alter decomposition rates in Arctic soils and therefore nutrient availability. In addition, changes in the length of the growing season may increase plant productivity and the rate of labile C input below ground. We carried out an experiment in which inorganic nutrients (NH4NO3 and NaPO4) and organic substrates (glucose and glycine) were added to soils sampled from across the mountain birch forest-tundra heath ecotone in northern Sweden (organic and mineral soils from the forest, and organic soil only from the heath). Carbon dioxide production was then monitored continuously over the following 19 days. Neither inorganic N nor P additions substantially affected soil respiration rates when added separately. However, combined N and P additions stimulated microbial activity, with the response being greatest in the birch forest mineral soil (57% increase in CO2 production compared with 26% in the heath soil and 8% in the birch forest organic soil). Therefore, mineralisation rates in these soils may be stimulated if the overall nutrient availability to microbes increases in response to global change, but N deposition alone is unlikely to enhance decomposition. Adding either, or both, glucose and glycine increased microbial respiration. Isotopic separation indicated that the mineralisation of native soil organic matter (SOM) was stimulated by glucose addition in the heath soil and the forest mineral soil, but not in the forest organic soil. These positive ‘priming’ effects were lost following N addition in forest mineral soil, and following both N and P additions in the heath soil. In order to meet enhanced microbial nutrient demand, increased inputs of labile C from plants could stimulate the mineralisation of SOM, with the soil C stocks in the tundra-heath potentially most vulnerable.  相似文献   

17.
Abstract

The effects of heavy metals (Cu, Pb, and As) accumulated in apple orchard surface soils on the microbial biomass, dehydrogenase activity, and soil respiration were investigated. The largest concentrations of total Cu, Pb, and As found in the soils used were 1,010, 926, and 166 mg kg?1 soil, respectively. The amounts of microbial biomass C and N, expressed on a soil organic C and soil total N basis, respectively, were each negatively correlated with the amounts of total, 0.1 M HCI-extractable, and 0.1 M CaCl2-extractable Cu as logarithmic functions, the correlation coefficient being lowest for the 0.1 M CaCl2extractable Cu. Nevertheless, they were not correlated with the soil pH which was controlling the solubility of Cu in 0.1 M CaCl2. The dehydrogenase activity expressed per unit of soil organic C was also negatively correlated with the amounts of total, 0.1 M HCI-extractable Cu, and 0.1 M CaCl2-extractable Cu as logarithmic functions. However, the correlation coefficient was highest for the 0.1 M CaCl2-extractable Cu. Although the soil respiration per unit of soil total organic C did not show any significant correlations with the total concentrations of heavy metals, it showed negative significant correlations with the amount of 0.1 M HCI-extractable Cu, and to a greater extent, with the amount of 0.1 M CaCl2-extractable Cu. Both the dehydrogenase activity and respiration per unit of soil total organic C increased significantly with increasing soil pH. These results suggested that in apple orchard soils with heavy metal accumulation the microbial biomass was adversely affected by the slightly soluble Cu, whereas the microbial activities by the readily soluble Cu whose amount depended on the soil pH. The respiration per unit of microbial biomass C showed a positive significant correlation with the logarithmic concentration of total Cu. Furthermore, the contribution of fungi to substrate-induced respiration increased with increasing total Cu content in the soils.  相似文献   

18.
Identifying and quantifying attributes that help predict rates of heterotrophic soil respiration is a key issue. Similarly, assessing the temperature sensitivity (Q10) of soil C is critical to establishing if increases in Mean Annual Temperature will serve to further increase atmospheric CO2. Using organic soils from three sub-alpine communities that differ significantly in structure, species composition and productivity, we measured the respiratory quotient (RQ = rates of CO2 efflux/rates of O2 uptake) and temperature sensitivity of heterotrophic respiration during long-term (120 days) incubation. As a directly measurable parameter, RQ is free of empirical assumptions and provides an additional tool that can be used in conjunction with constants derived from fitted Arrhenius or exponential equations, to help understand shifts in microbial use of C substrates and how changes in vegetation might affect soil processes. Q10 did not change significantly over the course of a 120-day incubation for any of our studied soils. RQs varied with vegetation type and were consistently lower in grassland soils than woodland soils. RQs also varied during long-term incubations and declined consistently with time for grassland soils. RQs declined towards the end of the 120-day incubation for woodland soils. The generally low Ea for these soils from sub-alpine vegetation types in Australia, and the fairly rapid decline in RQ during incubation, suggest the likely greater temperature sensitivity of recalcitrant C relative to labile C could provide a strong positive feedback to increases in Mean Annual Temperature.  相似文献   

19.
This study investigates the effect of single leaf litter of Terminalia arjuna (Ta) and Prosopis juliflora (Pj), mixed leaf litters [Ta, Pj, Azadirachta indica (Ai) and Albizia procera (Ap)] and paddy straw (Ps; Oryza sativa) on chemical properties and microbial activities of slightly sodic (SS), moderately sodic (MS) and highly sodic (HS) soils during 1 year in vitro decomposition process. For this purpose, equal amount (60 g) of single leaf litter [Ta (C : N = 43) and Pj (C : N = 38)], mixed leaf litters [1/4 of Ta, Pj, Ai and Ap (C : N = 30)] and Ps (C : N = 107) was added to equal amount (600 g) of SS, MS and HS soils. After addition of litters, changes in soil organic carbon (SOC), available nitrogen (Nav), microbial biomass carbon, nitrogen, soil respiration, microbial quotient (Cmic : Corg) and metabolic quotient (qCO2) were observed at 2 months intervals for the whole year in greenhouse at constant soil moisture. The respective annual increase, at the end of the experiment, in SOC and Nav was highest in MS soil (40% and 45%), whereas soil microbial biomass and soil respiration showed decreasing trend from HS soil (39% and 29%) to SS soil (28% and 21%). The highest SOC was mineralized in the MS (42%) and HS (32%) soils containing litter of Ta; although greater (20%) accumulation of SOC in SS soil was noticed with mixed leaf litters. The study reveals that MS and HS soils comparatively showed fast decomposition of litters and significant increase in carbon, nitrogen and microbial activities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
pH regulation of carbon and nitrogen dynamics in two agricultural soils   总被引:1,自引:0,他引:1  
Soil pH is often hypothesized to be a major factor regulating organic matter turnover and inorganic nitrogen production in agricultural soils. The aim of this study was to critically test the relationship between soil pH and rates of C and N cycling, and dissolved organic nitrogen (DON), in two long-term field experiments in which pH had been manipulated (Rothamsted silty clay loam, pH 3.5-6.8; Woburn sandy loam, pH 3.4-6.3). While alteration of pH for 37 years significantly affected crop production, it had no significant effect on total soil C and N or indigenous mineral N levels. This implies that at steady state, increased organic matter inputs to the soil are balanced by increased outputs of CO2. This is supported by the positive correlation between both plant productivity and intrinsic microbial respiration with soil pH. In addition, soil microbial biomass C and N, and nitrification were also significantly positively correlated with soil pH. Measurements of respiration following addition of urea and amino acids showed a significant decline in CO2 evolution with increasing soil acidity, whilst glucose mineralization showed no response to pH. In conclusion, it appears that changes in soil pH significantly affect soil microbial activity and the rate of soil C and N cycling. The evidence suggests that this response is partially indirect, being primarily linked to pH induced changes in net primary production and the availability of substrates. In addition, enhanced soil acidity may also act directly on the functioning of the microbial community itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号