首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为实现大区域尺度参考作物蒸散量(reference crop evapotranspiration,ET0)资料缺失情况下的准确计算,该文将长江流域划分为上、中、下游3个子区域,基于反距离权重法的新型空间展布方法得到3个虚拟站点分别代表每个子区域,利用长江流域102个站点1964-2013年近50a的逐日气象数据,根据FAO-56 Penman-Monteith(P-M)法、Hargreaves-Samani(HS)法、Irmark-Allen(I-A)法、Priestley-Taylor(P-T)法、Makkink(M-K)法、Penman-Van Bavel(PVB)法、1948年Penman(48-PM)法分别计算每个站点逐日ET0,并以P-M法为标准,利用Nash-Sutcliffe系数(CD)、逐日相对均方根误差(RMSE)、Kendall一致性系数(K)对其适用性进行评价,结果表明:在3个子区域6种ET0计算方法的日值与P-M法拟合方程确定系数R2均通过了极显著水平检验(α=0.01),长江上游P-T法ET0日值计算精度最高(ET0日值拟合方程斜率为1.030,RMSE=0.341 mm/d,CD=0.886,K=0.829),H-S法、I-A计算精度较低(ET0日值拟合方程斜率分别为1.427、1.308,RMSE=0.909、0.829 mm/d,CD=0.581、0.523,K=0.792、0.742),长江中、下游PVB法计算精度最高,P-T法计算精度次之,H-S法与I-A法计算精度较低;长江上游6种算法ET0月值的计算精度由高到低依次为P-T法、PVB法、M-K法、48-PM法、H-S法、I-A法,与P-M法的平均误差分别为0.27、0.35、0.51、0.48、0.74、0.78 mm/d;长江中、下游6种算法计算精度由高到低为PVB法、P-T法、M-K法、48-PM法、H-S法、I-A法;整个长江流域P-T法、PVB法与P-M法ET0计算结果相对误差均在35%以下,H-S法、I-A法计算精度较低,其相对误差基本高于40%;因此,PVB法与P-T法在整个长江流域的计算精度较高,可作为长江流域ET0简化计算推荐方法。  相似文献   

2.
为提高中国三大灌区(都江堰灌区、河套灌区和淠史杭灌区)参考作物蒸散量(reference crop evapotranspiration,ET 0 )温度法的计算精度,选取 8 个代表性站点 1961-2014 年逐日气象资料,采用 Irmark-Allen(IA)、Hargreaves and Samani(HS)、Turc(Tur)、McCloud(MC)、Schendel(Sch)、Trajkovic (Tra)、Droogres and Allen?1(DA-1)和 Droogres and Allen?2(DA-2)共 8 种温度法计算 ET 0 ,以 FAO-56 Penman-Monteith(PM)法计算结果为标准,基于各方法计算的 ET 0 日值线性回归方程(y=kx+b),分别 在都江堰灌区选取 IA 法和 Tra 法,河套灌区选取 HS 法、DA-1 法和 DA-2 法,淠史杭灌区选取 IA 法、 HS 法、DA-1 法和 DA-2 法,引入调差参数对模型进行修订,利用均方根误差(RMSE)、平均相对误差 (MRE)和 Nash-Sutcliffe 系数(NS)对其适应性进行评价。结果表明:都江堰灌区和淠史杭灌区所选 模型修订后计算精度均有明显提高,河套灌区提高不明显;都江堰灌区 IA 修订模型(IA-Du 法)在该灌 区计算精度最高,其日值、旬值的 RMSE、MRE 和 NS 分别为 0.318mm·d-1 、0.120 和 0.923,0.201mm·d-1 、 0.093 和 0.959,且在不同月份均有较高计算精度;河套灌区计算精度最高模型为 HS 法,其日值、旬值 的 RMSE、MRE 和 NS 分别为 0.898mm·d-1 、0.326 和 0.785,0.547mm·d-1 、0.223 和 0.904,且在 1-5 月 和 10-12 月具有较高计算精度;淠史杭灌区 IA 修订模型(IA -Pi 法)在该灌区计算精度最高,其日值、旬 值的 RMSE、MRE 和 NS 分别为 0.534mm·d -1 、0.195 和 0.861,0.390mm·d -1 、0.167 和 0.896,且在不同 月份均具有较高计算精度。因此,推荐 IA -Du 法、HS 法和 IA -Pi 法分别作为都江堰灌区、河套灌区和淠史 杭灌区计算参考作物蒸散量的方法。  相似文献   

3.
改进Hargreaves模型估算川中丘陵区参考作物蒸散量   总被引:3,自引:2,他引:3  
为提高Hargreaves-Samani(HS)模型参考作物蒸散量(ET0)计算精度,该文基于贝叶斯原理利用川中丘陵区1954-2002年逐日资料对其温度指数、温度系数和温度常数进行改进,并使用2003-2013年资料以Penman-Monteith(PM)模型为标准评价HS改进模型计算精度与适应性。结果表明:HS改进模型参数在川中丘陵区各区均小于联合国粮农组织推荐值,并呈现出随纬度上升而增大的趋势;与PM模型计算结果相比,HS改进模型计算的ET0相对误差在川中丘陵区北部从14.2%~60.9%降至-1.1%~33.4%、中部从40.6%~92.6%降至16.9%~61.1%、南部从31.3%~96.0%降至8.5%~64.4%、整个川中丘陵区从32.1%~82.7%降至9.5%~52.6%;相关性分析表明,HS改进模型和PM模型计算的ET0回归曲线的斜率更接近于1(北部1.16、中部1.02、南部0.99、全区1.13),决定系数均达到0.85(P0.01)以上;趋势分析表明,HS改进模型和PM模型计算的ET0变化一致,年内均呈开口向下的抛物线状,年际均呈微小上升趋势。因此,基于贝叶斯原理改进的HS模型在川中丘陵区不同区域变异性较小,适应性较强,具有较高的计算精度,可作为川中丘陵区参考作物蒸散量简化计算的推荐模型。  相似文献   

4.
中国粮食主产区参考作物蒸散量演变特征与成因分析   总被引:3,自引:0,他引:3  
在全球变暖的背景下,参考作物蒸散量(reference crop evapotranspiration,ET0)的改变及其空间分布势必对中国粮食主产区农业水资源规划、农业用水管理等产生重要影响。本文将中国粮食主产区划分为温带湿润半湿润地区(I区)、温带干旱半干旱地区(II区)、暖温带半湿润地区(III区)和亚热带湿润地区(IV区)4个子区域,基于粮食主产区265个站点1961-2013年53a气象数据,采用FAO-56 Penman-Monteith公式计算各站点逐日ET0,利用ArcGIS空间插值、Mann-Kendall趋势检验、敏感性分析和贡献率分析等方法,对该区域ET0的时空分布规律及其成因进行分析。结果表明:(1)近53a来,中国粮食主产区年均ET0为878.9mm,整体呈显著下降趋势,速率为0.47mm·a-1(P<0.05),I、II区和IV区年均ET0分别为741.8、1079.8和924.2mm且均有所减小,但变化趋势并不明显,III区年均ET0为940.2mm,呈极显著下降趋势,速率为1.21mm·a-1(P<0.01)。(2)全区及I-IV区ET0最敏感气象因子均为相对湿度,其敏感系数分别为-1.060、-1.232、-0.784、-1.114和-1.009。(3)全区及I-III区对ET0变化贡献最大的气象因子为风速,IV区为相对湿度。(4)风速的减小是造成粮食主产区全区及I-III区ET0减小的首要原因,风速减小和日照时数缩短是造成IV区ET0减小的主要原因。  相似文献   

5.
利用温度资料和广义回归神经网络模拟参考作物蒸散量   总被引:6,自引:2,他引:4  
参考作物蒸散量(reference evapotranspiration,ET0)精确模拟对水资源高效利用和灌溉制度制定具有重要意义,该文以四川盆地19个气象站点1961-1990年逐日最高、最低温度和大气顶层辐射作为输入参数,FAO-56 Penman-Monteith(PM)模型计算的ET0为标准值,建立基于广义回归神经网络(generalized regression neural network,GRNN)的ET0模拟模型,基于1991-2014年资料进行模型验证,将GRNN模型同Hargreaves(HS1)和改进Hargreaves(HS2)等简化模型的模拟结果进行比较,分析只有温度资料情况下不同模型模拟ET0误差的时空变异性。结果表明:GRNN、HS1和HS2模型均方根误差(root mean square error,RMSE)分别为0.41、1.16和0.70 mm/d,模型效率系数(Ens)分别为0.88、0.13和0.67。3种模型RMSE在时空上均呈现HS1HS2GRNN、Ens均呈现GRNNHS2HS1趋势;与PM模型模拟结果相比,GRNN、HS1和HS2模型模拟结果分别偏大0.8%、45.1%和17.3%。在时空尺度上的误差分析均表明利用温度资料建立的GRNN模型能够较为准确地模拟四川盆地ET0,因此可以作为资料缺失情况下ET0模拟的推荐模型。该研究可为四川盆地作物需水精确预测提供科学依据。  相似文献   

6.
以北京山区广泛分布的侧柏林为研究对象,分别采用水文学实测法(树干液流计结合大型蒸渗仪)和稳定同位素法对林分蒸散量进行定量拆分研究。结果表明:(1)在日尺度上,该林分的蒸散量和蒸腾量均显现为"单峰"型的变化曲线。林分总的蒸散量和蒸腾量均在正午前后达到最大值,分别为1.27,1.13 mm/h;(2)实测法和稳定同位素法对侧柏林蒸腾量占总蒸散量的计算结果分别为80.21%~89.63%和79.10%~98.71%。相比水文学实测法,稳定同位素法在小时尺度上误差为(3.97±3.53)%,而在日尺度上误差为(1.89±0.67)%。该林分蒸散主要来自于植被蒸腾,林木蒸腾耗水远大于土壤蒸发耗水。  相似文献   

7.
[目的]研究全国二级流域实际蒸散分布式模型,为估算流域实际蒸散提供可靠的依据。[方法]基于研究区1956—1979年的水文、气象数据,运用水量平衡方程和蒸散互补相关理论,提出了改进的流域实际蒸散的通用模型。[结果](1)全国二级流域多年平均实际蒸散发量的空间总体分布具有明显的地带性特征;(2)湿润区和半湿润区的流域实际蒸散与可能蒸散的趋势线有明显的闭合趋势,干旱区和半干旱区流域的实际蒸散与可能蒸散的趋势线之间距离较大,但仍呈现闭合趋势;(3)全国77个二级流域实际蒸散通用模型的模拟误差均在10%以内。[结论]不同二级流域实际蒸散与可能蒸散的互补关系明显存在,改进的通用模型提高了估算流域实际蒸散的精度。  相似文献   

8.
基于降水蒸发指数的1960-2015年内蒙古干旱时空特征   总被引:7,自引:3,他引:4  
内蒙古地区农业以草原畜牧业和旱作农业为主,容易受到自然灾害,特别是干旱的影响。在气候变化的背景下,研究该地区干旱时空格局特征,对当地采取适应气候变化对策具有重要意义。为了明确内蒙古地区不同时间尺度干旱特征及其对气候变化的响应,该文选取1960-2015年内蒙古地区46个气象站点逐月气象观测数据,计算不同时间尺度标准化降水蒸散指数SPEI,结合Mann-Kendall检验、经验正交函数(empirical orthogonal function,EOF)分解、旋转经验正交函数(rotated empirical orthogonal function,REOF)分解、干旱评价指标等方法,分析了内蒙古地区56 a来干旱时空格局特征,讨论了干旱特征与太平洋年代际震荡(pacific decadal oscillation,PDO)指数的关系。结果表明:从时间变化来看,内蒙古地区干旱逐渐减轻,1976年发生突变;四季均呈变湿趋势,春季显著;全区干旱强度基本为轻旱和中旱,主要为局域性干旱和全域性干旱。从空间分布来看,内蒙古地区整体上呈西部干旱缓解、东部干旱加剧的趋势;夏季整体干旱显著加重,秋季次之,春季和冬季以减轻为主。按照干旱区域敏感性强弱可将内蒙古地区分为西部区(I区)、中部区(II区)、东北部北区(III区)和东北部南区(IV区),其中I、II区干旱逐渐减轻,III、IV区呈偏干趋势。56 a来SPEI与PDO指数存在同相位关系,PDO指数冷相位时,内蒙古地区全区偏干,反之则偏湿。研究结果可为内蒙古地区水热状况的科学评估及干旱的监测预警和防灾减灾提供理论依据。  相似文献   

9.
基于气象-生理的夏玉米作物系数及蒸散估算   总被引:1,自引:1,他引:0  
准确估算作物系数对预测作物实际蒸散量和制定精准的灌溉计划至关重要。为反映作物逐日作物系数变化,综合考虑气象和生物因子对作物生长的共同影响,采用五道沟水文实验站大型蒸渗仪夏玉米实测蒸散及气象数据,基于地温及叶面积指数建立了气象-生理双函数乘法模型,并结合梯度下降法对模型进行了精度优化。结果表明,在整个玉米生长期中,作物系数实测值和计算值平均绝对误差为0.12,均方根误差为0.15,相关性为0.91,蒸散量实测值与计算值平均绝对误差为1.0 mm/d,均方根误差为4.5 mm/d,相关性为0.75。该模型计算的全生育期蒸散量准确率(误差在2~3 mm/d以内)相比使用联合国粮农组织(FAO)推荐的作物系数计算所得准确率提高了3倍以上,可更精确用于作物系数及蒸散量计算。  相似文献   

10.
四川省不同区域地表太阳总辐射模型适用性评价   总被引:1,自引:0,他引:1  
选用1994−2016年四川省7个辐射站气象数据,在3个辐射区(川西高原I区、川东盆地II区和川西南山地III区)中评价了6种地表太阳总辐射(Rs)估算模型在3种天气类型(晴、多云、阴)下的适用性,并分析基于天气类型的组合模型在不同区域的模拟效果,以探寻最适宜全省不同区域的Rs估算方法。结果表明:(1)各经验模型在四川省整体表现良好(决定系数R2介于0.554~0.934,P <0. 001),I区(甘孜和红原站)模拟效果最好的为日照时数模型A−P(平均绝对误差MAE为2.210±0.714MJ∙m−2∙d−1),II区(成都、绵阳和泸州站)、III区(峨眉山和攀枝花站)模拟效果最佳的均为混合模型Chen(II区MAE为1.510±0.027MJ∙m−2∙d−1,III区为1.930±0.006MJ∙m−2∙d−1);(2)6个模型在四川省3种天气类型下的模拟效果呈晴天>多云>阴天的规律,日照时数模型(A−P和Ba模型)能更好地模拟晴天时的Rs,混合模型(Chen和Ab模型)则在多云和阴天时模拟效果更佳,I区在晴天、多云、阴天3种天气下模拟效果最好的模型分别是A−P(整体评价指标GPI为0.850)、Ab(1.294)、Ba(0.862),II区分别为A−P(0.381)、Chen(1.358)、Chen(1.742),III区分别为Chen(0.204)、Chen(0.857)、Chen(0.526);(3)基于天气类型的组合模型(M新)模拟各区Rs的效果均比未组合前各模型的效果好(3个区GPI分别为0.558、0.582、0.134)。因此,推荐使用基于天气类型的组合模型来估算四川省Rs。  相似文献   

11.
基于天气预报的漳河灌区参考作物腾发量预报方法比较   总被引:7,自引:2,他引:5  
为了提出适合湖北省漳河灌区的参考作物腾发量预报方法,以FAO56-Penman-Monteith公式采用历史气象数据计算出的值为基准,利用天气预报数据,比较Hargreaves-Samani(HS)法、逐日均值修正法及该文改进的逐日均值修正法在该灌区钟祥站点的预报精度,并评价各方法适用性.结果表明:利用这3种方法进行参考作物腾发量预报时,1~7 d预见期平均绝对误差均值分别为0.75、0.80、0.76 mm/d,均方根误差分别为1.00、1.07、1.05 mm/d,相关系数分别为0.82、0.80、0.80.1 d预见期最优预报方法为改进逐日均值修正法,2~7 d预见期的最优方法均为HS法.总体而言,预报精度最好的为HS法、改进逐日均值修正法次之、逐日均值修正法最差.对于漳河灌区,建议采用HS法进行预报,可为灌溉预报提供较为准确的数据基础.  相似文献   

12.
为实现气象资料缺乏情况下参考作物蒸散量(reference crop evapotranspiration, ET0)高精度预测,以气象因子的不同组合为输入参数,利用FAO-56 Penman-Monteith公式计算的ET0作为预测标准值建立基于极限学习机(extreme learning machine, ELM)的ET0预测模型。选取川中丘陵区7个气象站点1963-2012年逐日气象资料进行模型训练与测试,并将模拟结果同Hargreaves、Priestley-Taylor、Makkink及Irmark-Allen等4种常用模型进行对比。结果表明:ELM模型能很好地反映气象因子同ET0间复杂的非线性关系,且模拟精度较高;基于最高和最低温度的ELM模型模拟精度(均方根误差和模型效率系数分别为0.504 mm/d和0.827)高于Hargreaves模型(均方根误差和模型有效系数分别为0.692 mm/d和0.741);基于最高、最低温度和辐射的ELM模型模拟精度(均方根误差和模型有效系数分别为0.291 mm/d和0.938)明显高于Priestley-Taylor(均方根误差和模型有效系数分别为0.467 mm/d和0.823)、Makkink(均方根误差和模型有效系数分别为0.540 mm/d和0.800)和Irmark-Allen模型(均方根误差和模型有效系数分别为0.880 mm/d和0.623)。因此基于最高、最低温度和辐射的ELM模型可以作为气象资料缺乏情况下川中丘陵区ET0计算的推荐模型。该研究可为川中丘陵区气象资料缺乏情境下ET0精确计算提供科学依据。  相似文献   

13.
基于秦淮河流域内部及周边共7个气象站2000-2013年的逐日气象资料,使用FAO-56 Penman- Monteith、Irmak-Allen、Makkink、Turc、Jensen-Haise和Hargreaves共6种方法估算各站点逐日参考作物蒸散量(ET0)。以FAO-56 Penman-Monteith结果为标准,修正其余5种方法估算公式的原始经验系数,并通过平均绝对误差、平均相对误差、相关系数等精度评价指标和Wilcoxon非参数检验法,分别从年、月尺度对比分析5种方法修正前后的估算结果,旨在获得一种适于秦淮河流域的数据要求低,估算过程简单,精度较高的ET0估算方法。分别以5种方法的ET0日值为自变量,P-M法ET0日值为因变量,建立逐月线性回归方程,寻找经验系数的修正倍数,对5种方法经验系数进行逐月修正。结果表明,使用原始经验系数时,年尺度上,Irmak-Allen、Makkink、Turc法存在较大误差,Hargreaves法相关性较差,均不适于秦淮河流域;月尺度上,Irmak-Allen法在5-8月,Turc在9-11月,Hargreaves法在4月及9-11月适用性较好,其余月份误差较大,Makkink和J-H法分别在1-12月和3-11月存在显著差异,故5种方法均不能代替P-M法在年内12个月使用。使用修正后经验系数,年尺度上Makkink法适用性最好,平均绝对误差和平均相对误差分别为14.9mm·a-1和1.4%,相关系数为0.89,无显著差异,其次为Turc法,I-A法估算结果仍存在显著差异,Hargreaves法相关性仍较差;月尺度上,从估算精度考虑,Turc和Makkink法搭配使用,4-10月推荐使用Turc法,其平均绝对误差为2.1~6.1mm·mon-1,平均相对误差为2.9%~4.3%,无显著差异,月平均相对误差波动较小,稳定性好,1-3月和11-12月推荐使用Makkink法,其平均绝对误差为1.2~2.4mm·mon-1,平均相对误差为3.2%~5.7%,无显著差异,月平均相对误差波动较小,稳定性好,从时间连续性考虑,推荐使用Hargreaves法,其平均绝对误差为1.9~10.4mm·mon-1,平均相对误差为3.9%~9.2%,无显著差异,月平均相对误差波动较小,稳定性好。  相似文献   

14.
实测草坪蒸散量评价P-M模型在北京地区适用性   总被引:7,自引:5,他引:2  
为了研究北京地区的参考作物蒸散(reference evapotranspiration,ET0)特征以及Penman-Monteith(P-M)模型的适用性,2012-2014年生长季,应用蒸渗仪实测了冷季型高羊茅(Festuca arundinacea)、暖季型野牛草(Buchloe dactyloides)和乡土草种青绿苔草(Carex leucochlora)3种草坪的蒸散,应用自动气象站监测了试验地的太阳辐射、温度、空气相对湿度、风速等气象参数,通过P-M模型计算获得了ET0。将同期的P-M模型计算值与实测值进行了不同天气以及不同尺度下的比较分析,应用线性回归斜率与决定系数(R2)以及均方根误差(root mean square error,RMSE)与一致性指数(d)等统计参数进行了一致性评价。结果表明,P-M模型计算ET0与实测值在日、周、月尺度上均呈现一致的变化趋势。北京地区ET0高峰出现于5月,蒸散速率分别为4.18±0.27(P-M模型)、4.43±0.98(高羊茅)、3.96±0.23(青绿苔草)、3.53±0.25 mm/d(野牛草),10月最低。P-M模型计算的ET0与太阳辐射、平均气温、最高气温均呈极显著的线性关系,其中ET0与太阳辐射回归的R2最高,达到0.885。天气影响P-M模型的准确性,P-M模型计算ET0与草坪实测值的比值随着太阳辐射的降低(从晴天到雨天)而升高。P-M模型高估了阴雨天下的ET0。P-M模型计算ET0与实测值的RMSE和d值均随评价尺度减小而增大。实测ET0在3种草坪间差异显著,高羊茅青绿苔草野牛草。P-M模型计算ET0与高羊茅实测值的一致性最高,具有接近1.0的回归方程斜率(0.99~1.03)、最小的均方根误差(0.62~1.05 mm/d)和最高的一致性指数(0.89~0.90)。P-M模型在北京地区有较好的适用性,但在阴雨天气及春季低温情况下会高估ET0。  相似文献   

15.
参考作物蒸散量(ET_0)的准确估算是作物需水量及区域农业水分供需计算的关键,尽管已提出大量方法,但缺乏基于实测值的严格检验。本文利用北京小汤山2012年称重式蒸渗仪实测日值,检验16个ET_0模型,包括5个综合法、6个辐射法、5个温度法模型。依据均方根误差RMSE值,各模型估算效果的排序为FAO79 Penman=1963 Peman1996 Kimberly PenmanFAO24 PenmanFAO56 Penman-Monteith(PM)TurcFAO24 Blaney-Criddle(BC)DeBruin-KeijmanJensen-HaisePriestley-Taylor(PT)FAO24RadiationHargreavesMakkinkHamonMcloudBlaney-Criddle(BC)。总体而言,综合法表现最好,其RMSE在1.33~1.47mm·d~(-1),以FAO79 Penman和1963 Penman为最好;辐射法次之,其RMSE在1.48~1.77mm·d~(-1),以Turc最好;温度法检验效果最差,其RMSE在1.50~2.68mm·d~(-1),以FAO24 BC为最好。FAO79Penman和1963 Penman比最好的辐射法和温度法模型的精度分别高10%和13%。综合法、辐射法模型普适性好于温度法的原因在于其均含有影响ET_0的关键因子——辐射或饱和水汽压差VPD。所有模型均具有低蒸发条件下高估、高蒸发条件下低估的阈值特点,综合法及辐射法平均低估0.14mm·d~(-1)和0.33mm·d~(-1),而温度法平均高估0.52mm·d~(-1)。前两类方法 ET_0阈值相对较低,更适于低蒸发力条件,而温度法较适于高蒸发力条件。所有综合法、辐射法模型及温度法的Hargreaves和FAO24 BC法估算值与实测值变化趋势一致,说明模型结构合理,可通过参数校正提高精度;但对于与实测值趋势不吻合的温度法,模型结构尚需优化。VPD和最大湿度RHx是影响综合法、辐射法估算偏差的两大主要因子,其中VPD对低估类模型偏差影响最大,且偏差随着VPD增加而增大;而RHx对高估类综合法模型(1963 Penman、FAO79 Penman)偏差影响最大,且偏差随RHx增加而减小。校正后的PT(1.38)、Makkink(0.83)、Turc(0.014)及Hamon(1.248)系数大于原系数,而Hargreaves(0.0019)和BC(0.192)校正系数低于原系数。此外,PT与Hamon的系数利用最小相对湿度、Turc和Makkink系数利用VPD、Hargreaves和BC系数利用辐射或日照时数能得到最佳估算。FAO56 PM表现不佳(RMSE=1.47mm·d~(-1))的原因与站点气候干燥程度、较低的空气动力项权重有关。后人对原始Penman式的诸多修正并没有显著改善精度,因此建议在类似气候条件地区继续使用老版本Penman式。同时,对FAO56 PM的进一步检验将有助于回答"FAO56 PM是否真正比其它综合法具有优势,在何种气候下表现好,在高蒸发条件下低估是否为普遍现象"等科学问题。  相似文献   

16.
为提高Hargreaves-Samani(H-S)模型对参考作物蒸散量(reference crop evapotranspiration,ET0)的计算精度,利用川中丘陵区13个代表站点1954~2013年近60 a逐日数据,依据贝叶斯原理并考虑辐射的影响对H-S模型进行改进,并以Penman-Monteith(P-M)模型为标准,对其在川中丘陵区的适用性进行评价。结果表明:1)H-S改进模型与P-M模型ET0计算结果变化趋势基本一致;2)与H-S模型相比,在3个区域H-S改进模型计算的ET0旬值平均绝对误差分别由0.93、0.95、0.93 mm/d下降到0.15、0.19、0.28 mm/d,且3个区域ET0旬值拟合方程斜率分别由1.45、1.39、1.45变为0.89、0.94、0.90,Kendall一致系数由0.70、0.80、0.82提高到0.88、0.92、0.94,拟合效果与计算精度均明显提高;3)在3~10月的作物主要生长期,3个区域ET0月值平均绝对误差分别由0.89、1.14、1.28 mm/d下降到0.46、0.29、0.21 mm/d,ET0月值回归拟合方程斜率及一致性均明显提高;4)H-S改进模型随海拔升高计算精度有所降低,H-S改进模型全年内计算精度最大可提高47%,尤其在作物主要生长期,精度最大提高了48%。因此,H-S改进模型可显著提高ET0计算精度,在海拔较低的区域尤为明显,可作为川中丘陵区ET0计算的简化推荐模型。  相似文献   

17.
陕西关中地区ET0计算公式的适用性评价   总被引:4,自引:4,他引:0  
为明确参考作物蒸发蒸腾量(ET0)计算公式在陕西关中地区的适用性,该文按照FAO(1994)对Penman-Monteith公式的设定条件,采用称重式蒸渗仪测定ET0。以该实测值为标准,对具有代表性的ET0计算公式:FAO-17Modified-Penman(FAO-MP)、裴步祥修订的Modified Penman(PBX-MP)、Penman-Monteith(PM)、ASCEPenman-Monteith(ASCE-PM)公式进行对比分析,研究不同ET0计算公式在该地区的适用性及计算值产生偏差的原因。试验结果表明,ASCE-PM计算值与实测值最接近,线性回归系数为1.03(R2=0.87),绝对误差为0.31mm;其次为PM、PBX-MP、FAO-MP。气象因子对辐射项和空气动力项的不同影响造成各计算值与实测值的差异,其中,大气温度、日照时数及相对湿度对辐射项影响较大,风速对空气动力项影响较大。ASCE-PM公式可应用于陕西关中半湿润地区ET0计算。  相似文献   

18.
基于气温估算参考作物蒸散量方法的对比与改进   总被引:1,自引:1,他引:0  
为提高基于气温数据估算参考作物蒸散量(ET0)模型的精度,该研究对比分析了基于温度数据估算ET0的Penman-Monteith(PMT)模型、Hargreaves-Samani(HS)模型和改进HS模型,并运用基于气温数据估算实际水汽压和太阳辐射的最新进展改进PMT模型。结果表明:Paredes等提出的改进HS模型较传统HS模型提高了半干旱区到湿润区ET0的估算精度;使用Paredes等提出的PMT模型与改进HS模型估算的各气候区相关系数(r)均值相似,但PMT模型提高了除湿润区和亚湿润干旱区外各气候区的ET0估算精度,均方根误差(RMSE)和相对均方根误差(RRMSE)均值分别降低0.01~0.15 mm/d和0~0.05,且模型效率(EF)均值提高了0.01~0.06;本文提出的改进PMT模型可进一步改进PMT模型估算除干旱区和半干旱区外各气候区精度,RMSE和RRMSE均值分别降低0.04~0.12 mm/d和0.02~0.04,r和EF均值更接近于1;并且改进PMT模型估算各站点全局性能指数(Global Performance Index,GPI)值较好,90%的站点GPI值排名第一。因此,建议在仅有气温数据时,使用改进PMT模型作为估算ET0的推荐模型。研究成果可为区域农业水资源管理提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号