首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Purpose

Organic matter amendment is usually used to improve soil physicochemical properties and to sequester carbon for counteracting climate change. There is no doubt that such amendment will change microbial activity and soil nitrogen transformation processes. However, the effects of straw and biochar amendment on anammox and denitrification activity and on community structure in paddy soil are unclear.

Materials and methods

We conducted a 30-day pot experiment using rice straw and rice straw biochar to deepen our understanding about the activity, microbial abundance, and community structure associated with soil nitrogen cycling during rice growth.

Results and discussion

Regarding activity, anammox contributed 3.1–8.1% of N2 production and denitrification contributed 91.9–96.9% of N2 production; straw amendment resulted in the highest denitrification rate (38.9 nmol N g?1 h?1), while biochar amendment resulted in the highest anammox rate (1.60 nmol N g?1 h?1). Both straw and biochar amendments significantly increased the hzsB and nosZ gene abundance (p < 0.05). Straw amendment showed the highest nosZ gene abundance, while biochar amendment showed the highest hzsB gene abundance. Phylogenetic analysis of the anammox bacteria 16S rRNA genes indicated that Candidatus Brocadia and Kuenenia were the dominant genera detected in all treatments.

Conclusions

Straw and biochar amendments have different influences on anaerobic ammonia oxidation and denitrification within paddy soil. Our results suggested that the changes in denitrification and anammox rates in the biochar and straw treatments were mainly linked to functional gene abundance rather than microbial community structure and that denitrification played the more major role in N2 production in paddy soil.
  相似文献   

2.

Purpose

Crop straws and animal manure have the potential to ameliorate acidic soils, but their effectiveness and the mechanisms involved are not fully understood. The aim of this study was to evaluate the effectiveness of two crop (maize and soybean) straws, swine manure, and their application rates on acidity changes in acidic red soils (Ferralic Cambisol) differing in initial pH.

Materials and methods

Two red soils were collected after 21 years of the (1) no fertilization history (CK soil, pH 5.46) and (2) receiving annual chemical nitrogen (N) fertilization (N soil, pH 4.18). The soils were incubated for 105 days at 25 °C after amending the crop straws or manure at 0, 5, 10, 20, and 40 g kg?1 (w/w), and examined for changes in pH, exchangeable acidity, N mineralization, and speciation in 2 M KCl extract as ammonium (NH4+) and nitrate plus nitrite (NO3??+?NO2?).

Results and discussion

All three organic materials significantly decreased soil acidity (dominated by aluminum) as the application rate increased. Soybean straw was as effective (sometimes more effective) as swine manure in raising pH in both soils. Soybean straw and swine manure both significantly reduced exchangeable acidity at amendment rate as low as 10 g kg?1 in the highly acidic N soil, but swine manure was more effective in reducing the total acidity especially exchangeable aluminum (e.g., in the N soil from initial 5.79 to 0.50 cmol(+) kg?1 compared to 2.82 and 4.19 cmol(+) kg?1 by soybean straw and maize straw, respectively). Maize straw was less effective than soybean straw in affecting soil pH and the acidity. The exchangeable aluminum decreased at a rate of 4.48 cmol(+) kg?1 per pH unit increase for both straws compared to 6.25 cmol(+) kg?1 per pH unit from the manure. The NO3??+?NO2? concentration in soil increased significantly for swine manure amendment, but decreased markedly for straw treatments. The high C/N ratio in the straws led to N immobilization and pH increase.

Conclusions

While swine manure continues to be effective for ameliorating soil acidity, crop straw amendment has also shown a good potential to ameliorate the acidity of the red soil. Thus, after harvest, straws should preferably not be removed from the field, but mixed with the soil to decelerate acidification. The long-term effect of straw return on soil acidity management warrants further determination under field conditions.
  相似文献   

3.

Purpose

Soil microbes contribute significantly to soil respiration (SR) in boreal forests; however, there is limited knowledge on microbial contributions from long field investigations. The objective of this study was to estimate soil microbial respiration, as well as its primary controlling factors, for a period of three consecutive years.

Materials and methods

A trenching method was used to distinguish soil microbial respiration (R Mic) in a 55-year-old mature Japanese larch (Larix kaempferi) plantation in Northern Japan; the soil in which developed originally from volcanic soils containing pumice. We used a portable CO2 detection system to measure the soil respiration rate during the growing season. Environmental factors, soil physiochemical characteristics, and soil microbial biomass carbon and nitrogen (MBC and MBN) were analyzed to explain the seasonal variations of SR and R Mic.

Results and discussion

The results showed that the estimated contribution of soil microbes to SR was 78, 62, and 55% during the three successive years, respectively. Respiration attributable to decomposition of aboveground litter contributed approximately 19% to SR. The major environmental factor that affected R Mic was soil temperature at 5 cm depth, which accounted for more than 70% of the seasonal variation in R Mic observed. There were close relations among MBC, MBN, and soil water content, but the soil water content showed no significant relation with R Mic.

Conclusions

The R Mic to SR varied from 78 to 55% following 3 years of trenching treatments. Our results demonstrated the important role of soil microbes on soil respiration in this larch forest. Soil temperature was the major positive factor that influenced R Mic, while soil water content had no significant effect. Global warming will increase the loss of C into the atmosphere by increasing the R Mic, and could accelerate climate change.
  相似文献   

4.

Purpose

Returning straw to soil improved soil carbon sequestration capacity and increase soil organic matter. However, in different soil depth, especially in subsoil, there were few studies on the effects of straw decomposition on soil carbon sequestration and the properties of humic substances. Therefore, an in-situ incubation study, with six different straw rates and three different soil depths, was carried out to explore the effects of straw decomposition on soil organic carbon and humic substance composition at different soil depths.

Materials and methods

The experiment was composed of six straw rates: 0, 0.44, 0.88, 1.32, 2.64, and 5.28% of soil dry mass. The maize straw was proportionately mixed with soil and put into nylon bags. Then, the nylon bags were buried in soil at three depths (15, 30, and 45 cm) and the straw decomposition trial lasted for 17 consecutive months in-situ. Soil samples were collected after completion of the field trial. Humic substances were quantitatively and qualitatively analyzed using the modification method of humus composition and the methods specified by the International Humus Association. Fourier transform infrared spectroscopy and fluorescence spectroscopy were used in this study.

Results and discussion

Results indicated that CO2 concentration increased with increase in soil depth. Compared with the “zero” straw control, soil organic carbon contents in the treatments amended with 1.32, 2.64, and 5.28% maize straw increased significantly, and most accumulations were at 30–45 cm depths. FTIR and fluorescence emission spectra analyses indicated that the addition of straw enhanced the aliphatic structure and decreased the aromaticity of humic acid (HA), that was to say that HA molecular structure approaches to the development of simplification and younger. The maximum change in HA molecular structure was under the 5.28% treatment in the 30–45 cm depth.

Conclusions

Returning maize straw to the subsoil layers is more conducive to the accumulation of soil organic carbon and improvement of the quality and activity of HA and the organic carbon in the subsoil can be renewed.
  相似文献   

5.

Purpose

The purpose of this study is to examine the effects of combined application of biomass ash (BA), bone meal (BM), and alkaline slag (AS) on soil acidity, nutrient contents, uptake of the nutrients by wheat, and wheat growth.

Materials and methods

A pot experiment with an Ultisol collected from Anhui province, China, was conducted to compare the effects of BA, BM, and AS applied alone and combined on soil acidity; soil nutrient contents; uptake of N, P, K, Ca, and Mg by wheat, and wheat growth.

Results and discussion

Application of BA, BM, and AS alone and combined increased soil pH and decreased soil exchangeable Al3+. BA + BM + AS showed the greatest ameliorating effect on soil acidity, and soil pH of the treatment increased by 1.24 units compared with control. Application of BA + BM + AS reduced soil exchangeable Al3+ and increased soil exchangeable calcium and magnesium to a greater extent than BA + BM and single application of the amendments. The BM-containing amendments substantially increased soil available phosphorous by 66–93% compared with control. Application of the amendments alone and combined enhanced the uptake of N, P, K, Ca, and Mg by wheat and thus promoted wheat growth and increased yield of wheat grains. Application of BA + BM + AS and BA + BM showed greater effects on nutrient uptake and wheat growth than single application of the amendments. Wheat straw weights of the two treatments were 11.1 and 10.1 times greater than that of control. The data were 2.7, 4.8, and 5.6 times for the treatments of BA, AS, and BM. The contents of Cd, Cr, Zn, and Cu in wheat grains were lower than standard limits, except for the single BA treatment.

Conclusions

BA + BM + AS is the best choice for amelioration of acid soils and promotion of crop production.
  相似文献   

6.

Purpose

The objective of this study was to determine the changes in the main soil chemical properties including pH, electrical conductivity (EC), available phosphorus (P), soil organic carbon (SOC) and total nitrogen (TN) stocks after long-term (31 years) additions of two types of organic matters—rice straw and rice straw compost, combined with NPK fertilizers in single rice paddy in a cold temperate region of Japan.

Materials and methods

A long-term experiment on combined inorganic fertilizers and organic matters in paddy rice cultivation began in May 1982 in Yamagata, northeastern Japan. After the 31st harvest, soil samples were collected from five treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)] at five soil depths (0–5, 5–10, 10–15, 15–20, and 20–25 cm). Soil chemical properties of pH, EC, available P, SOC, and TN were analyzed.

Results and discussion

The pH decreased significantly only at the higher compost rate of 30 Mg ha?1, while EC increased in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock increased by 67.2, 21.4, and 8.6 %, and soil TN stock by 64.1, 20.2, and 8.5 % in CM3, RS, and CM1, respectively, compared to NPK treatment.

Conclusions

Significant changes in soil properties were observed after 31 years of organic matter applications with reference to PK- and NPK-fertilized rice paddy soils. A significant decrease in pH was observed with the application of a high rate (30 Mg ha?1) of rice straw compost but not with the conventional rate of 10 Mg ha?1. However, EC increased significantly relative to that of the PK- and NPK-fertilized plots in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock expressed as a percentage of total C applied to the soil were higher from 10 Mg ha?1 compost (28.7 %) than that from 6 Mg ha?1 rice straw (17.4 %), indicating a more effective soil organic C accumulation from rice straw compost than that from original rice straw.
  相似文献   

7.

Purpose

Soil contamination with heavy metals, such as Cd and Pb, has caused severe health and environmental risks all over the world. Possible eco-friendly solutions for Cd and Pb immobilization were required to reduce its mobility through various cost-effective amendments.

Materials and methods

A laboratory incubation study was conducted to assess the efficiency of biochar (BC), zeolite (ZE), and rock phosphate (RP) as passivators for the stabilization of Cd and Pb in paddy soil as well as soil microbial biomass. Various extraction techniques were carried out: a sequential extraction procedure, the European Community Bureau of Reference (BCR), toxicity characteristic leaching procedure (TCLP) test, and single extraction with CaCl2. The impact of passivators on soil pH, dissolved organic carbon (DOC), and microbial biomass (carbon, nitrogen, and phosphorus) was examined in the metal contaminated soil.

Results and discussion

The results showed that the exchangeable portion of Cd in soil was significantly reduced by 34.8, 21.6, and 18.8% with ZE, RP, and BC at a 3% application rate, respectively. A similar tendency of reduction in Pb soluble portion was observed by ZE (9.6%), RP (20%), and BC (21.4%) at a 3% application rate. Moreover, the TCLP leachate of Cd and Pb was apparently reduced by 17 and 30.3% with BC at a 3% application dose, respectively, when compared to the control. Soil pH, nutrients, and microbial biomass C, N, and P were significantly increased with the addition of BC, RP, and ZE passivators.

Conclusions

The results showed that the incorporation of BC, ZE, and RP significantly reduced the Cd and Pb mobility in paddy soil as well as enhanced soil nutrients and microbial biomass. Overall, among all the amendments, rice straw derived-BC performed better for Cd and Pb immobilization in paddy soil.
  相似文献   

8.

Purpose

In situ immobilization of heavy metal-contaminated soils with the repeated incorporation of amendments can effectively reduce the bioavailability of soil heavy metals. However, the long-term application of amendments would lead to the destruction of soil structure and accumulation of soil toxic elements, ultimately affecting food security and quality. Thus, the sustainability of the amendments in a heavy metal-contaminated soil was evaluated from 2010 to 2012.

Materials and methods

Batch field experiments were conducted in the soils, which were amended with apatite (22.3 t ha?1), lime (4.45 t ha?1), and charcoal (66.8 t ha?1), respectively. The amendments were applied only one time in 2009, and ryegrass was sown each year. Ryegrass and setaria glauca (a kind of weed) were harvested each year. Concentrations of copper (Cu) and cadmium (Cd) were determined by batch experiments. Five fractions of Cu and Cd were evaluated by a sequential extraction procedure.

Results and discussion

Ryegrass grew well in the amended soils in the first year, but it failed to grow in all the soils in the third year. However, setaria glauca could grow with higher biomass in all the amended soils. The treatment of apatite combined with plants was more effective than lime and charcoal treatments in removing Cu and Cd from the contaminated soils by taking biomass into account. Apatite had the best sustainable effect on alleviating soil acidification. The Cu and Cd concentrations of CaCl2-extractable and exchangeable fractions decreased with the application of amendments. Moreover, apatite and lime could effectively maintain the bioavailability of Cu and Cd low.

Conclusions

Apatite had a better sustainable effect on the remediation of heavy metal-contaminated soils than lime and charcoal. Although all the amendment treated soils did not reduce soil total concentrations of Cu and Cd, they could effectively reduce the environmental risk of the contaminated soils. The findings could be effectively used for in situ remediation of heavy metal-contaminated soils.
  相似文献   

9.

Purpose

Sampling and analysis of greenhouse soils were conducted in Shouguang, China, to study continuous excessive fertilization effect on nitrifying microbial community dynamics in greenhouse environment.

Materials and methods

Potential nitrification activity (PNA), abundance, and structure of nitrifying microbial communities as well as the correlations with soil properties were investigated.

Results and discussion

Short-term excessive fertilization increased soil nutrient contents and the diversity of nitrifying microbial communities under greenhouse cultivation. However, the abundance and diversity of nitrifying communities decreased greatly due to the increase of soil acidity and salinity after 14 years of high fertilization in greenhouse. There was a significant positive correlation between soil PNA and the abundance of ammonia-oxidizing bacteria (AOB) but not that of ammonia-oxidizing archaea (AOA) in topsoil (0–20 cm) when pH ≥7. Soil PNA and AOB were strongly influenced by soil pH. The groups of Nitrososphaeraceae, Nitrosomonadaceae, and Nitrospiraceae were predominant in the AOA, AOB, and nitrite-oxidizing bacteria (NOB) communities, respectively. Nitrifying community structure was significantly correlated with soil electrical salinity (EC), organic carbon (OC), and nitrate nitrogen (NO3 ?–N) content by redundancy analysis (RDA).

Conclusions

Nitrification was predominated by AOB in greenhouse topsoil with high fertilizer loads. Soil salinity, OC, NO3 ?–N content, and pH affected by continuous excessive fertilization were the major edaphic factors in shaping nitrifying community structure in greenhouse soils.
  相似文献   

10.

Purpose

This study aimed to assess the effects of biochar on improving nitrogen (N) pools in mine spoil and examine the effects of elevated CO2 on soil carbon (C) storage.

Materials and methods

The experiment consisted of three plant species (Austrostipa ramossissima, Dichelachne micrantha, and Lomandra longifolia) planted in the N-poor mine spoil with application of biochar produced at three temperatures (650, 750, and 850 °C) under both ambient (400 μL L?1) and elevated (700 μL L?1) CO2. We assessed mine spoil total C and N concentrations and stable C and N isotope compositions (δ13C and δ15N), as well as hot water extractable organic C (HWEOC) and total N (HWETN) concentrations.

Results and discussion

Soil total N significantly increased following biochar application across all species. Elevated CO2 induced soil C loss for A. ramossissima and D. micrantha without biochar application and D. micrantha with the application of biochar produced at 750 °C. In contrast, elevated CO2 exhibited no significant effect on soil total C for A. littoralis, D. micrantha, or L. longifolia under any other biochar treatments.

Conclusions

Biochar application is a promising means to improve N retention and thus, reduce environmentally harmful N fluxes in mine spoil. However, elevated CO2 exhibited no significant effects on increasing soil total C, which indicated that mine spoil has limited potential to store rising atmospheric CO2.
  相似文献   

11.

Purpose

The aim of this study was to evaluate the role of phosphine in the mobilization of phosphorus in the rhizosphere soil of rice seedlings and to determine the relative efficiency of phosphine in plant P acquisition.

Materials and methods

An indoor simulation experiment was conducted and the matrix-bound phosphine (MBP), phosphorus fractions, and phosphatase activity in the rhizosphere soil samples from rice cultivation, biomass, the plant P, and the root system activity were measured under different phosphine concentrations (0, 1.4, 4.2, and 7.0 mg m?3) for a period of 30 days.

Results and discussion

The results indicated that phosphine treatments enhanced MBP, inorganic P (resin–Pi, NaHCO3–Pi, and NaOH–Pi), and phosphatase activity, as well as the root system activity, and the content of P in the rice seedlings was stimulated with increasing phosphine concentrations. However, organic P (NaHCO3–Po and NaOH–Po) accumulation occurred in the rhizosphere of the rice seedlings. In addition, the content of organic P in the soil samples decreased with increased phosphine concentration.

Conclusions

Therefore, relatively high concentrations of phosphine in paddy field could have a positive impact on the effectiveness of phosphorus in rice plants via influencing the rhizosphere properties.
  相似文献   

12.

Purpose

Vegetables are major economic crops in China. Their cultivation usually involves high fertilizer application rates leading to significant losses of N and P to the wider environment, resulting in water contamination and low nutrient use efficiency. Hence, it is a matter of urgency to understand the mechanisms and factors that affect N and P losses in vegetable production systems in order to develop optimum fertilization regimes.

Materials and methods

Different fertilization regimes were applied in a long-term chili (Capsicum spp. L.) production soil to study the effects on nitrogen (N) and phosphorus (P) runoff losses, microbial biomass, microbial community, and crop yields. Three fertilization regimes were implemented: control (no fertilizer; CK), farmer’s fertilization practice (FFP), and site-specific nutrient management (SSNM). A fixed collection device was used to quantify the total volume of water output after each precipitation event. All water samples were analyzed for total nitrogen, ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3?-N), total phosphorus (TP), and available phosphorus (AP). Soil samples were collected for analysis of the physicochemical properties and for DNA extraction after chili harvest. High-throughput sequencing was used to further investigate the relationship between the microbial community and nutrient losses.

Results and discussion

The SSNM fertilizer regime resulted in a 23.3% yield increase and enhanced agronomic N use efficiency from 11.87 to 15.67% compared with the FFP treatment. Soil available nutrients (i.e., AN and AP) and ATP content increased significantly after SSNM implementation. Under the SSNM regime, N losses decreased by 25.8% compared with FFP but did not lead to significantly different P losses. High-throughput sequencing results showed that each treatment formed a unique microbial community structure. VPA results revealed that the microbial community structure was mainly (50.56%) affected by the interactions between N and P. Mantel results indicated that the soil properties that significantly affected soil microbial community structure followed the order: AP, AK, and salinity.

Conclusions

Our study has demonstrated that SSNM not only generates lower N losses but also provides higher contents of soil available nutrients and plant yield, which were mainly attributed to the multiple top dressings and meeting of the plants’ demand with adequate nutrient supplies. The combined data showed that the microbial community differentiation between the different fertilizer regimes was mainly linked to the interactions between N and P in the soil.
  相似文献   

13.

Purpose

Biochar has been suggested as a soil conditioner to improve soil fertility and crop productivity while simultaneously mitigate global climate change by storing carbon in the soil. This study investigated the effect of pine (Pinus radiata) biochar application on soil water availability, nitrogen (N) and carbon (C) pools and growth of C3 and C4 plants.

Materials and methods

In a glasshouse pot trial, a pine biochar (untreated) and nutrient-enriched pine biochar were applied to a market garden soil with C3 (Spinacia oleracea L.) and C4 (Amaranthus paniculatus L.) plants at rates of 0, 1.0, 2.0, and 4.0 % (w/w). Plant biomass, soil pH, moisture content, water holding capacity (WHC), hot water extractable organic C (HWEOC), and total N (HWETN), total C and N, and their isotope compositions (δ 13C and δ 15N) of soils and plants were measured at the end of the experimentation.

Results and discussion

The soil moisture content increased while plant biomass decreased with increasing untreated biochar application rates. The addition of nutrient-enriched biochar significantly improved plant biomass in comparison to the untreated biochar addition at most application rates. Biochar application also increased the levels of labile organic C and N pools as indicated by HWEOC and HWETN.

Conclusions

The results suggested that the addition of pine biochar significantly improved soil water availability but not plant growth. The application of nutrient-enriched pine biochar demonstrated that the growth of C3 and C4 plants was governed by biochar nutrient availability rather than its water holding capacity under the pot trial condition.
  相似文献   

14.

Purpose

The objective of this review is to survey critically the results obtained by the application of laser-induced fluorescence spectroscopy (LIFS) and laser-induced breakdown spectroscopy (LIBS) to the evaluation of the humification degree (HD) of soil organic matter (SOM) directly in untreated, intact whole soils.

Materials and methods

A large number of soils of various origin and nature, either native or under various cultivations, land use, and management, at various depths, have been studied to evaluate the HD of their SOM directly in intact whole samples. The LIFS spectra were obtained by either a bench or a portable argon laser apparatus that emits UV-VIS light of high power, whereas the LIBS spectra were obtained using a Q-switched Nd:YAG laser at 1064 nm.

Results and discussion

The close correlations found by comparing HLIF values of whole soil samples with values of earlier proposed humification indexes confirmed the applicability of LIFS to assess the HD of SOM in whole soils. The high correlation found between HDLIBS values and HLIF values showed the promising potential of LIBS for the evaluation HD of SOM.

Conclusions

The LIFS technique shows to be a valuable alternative to evaluate the HD of SOM by probing directly the whole solid soil sample, thus avoiding the use of any previous chemical and/or physical treatments or separation procedures of SOM from the mineral soil matrix. The emerging application of LIBS to evaluate the HD of SOM in whole soils appears promising and appealing due to its sensitivity, selectivity, accuracy, and precision.
  相似文献   

15.

Purpose

This study was aimed to investigate the potential of biochar (BC), a waste byproduct of a bioenegy industry, Sri Lanka, as a soil amendment to immobilize and reduce the phytotoxicity of Cr in tannery waste-polluted soil (TWS).

Materials and methods

The TWS and bioenergy waste BC were characterized for physio-chemical parameters. A pot experiment was conducted by adding three BC application rates, 1, 2.5, and 5 % (w/w) to investigate the immobilizing capacity and bioaccumulation of chromium (Cr) in tomato plants (Lycopersicon esculentum L.). Soils and plants were digested via microwave digestion and analyzed for total Cr. Further, sequential extraction was conducted to assess the fractionation of Cr before and after the application of bioenergy waste BC on TWS.

Results and discussion

The total Cr concentration in TWS was 12,285 mg/kg. The biomass of tomato plants grown in the 5 % BC amendment doubled compared to the biomass in BC-unamended soil. Bioaccumulation of Cr in plants grown in 5 % BC-amended TWS showed a decrease by 97 % compared to that of the BC-unamended soil. The CaCl2 extractability of Cr indicated that the bioavailability of Cr in the 5 % BC amendment has decreased by 68 % compared to the control. Sequentially extracted Cr in the exchangeable fraction decreased by 98 % in the 5 % BC amendment.

Conclusions

Pore diffusion, and adsorption via π-π electron donor-acceptor interactions were the primary mechanisms to be involved in the Cr retention in BC. Results suggested that the addition of BC to TWS reduces the mobility, bioavailability, and phytotoxicity of Cr in tomato plants.
  相似文献   

16.

Purpose

Anthropogenic-induced greenhouse gas (GHG) emission rates derived from the soil are influenced by long-term nitrogen (N) deposition and N fertilization. However, our understanding of the interplay between increased N load and GHG emissions among soil aggregates is incomplete.

Materials and methods

Here, we conducted an incubation experiment to explore the effects of soil aggregate size and N addition on GHG emissions. The soil aggregate samples (0–10 cm) were collected from two 6-year N addition experiment sites with different vegetation types (mixed Korean pine forest vs. broad-leaved forest) in Northeast China. Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) production were quantified from the soil samples in the laboratory using gas chromatography with 24-h intervals during the incubation (at 20 °C for 168 h with 80 % field water capacity).

Results and discussion

The results showed that the GHG emission/uptake rates were significantly higher in the micro-aggregates than in the macro-aggregates due to the higher concentration of soil bio-chemical properties (DOC, MBC, NO3 ?, NH4 +, SOC and TN) in smaller aggregates. For the N addition treatments, the emission/uptake rates of GHG decreased after N addition across aggregate sizes especially in mixed Korean pine forest where CO2 emission was decreased about 30 %. Similar patterns in GHG emission/uptake rates expressed by per soil organic matter basis were observed in response to N addition treatments, indicating that N addition might decrease the decomposability of SOM in mixed Korean pine forest. The global warming potential (GWP) which was mainly contributed by CO2 emission (>98 %) decreased in mixed Korean pine forest after N addition but no changes in broad-leaved forest.

Conclusions

These findings suggest that soil aggregate size is an important factor controlling GHG emissions through mediating the content of substrate resources in temperate forest ecosystems. The inhibitory effect of N addition on the GHG emission/uptake rates depends on the forest type.
  相似文献   

17.

Purpose

Impacts of a commercially available decay-facilitating microbial inoculum on carbon (C) and nitrogen (N) mineralization were evaluated during decomposition of rice straw in a paddy soil.

Materials and methods

Two incubation experiments were conducted for 105 days with a typical low-yield high-clay soil in central China to monitor effects of straw and the inoculum on CO2 evolution, as well as dissolved organic C (DOC), NH4 +, NO3 ?, and pH under conditions of 15 °C 70 %, 25 °C 40 %, 25 °C 70 %, 25 °C 100 %, and 35 °C 70 % of water-holding capacity (WHC) with adequate N, supplied as urea or manure, respectively.

Results and discussion

Treatments of 25 °C 70 % WHC, 25 °C 100 % WHC, and 35 °C 70 % WHC generally achieved significant higher CO2 evolution while treatment of 25 °C 40 % WHC had least. This was more evident with added manure compared to urea (P?<?0.05). The inoculum generally increased the decomposition of C inputs and the largest increases were in the initial 28 day in treatments 25 °C 70 % WHC, 25 °C 100 % WHC, and 35 °C 70 % WHC; only the 25 °C 40 % WHC actually immobilized C. The CO2 release rates were positively correlated with DOC, but with different slopes within treatments. Despite equivalent N application rates, manure treatments had significantly less N (including NO3 ?, NH4 +, and total dissolved N) than those with urea. Incubation of 25 °C 40 % WHC decreased soil pH the least, probably due to relative low moisture causing delayed nitrification.

Conclusions

The results implied that the inoculum, especially fungi, would adjust to edaphic and N fertilization in regulating organic C mineralization, during which water potential would exhibit a great role in regulating substrate and nutrient availability.
  相似文献   

18.

Purpose

Combined contamination of lead (Pb), cadmium (Cd), and arsenic (As) in soils especially wastewater-irrigated soil causes environmental concern. The aim of this study is to develop a soil amendment for simultaneous immobilization of Pb, Cd, and As in combinative contaminated soil.

Materials and methods

A soil amendment of iron hydroxyl phosphate (FeHP) was prepared and characterized, and its potential application in simultaneous immobilization of Pb, Cd, and As in combined contaminated soil from wastewater-irrigated area was evaluated. The effects of FeHP dosage, reaction time, and soil moisture on Pb, Cd, and As immobilization in the soil were examined.

Results and discussion

The immobilization efficiencies of Pb, Cd, and As generally increased with the increasing of FeHP dosage. With FeHP dosage of 10 %, the immobilization percentages of NaHCO3-extractable As and DTPA-extractable Pb and Cd reached 69, 59, and 44 %, respectively. The equilibrium time required for immobilization of these contaminants was in the following order: NaHCO3-extractable As (0.25 days) < DTPA-extractable Cd(3 days) < DTPA-extractable Pb (7 days). However, the immobilization efficiencies of Pb, Cd, and As have not changed much under soil moisture varied from 20 to 100 %. According to the results of the sequential extraction, the percentages of Pb, Cd, and As in residual fractions increased after the application of FeHP amendment, while their percentages in exchangeable fractions decreased, illustrating that FeHP can effectively decrease the mobilities and bioavailabilities of Pb, Cd, and As in the soil. Moreover, the application of FeHP will not have soil acidification and soil structure problem based on the soil pH measurements and soil morphology.

Conclusions

FeHP can immobilize Pb, Cd, and As in the combinative contaminated soil from wastewater irrigation area simultaneously and effectively. Thus, it can be used as a potential soil amendment for the remediation of Pb, Cd, and As-combined contaminated soil.
  相似文献   

19.

Purpose

Crop growth on sandy soils can be increased by claying. In modified sandy soils, the added clay is in the form of peds ranging in size from millimetres to centimetres creating a highly non-uniform matrix where ped size could influence nutrient availability and organic C binding. The aim of the study was to determine the effect of clay addition rate and ped size in residue amended sandy soil on soil respiration, nutrient availability and organic C retention.

Materials and methods

In this study, clay peds of 1, 2 or 3 mm size derived from a clay-rich Vertosol (73 % clay) were added to a sandy soil (3 % clay) at clay addition rates of 10 and 20 % w/w. After the addition of ground faba bean residue (C/N 37) at 10 g kg?1, the soils were incubated for 45 days at 80 % of water-holding capacity.

Results and discussion

Clay addition had no consistent effect on cumulative respiration, but reduced NH4 + availability with a greater reduction at 20 % compared to 10 % clay and with 1 and 2 mm compared to 3 mm peds. Sandy soil with clay peds had a greater maximum NH4 + and P sorption capacity than sandy soil alone, and sorption capacity was higher at 20 % compared to 10 % clay addition and greater with 1 mm compared to 3 mm peds. Retrieval of clay peds at the end of the experiment showed ped breakdown during the experiment but also the formation of larger peds. Compared to the <53 μm fraction added at the start of the experiment, the total organic carbon (TOC) content of the <53 μm fraction was increased up to nearly two fold, particularly in the smaller peds (1 and 2 mm).

Conclusions

When sandy soils are amended with clay, N availability and organic C binding depend on both clay addition rate and ped size.
  相似文献   

20.

Purpose

The agriculture industry is under intense pressure to produce more food with a lower environmental impact, while also mitigating climate change. Biochar has the potential to improve food security while improving soil fertility and sequestering carbon. The aim of our research was to evaluate the effects of apple branch biochar on wheat yield and soil nutrients under different nitrogen (N) and water conditions.

Materials and methods

Durum wheat was grown for nearly 6 months in pots with silt clay soil supplemented with apple branch biochar. The biochar was applied at five rates (0, 1, 2, 4, and 6% w/w; B0, B1, B2, B3, and B4), and N fertilizer was applied at three rates (0, 0.2, and 0.4 g kg?1; N0, N1, and N2). From the jointing to maturation stages, the soil water content was controlled at two rates to simulate sufficient water and drought conditions (75 and 45% of field capacity; W1 and W2). After harvest, we investigated grain yield and soil nutrient status.

Results and discussion

The application of biochar alone had a positive effect on wheat production and soil nutrients, especially under sufficient water conditions. Compared with the addition of N fertilizer alone, the addition of biochar at B1 and B2 combined with N fertilizer under sufficient water conditions increased the crop yield by 7.40 to 12.00%, whereas this was not the case under drought stress. Furthermore, regardless of water conditions, compared with N fertilizer application alone, a high rate of biochar application (B3 and B4) led to a significant decrease in the grain yield of approximately 6.25–21.83%. Biochar had strong effects on soil nutrients, with NO3? and available phosphorus contents and the C:N ratio exerting the greatest effects on wheat yield.

Conclusions

The effects of biochar on wheat production and soil nutrients varied with the biochar application rate, N fertilizer application rate, and water conditions. Drought stress weakened or offset the positive effect of biochar on crop production, especially under the high-N level (N2) conditions. The optimum application combination was 1% (or possibly even less) apple branch biochar (B1) and moderate N fertilizer (N1).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号