首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Purpose

The study aimed at comparing the effects of different water managements on soil Cd immobilization using palygorskite, which was significant for the selection of reasonable water condition.

Materials and methods

Field experiment was taken to discuss the in situ remediation effects of palygorskite on Cd-polluted paddy soils, under different water managements, using a series of variables, including pH and extractable Cd in soils, plant Cd, enzyme activity, and microorganism number in soils.

Results and discussion

In control group, the pH in continuous flooding was the highest under three water conditions, and compared to conventional irrigation, continuous flooding reduced brown rice Cd by 37.9%, and brown rice Cd in wetting irrigation increased by 31.0%. In palygorskite treated soils, at concentrations of 5, 10, and 15 g kg?1, brown rice Cd reduced by 16.7, 44.4, and 55.6%; 13.8, 34.5, and 44.8%; and 13.1, 36.8, and 47.3% under continuous flooding, conventional irrigation, and wetting irrigation (p < 0.05), respectively. The enzyme activity and microbial number increased after applying palygorskite to paddy soils.

Conclusions

Continuous flooding was a good candidate as water management for soil Cd stabilization using palygorskite. Rise in soil enzyme activity and microbial number proved that ecological function regained after palygorskite application.
  相似文献   

2.

Purpose

Water management has a strong influence on Cd solubility in agricultural soils, affecting Cd uptake in crops. In the process, sulfur interaction with other metals such as zinc may play an important role. A pot experiment was carried out to investigate the effects of water management coupled with zinc and sulfate amendment on Cd uptake by the leafy vegetable amaranth with a strong Cd accumulation tendency in its edible parts.

Materials and methods

The soils were amended with Cd, Cd+SO4 and Cd+SO4+Zn with no amendment as control. Then, the soils were flooded for 1 month, after which amaranth was grown with soil kept saturated (wet cultivation). In the succeeding planting, soils were tilled to aeration condition under which amaranth was grown again (dry cultivation). Soil and crop samples were collected and analysed for various parameters.

Results and discussion

The readily exchangeable quantities of Cd and Zn in the soil decreased under wet cultivation, increasing again under dry cultivation but to levels lower than those in the initial soil. Wet cultivation enhanced plant Cd concentration but reduced Zn accumulation compared to dry cultivation. Zn bioavailability was strongly affected by soil water status but failed to reduce Cd uptake by amaranth. Irreversible or slowly reversible changes occurred in Cd and Zn solubility and phytoavailability as soil water-saturated status was altered by periodic flooding events.

Conclusions

Dry cultivation with lower soil water content ensured high production with low Cd in the edible part of this leaf vegetable and so remains the recommended irrigation regime.
  相似文献   

3.

Purpose

The presence of high copper (Cu) and cadmium (Cd) contamination in soils around mining areas has raised serious health concerns. Improving hydroxyapatite (HAP) adsorption capacity for Cu and Cd is important if its application potential in heavily contaminated soils is to expand.

Materials and methods

The micro/nanostructured HAP (mnHAP) was synthesized using a template-induced method to improve the HAP immobilization of Cu and Cd in contaminated soils. Commercial and synthetic HAPs were evaluated as amendments in Cu and Cd remediation tests with 1.5 and 3.0 % addition level for 90 days, and soils without HAP materials (0.0 %) were designated as the controls; each treatment was repeated three times. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption, and scanning electron microscopy (SEM)-energy-dispersive spectra (EDS) and then quantitatively determined the Cu and Cd contents by inductively coupled plasma (ICP) and inductively coupled plasma mass spectrometry (ICP-MS).

Results and discussion

The mnHAP was more effective in immobilizing Cu and Cd than the two commercial HAPs. After treatment with mnHAP at the 3.0 % addition level for 90 days, the contaminated soils showed 55.2 and 84.8 % reductions in Cu and Cd concentrations in the toxicity characteristic leaching procedure (TCLP) leaching procedure, respectively. The experimental data indicated that the enhanced Cu and Cd immobilization by mnHAP was due to the increases of surface area and the improvement of structure and newly introduced carboxylate groups on its surface.

Conclusions

These findings show that regulating the structure and surface properties of HAP can enhance Cu and Cd immobilization in soils.
  相似文献   

4.

Purpose

This study aimed at investigating the rhizosphere effects of Populus euramericana Dorskamp on the mobility of Zn, Pb and Cd in contaminated technosols from a former smelting site.

Materials and methods

A rhizobox experiment was conducted with poplars, where the plant stem cuttings were grown in contaminated technosols for 2 months under glasshouse conditions. After plant growth, rhizosphere and bulk soil pore water (SPW) were sampled together. SPW properties such as pH, dissolved organic carbon (DOC) and total dissolved concentrations of Zn, Pb and Cd were determined. The concentrations of Zn, Pb and Cd in plant organs were also determined.

Results and discussion

Rhizosphere SPW pH increased for all studied soils by 0.3 to 0.6 units compared to bulk soils. A significant increase was also observed for DOC concentrations regardless of the soil type or total metal concentrations, which might be attributed to the plant root activity. For all studied soils, the rhizosphere SPW metal concentrations decreased significantly after plant growth compared to bulk soils which might be attributed to the increase in pH and effects of root exudates. Zn, Pb and Cd accumulated in plant organs and the higher metal concentrations were found in plant roots compared to plant shoots.

Conclusions

The restricted transfer of the studied metals to the plant shoots confirms the potential role of this species in the immobilization of these metals. Thus, P. euramericana Dorskamp can be used for phytostabilization of technosols.
  相似文献   

5.

Purpose

In situ immobilization of heavy metal-contaminated soils with the repeated incorporation of amendments can effectively reduce the bioavailability of soil heavy metals. However, the long-term application of amendments would lead to the destruction of soil structure and accumulation of soil toxic elements, ultimately affecting food security and quality. Thus, the sustainability of the amendments in a heavy metal-contaminated soil was evaluated from 2010 to 2012.

Materials and methods

Batch field experiments were conducted in the soils, which were amended with apatite (22.3 t ha?1), lime (4.45 t ha?1), and charcoal (66.8 t ha?1), respectively. The amendments were applied only one time in 2009, and ryegrass was sown each year. Ryegrass and setaria glauca (a kind of weed) were harvested each year. Concentrations of copper (Cu) and cadmium (Cd) were determined by batch experiments. Five fractions of Cu and Cd were evaluated by a sequential extraction procedure.

Results and discussion

Ryegrass grew well in the amended soils in the first year, but it failed to grow in all the soils in the third year. However, setaria glauca could grow with higher biomass in all the amended soils. The treatment of apatite combined with plants was more effective than lime and charcoal treatments in removing Cu and Cd from the contaminated soils by taking biomass into account. Apatite had the best sustainable effect on alleviating soil acidification. The Cu and Cd concentrations of CaCl2-extractable and exchangeable fractions decreased with the application of amendments. Moreover, apatite and lime could effectively maintain the bioavailability of Cu and Cd low.

Conclusions

Apatite had a better sustainable effect on the remediation of heavy metal-contaminated soils than lime and charcoal. Although all the amendment treated soils did not reduce soil total concentrations of Cu and Cd, they could effectively reduce the environmental risk of the contaminated soils. The findings could be effectively used for in situ remediation of heavy metal-contaminated soils.
  相似文献   

6.

Purpose

Willow cultivation in soils heavily contaminated by risk elements is a challenging issue due to phytotoxic effects that restrict plant growth. Liming reduces the mobility of some risk elements in contaminated soils and therefore can be a suitable measure for contaminated soils but can also affect availability of nutrients for planted willows. We investigate how liming affects concentrations of macro, micro, and toxic elements in the organs of willows planted in contaminated soils.

Materials and methods

We established a 3-year pot experiment with Salix × smithiana planted in weakly acid and alkaline soils anthropogenically seriously contaminated by As, Cd, Pb, and Zn. Soils were both untreated and treated with two doses of lime and dolomite in the first year before planting. We determined biomass production, mortality, and the concentration of macro- and micronutrients and toxic elements in the willows’ aboveground organs.

Results and discussion

Lime application increased biomass production in both soils; dose of lime played an important role for its increase only in alkaline soil. Lime in a higher dose was incompatible with the vitality of just-planted willows in both soils. Doses of dolomite significantly affected the biomass production and mortality of willows, where lower doses caused a permanent decrease of biomass production and mortality in weakly acid soil. The toxicity of Cd and Zn in leaves was recorded in both untreated soils; the latent deficiency of P and deficiency of Fe in leaves was only recorded in weakly acid untreated soil.

Conclusions

Lime application irrespective of dose with foliar Fe application seemed to be the most suitable measure for increasing biomass production and decreasing toxic elements, especially Cd and Zn, without decreasing the macro- and micronutrients in the aboveground organs of willows in weakly acid soil. In alkaline soil, only higher doses of lime had a positive effect on the studied parameters. Dolomite application is not a suitable measure for planting willows in both contaminated soils. Dolomite in a lower dose impairs the growth of willows in weakly acid soil.
  相似文献   

7.

Purpose

Phosphate (P) fertilizers are being widely used to increase crop yield, especially in P-deficient soils. However, repeated applications of P could influence trace element bioaccumulation in crops. The effects of 5-year P enrichment on trace element (Cu, Zn, Cd, Pb, As, and Hg) accumulation in Oryza sativa L. were thus examined.

Materials and methods

Two paddy soils with different initial P availabilities were amended with and without P fertilizer from 2009 to 2013. Trace elements and P levels in rice and soils were analyzed.

Results and discussion

In soil initially with limited P, P amendment enhanced grain Pb, As, and Hg concentrations by 1.8, 1.5, and 1.4-fold, respectively, but tended to decrease the grain Cd level by 0.73-fold, as compared to the control. However, in soil initially with sufficient P, P amendment tended to reduce accumulation of all examined elements in rice grain.

Conclusions

Phosphate amendment in initially P-limited and P-sufficient soils had different effects on trace element availability in soil (as reflected by extractable element) and plant physiology (growth and metal translocation), resulting in contrasting patterns of trace element accumulation in rice between the two types of soils. Our study emphasized the necessity to consider the promoting effects of P on Pb, As, and Hg accumulation in grain in initial P-deprived soil.
  相似文献   

8.

Purpose

This study aimed to reveal the temporal and spatial variation of soil heavy metal concentrations in the Three Gorges Reservoir area (TGR) water-level-fluctuating zone (WLFZ) and evaluated its pollution status and potential ecological risks and provide scientific basis for ecological risk prevention and ecological restoration of the TGR.

Materials and methods

This study was based on long-term monitoring of soil heavy metals (Cu, Pb, Cd, and Cr) before water level fluctuation (2008) and after 1 (2009), 4 (2012), or 7 (2015) cycles of water level fluctuation at the altitude of 155–172 m in the Wushan (WS) and Zigui (ZG) sections of the TGR, and pollution status and potential ecological risks of each heavy metal element were evaluated by index of geoaccumulation and potential ecological risk index.

Results and discussion

The Cd concentration increased with the increase in the number of reservoir water level fluctuations, whereas the concentrations of Cu, Cr, and Pb varied with the monitoring site. The Cd showed clear horizontal transfer characteristics. Moreover, with the increase of the frequency of water level fluctuations the Cd concentration at ZG (near the dam) were higher than those at WS (away from the dam). After 7 cycles of water level fluctuation, the concentrations of most soil heavy metal were not obvious differences between soil layers (except Pb). Before and after the reservoir water level fluctuation, Cd contamination level changed from pollution-free to strong or extremely polluted, Cu contamination level changed from pollution-free to moderately polluted, and Cr and Pb were pollution-free. Before the fluctuation of the reservoir water level, the potential ecological risk of Cd in the WS reached a classification of strongly polluted, whereas pollution at ZG was considered to be low level. However, after 4 cycles of water level fluctuation the Cd pollution level increased to a very high level, whereas Cu, Cr, and Pb remained consistently low.

Conclusions

There is an obvious temporal and spatial variation of heavy metal concentrations for WLFZ of TGR. Cd concentration increased with the increase in the number of reservoir water level fluctuations. Heavy metal concentrations changed from WS > ZG to WS < ZG after the impact of water level fluctuations. After 7 cycles of water level fluctuation, the distribution of heavy metals in different soil layers tends to be uniform (except Pb). Cd pollution is more serious, and there is a strong potential ecological risk.
  相似文献   

9.

Purpose

The effect of soil heavy metals on crops and human health is an important research topic in some fields (Agriculture, Ecology et al.). In this paper, the objective is to understand the pollution status and spatial variability of soil heavy metals in this study area. These results can help decision-makers apportion possible soil heavy metal sources and formulate pollution control policies, effective soil remediation, and management strategies.

Materials and methods

A total of 212 topsoil samples (0–20 cm) were collected and analyzed for eight heavy metals (Cd, Hg, As, Cu, Pb, Cr, Zn, and Ni) from agricultural areas of Yingbao County in Lixia River Region of Eastern China, by using four indices (pollution index (PI), Nemerow pollution index (PIN), index of geo-accumulation (I geo), E i /risk index (RI)) and cluster analysis to assess pollution level and ecological risk level of soil heavy metals and combining with geostatistics to analyze the concentration change of heavy metals in soils. GS+ software was used to analyze the spatial variation of soil heavy metals, and the semi-variogram model is the main tool to calculate the spatial variability and provide the input parameters for the spatial interpolation of kriging. Arcgis software was used to draw the spatial distribution of soil heavy metals.

Results and discussion

The result indicated that the eight heavy metals in soils of this area had moderate variations, with CVs ranging from 23.51 to 64.37 %. Single pollution index and Nemerow pollution index showed that about 2.7 and 1.36 % of soil sampling sites were moderately polluted by Cd and Zn, respectively. The pollution level of soil heavy metals decreased in the order of Cd?>?Zn?>?Pb?>?As?>?Cu?>?Cr?>?Ni?>?Hg. The I geo values of heavy metals in this area decreased in the order of Zn?>?Cd?>?As?>?Pb?>?Cu?>?Cr?>?Hg?>?Ni. According to the E i index, except Cd that was in the moderate ecological risk status, other heavy metals in soils were in the light ecological risk status, and the level of potential ecological risk (RI) of soil sampling sites of the whole area was light.

Conclusions

The results of four indices and the analysis of spatial variation indicated that the contents of Cd and Zn were contributed mainly by anthropogenic activities and located in the south-east of this study area. However, the contents of Hg, As, Cu, Pb, Cr, and Ni in soils were primarily influenced by soil parent materials.
  相似文献   

10.

Purpose

Southern China is an important agricultural production base, as well as an important mineral resource area. There is a big challenge of heavy metal pollution in the soils of this area. Base on the characterizations of cotton and our present results, we discussed the potentiality to remediate the heavy metal-polluted soils through planting cotton in southern China.

Materials and methods

This paper summarises recent research to provide a better understanding of the status and the causes of heavy metal pollution in southern China, compare the applicability of different remediation methods in this area, evaluate tolerance and accumulation of cotton to heavy metals, and discuss the socioeconomic benefits of cotton planting for remediation of heavy metal-polluted soils.

Results and discussion

Human activity could be causing heavy metal pollution in southern China, as lead pollution is the most prevalent and cadmium pollution is the most severe in this area. Physical and chemical methods are used to remediate the heavy metal-polluted soils in southern China, by which treated polluted soils could not satisfactorily address the problems of economic feasibility, “secondary damage” and “secondary pollution”. The use of plants can green the environment to a certain extent, so the phytoremediation method is widely accepted. Cotton does not reach the standard of hyperaccumulation plants but has a relatively large biomass and shows more excellent tolerance ability and enrichment ability to heavy metals. Especially, the Cd concentration is lower in cotton fibre than in other cotton organs.

Conclusions

Cotton may be a potential crop to ameliorate the heavy metal pollution of farmland in southern China. In addition, cotton remediation combining with multiple repair measures of heavy metal pollution would obtain better repair effect and ecological benefits, and agronomic management practices could also effectively enhance cotton-remedied heavy metal-polluted soils.
  相似文献   

11.

Purpose

The main goal of the study was to evaluate biogeochemical effects of particular factors changing the structure of landscapes due to enhanced mass migration and erosion of the outcropping rocks by studying transformation of chemical composition of the draining waters and flood plain soils; chemical composition of the solid and liquid phases of the Ardon River waters; and by assessing ecological consequences and risk of contamination of the area by heavy metals.

Materials and methods

Water, soil, and biota species (plants, algae, and amphibian) were sampled at the plots located up- and downstream the mining and industrial areas of North Ossetia (the Ardon River basin) before and after the mudflow that took place in 2002. The air-dried samples were decomposed in a mixture of mineral acids. Heavy metals were determined by means of AAS with the help of AAS-80 (Hitachi) or AAS-2A (KORTEC) using standard reference materials of hair (CRM 397), plant mixture (SBMT-02), and soil (SRM 2709). Hydrochemical and biochemical analyses were performed with the help of the known methods (Kraynov and Shvets 1992; Burtis et al. 2006).

Results and discussion

The study showed that activity of the Misur Mining Combine and its Ardon-Khost tailings caused a significant local increase of Pb, Cd, Cu, and Zn content in soils, water, and biotic components as compared to the background values. The mudflow of 2002 changed the structure of landscapes and was followed by a considerable transformation of chemical composition of the downstream river waters and floodplain soils, and by invasion of particular hydrophyte species. Algae and amphibian adapted to the changed conditions and indicated both natural and anthropogenic transformation of the environment. A distinct relation between the particle size of the suspended matter in the Ardon River waters and water salinity was discovered.

Conclusions

Therefore, the Unal basin presents a vivid example of modern natural and anthropogenic evolution of Pb-Zn biogeochemical province under conditions of the extreme and dynamic geochemical environment leading to enhanced risks of ecological damage. Algae species demonstrated high adaptive and indicative capacity in case of both the fast natural and man-made impact.
  相似文献   

12.

Purpose

Bacteria able to extracelluar respiration, which could be enriched in the anode of microbial fuel cells (MFCs), play important roles in dissimilatory iron reduction and arsenic (As) desorption in paddy soils. However, the response of the bacteria to As pollution is unknown.

Materials and methods

Using soil MFCs to investigate the effects of As on anode respiring bacteria (ARB) communities in paddy soils exposed to As stress. The soil MFC performances were evaluated by electrochemical methods. The bacterial community compositions on anodes were studied using Illumina sequencing.

Results and discussion

In wet 1 phase, polarization curves of MFCs showed cathode potentials were enhanced at low As exposure but inhibited at high As exposure. In the meantime, anode potentials increased with As levels. The dry-wet alternation reduced As levels in porewater and their impacts on electrodes microorganisms. Arsenic addition significantly influenced the anode microbial communities. After dry-wet cycles, Deltaproteobacteria dominated in the anode with high As.

Conclusions

The dynamic changes of the communities on cathodes and anodes of soil MFCs in paddy soils with different As addition might be explained by their different mechanisms for As detoxification. These results provide new insights into the microbial evolution in As-contaminated paddy soils.
  相似文献   

13.

Purpose

The study aimed at comparing organic matter decomposition in two semi-natural agrobiocenozes, namely fallows and meadows, with similar plant biomass but differing in plant community composition and diversity and in succession stage.

Materials and methods

The decomposition rate of a standard material (cellulose) was measured in soils from six fallows and six meadows spanning a few kilometres apart. The mathematical model was fitted to the data.

Results and discussion

The model showed a significantly longer lag-time in cellulose decomposition in the meadows. Despite the delayed start of decomposition in the meadows, the estimated decomposition rates were similar in both ecosystem types, once the decay started.

Conclusions

The faster start of decomposition in fallows seems to be promoted by higher contents of nitrates and phosphates in the fallow soils. The fallows, as younger ecosystems, may have faster C turnover than older grasslands due to remains of fertilisers on these ex-arable fields.
  相似文献   

14.

Purpose

The size of soil particles strongly affects the accumulation and adsorption of heavy metals which partly controls the co-transport of heavy metals by soil colloids. However, the effect of the size of soil particles on the accumulation and adsorption of heavy metals in the colloidal dimension has seldom been studied. In this study, variable charge soils were selected and separated into five size fractions to elucidate the effect of the size of soil particles on Cd accumulation and adsorption.

Materials and methods

Five soil particle size fractions (>10, 10–1, 1–0.45, 0.45–0.2 and <0.2 μm) were obtained from Cd-contaminated soil by natural sedimentation and fractional centrifugation. The concentrations and species of Cd were measured in various sized soil particles. Batch adsorption experiments of Cd on the obtained soil particles were conducted under different pH values and concentrations of NaCl.

Results and discussion

Generally, the concentration of Cd increased with decreasing soil particle sizes, and the Cd proportion of exchangeable and carbonate fraction decreased from 43.84 to 17.75% with decreasing particle size. The soil particles with a size of 10–1 and <0.2 μm possessed a stronger adsorption ability than the other fractions in most cases. Moreover, the Cd adsorption capacities of the soil particles increased with increasing pH values and decreasing concentrations of NaCl, especially for soil particles containing more organic matter (OM) and variable charge minerals.

Conclusions

Smaller soil particles are more capable of accumulating Cd and make Cd more stable. The adsorption capability of Cd is negatively related to the particle size and NaCl concentration and is positively related to the pH. The effects of the size of variable charge soil particles on Cd accumulation and adsorption are attributed to the differences in the physicochemical properties among various soil particle size fractions. This study contributes to the understanding of the co-transport of heavy metals in soil by soil colloids.
  相似文献   

15.

Purpose

Soil labile carbon (C) and nitrogen (N) pools are considered to be sensitive indicators of changes in soil C and N pools. In this study, we examined possible factors affecting spatial and seasonal variations in soil labile C and N pools in the riparian zones in Southeast Queensland, Australia.

Materials and methods

Soil and sediment samples were collected from two sites in the riparian areas. The spatial and seasonal variabilities of soil moisture, hot-water extractable organic C and total N (HWEOC and HWETN), microbial biomass C and N (MBC and MBN), and the relationships among them were examined.

Results and discussion

Soil labile C and N pools decreased along the transects in both soil depths of the two soil types, with the peak or bottom of values detected between upland slope and the riparian zone. Other factors rather than soil moisture were more important in regulating seasonal changes of soil HWEOC and HWETN except the dry-rewetting influence in November 2013. Soil moisture played a significant role in the seasonal variations of MBC and MBN. Soil labile C (HWEOC and MBC) and N (HWETN and MBN) pools at Site 1 (S1; heavy texture), which were significantly higher than those at Site 2 (S2; light texture).

Conclusions

Soil moisture would be an important driving factor for the spatial and seasonal distributions of soil labile C and N pools. Our study highlighted the importance of riparian zones as the hot spot of soil C and N dynamics, especially at the onset of rewetting dry soil in subtropical Australia.
  相似文献   

16.

Purpose

Serious arsenic (As)-contaminated soils have the potential to cause contamination of ground water and surface water, being toxic to plant, animals, and human. The aim of study was to characterize As contamination in the soils from Shimen realgar mine area, the largest realgar deposit in Asia.

Materials and methods

Total As concentrations, As chemical fractionation, and As potential solubility both at various land use types (smelting and processing plants (SPP), mining site (MS), and agriculture land (AL)) and soil depths (0–100 cm) were investigated. As speciation in soil was examined using X-ray absorption fine structure (XAFS) analysis, and risk assessment was also carried out to evaluate potential ecological risk of As contamination.

Results and discussion

As concentrations in the studied area were extremely high, and the total As concentration reached up to 5240.8 mg kg?1. Moreover, total As and NaHCO3-extractable As concentrations in all soil layers for various land use were far beyond the range of the non-contaminated soil. The potential ecological risk level of As posed higher to serious risk to the environment based on ecological risk index values. Sequential extraction confirmed that As is mostly bonded with amorphous and poorly crystalline hydrous iron and aluminum oxides (65?~?70 %), and only a small proportion (about 11 %) is partitioned in residual fraction, suggesting high risk of As mobilization. According to XAFS analysis, As was predominantly present in the form of arsenate, and arsenite was also found in the samples from SPP, MS, and AL.

Conclusions

The results indicate that the extra high concentrations of As were caused by both natural geochemical enrichment and long-lasting ore mining, smelting, and processing, and land use can greatly influence As contents in surface soil. These findings can be important for risk assessment and for the development and implementation of suitable management and remediation strategies.
  相似文献   

17.

Purpose

Soil washing with chelators is a viable treatment alternative for remediating multi-contaminated soils. The aim of this study was to investigate the removal efficiencies of Cd, Zn, Pb, and Cu in alkaline and acid multi-metal-contaminated soils by washing with the mixed chelators (MC).

Materials and methods

The batch experiments were carried out to evaluate the removal efficiencies of heavy metals in contaminated soils by the MC with different molar ratios of EDTA, GLDA, and citric acid, and evaluated the washing factors, including contact time, pH, MC concentration, and single and multiple washings at the same MC dose, on the removal efficiencies.

Results and discussion

Results showed that the removal efficiencies for Cd, Zn, Pb, and Cu by the MC (the molar ratio of EDTA, GLDA, and citric acid was 1:1:3) were as much as those of the only EDTA washing from both soil at the same application dose of total chelators; moreover, the application dose of EDTA decreased by 80%. For the alkaline-contaminated soil, the removal efficiencies of Cd, Zn, Pb, and Cu decreased with the increasing of the solution pH, which was opposite to acid-contaminated soil. This was attributed to that the metal-ligand complex could be obviously re-adsorbed on the soil surface sites, particularly in low pH values. The removal efficiencies of Cd, Zn, Pb, and Cu depended on MC concentration. A higher MC concentration led to a more effective removal of Cd, Zn, Pb, and Cu in alkaline-contaminated soil; however, their changes were slightly increased in acid-contaminated soil. At the same dose of MC, single washing with higher MC concentration might be favorable to remove heavy metals, moreover, with much less wastewater generation.

Conclusions

The MC (the molar ratio of EDTA, GLDA, and citric acid was 1:1:3) may be a useful, environmentally friendly, and cost-effective chelators to remediate heavily multi-metal-contaminated soil.
  相似文献   

18.

Purpose

The increasing reuse of wastewater for irrigation introduces surfactants and antibiotics into the environment. How these two kinds of compounds interact with regard to their sorption processes in soil is not clear.

Materials and methods

We performed batch experiments to investigate the sorption of linear alkylbenzene sulfonates (LAS) and its effect on sorption of sulfamethoxazole and ciprofloxacin in irrigated and non-irrigated soils with different organic matter (OM) contents.

Results and discussion

LAS sorption was non-linear in the presence of the antibiotics, and as general trend, it increased with rising OM content of soils. Free LAS was also removed from solution by complexation with Ca2+. Dissolved organic compounds released from soils with OM contents ≥18.4 g kg?1 further reduced LAS sorption. Sorption of sulfamethoxazole was reduced by LAS sorption only in one soil with a small OM content of 9.5 g kg?1.

Conclusions

The strong sorption of ciprofloxacin is not affected by LAS. Sulfamethoxazole sorption only competes with LAS sorption in organic matter-poor soils. Accumulation of organic matter in soils, for example due to long-term wastewater irrigation, provides extra sorption capacity for LAS and sulfamethoxazole so that competition for sorption sites is reduced.
  相似文献   

19.

Purpose

River ecosystems are under pressure from several different stressors. Among these, inorganic pollutants contribute to multiple stressor situations and the overall degradation of the ecological status of the aquatic environments. The main sources of pollution include different industrial activities, untreated effluents from municipal waste waters and intensive agriculture. In the present study, water, suspended particulate matter (SPM) and sediments of the Sava River were studied in order to assess the pollution status of this river system.

Materials and methods

Sampling was performed during the first sampling campaign of the EU 7th FW funded GLOBAQUA project in September 2014, at 18 selected sampling sites along the Sava River. In 2014, floods predominated from spring to fall. Water samples were collected to determine the total element concentrations, the dissolved (0.45 μm) fraction and element concentrations in SPM. In order to assure comparative results with other river basins, the fraction below 63 μm was analysed in sediments. The extent of pollution was estimated by determination of the total element concentrations and by the identification of the most hazardous highly mobile element fractions (extraction 0.11 mol L?1 acetic acid) and anthropogenic inputs of elements to sediments (normalization to aluminium (Al) concentration). Concentrations of selected elements were determined by inductively coupled plasma mass spectrometry (ICP-MS).

Results and discussion

Since during sampling campaign the water level was extremely high, water samples contained high amounts of SPM (in general between 80 and 100 mg L?1). The data of chemical analysis revealed that concentrations of elements in water, SPM and sediments in general increase along the Sava River from its origin to the confluence with the Danube River. Elevated concentrations of chromium (Cr) and nickel (Ni) in SPM and sediments were observed at industrially exposed sites. Concentrations of Cr and Ni in sediments were up to 320 and 250 mg kg?1, respectively. Nevertheless, these elements were present in sparingly soluble forms and hence did not represent an environmental threat. Phosphorus (P) was found in elevated concentrations (up to 1500 mg kg?1) at regions with intensive agricultural activities and cities with dense population.

Conclusions

With respect to element concentrations, the pollution of the Sava River is similar to other moderately polluted European rivers. The data from the present study are beneficial for the water management authorities and can contribute to sustainable utilization, management and protection of the Sava River water resources.
  相似文献   

20.
Nature and significance of anthropogenic urban soils   总被引:5,自引:9,他引:5  

Background, Aims and Scope

Anthropogenic and natural urban soils are of increasing significance in a world with accelerating urbanization. Thus, anthropogenic urban soils must be considered as an fundamental ecological asset for land-use planning. Furthermore, they are of interest for fundamental soil sciences, since there properties are rarely investigated and can differ substantially from landscape soils. Numerous studies on their properties exist, in particular with respect to contamination. It is argued that urban soils are ecological assets of cities, a point of view shared with the AKS (working group on urban soils within the German Soil Science Society). In this commentary, an overview of less recognized topics is presented with specific reference to topics such as ‘co-development of anthropogenic urban soils within their cities’ and the principles of ‘stock flow of anthropogenic urban soils forming materials’ are discussed to complete the pedological and ecological view on urban soils. Additionally, the significance of (anthropogenic) urban soils is highlighted to strengthen consideration in urban spatial planning.

Main Features

Historical and recent impacts on soils and parent materials are related with soil properties. Definitions and taxonomic terms for anthropogenic soils are presented. Furthermore, the context with the functionality of such soils is discussed. The principles of mapping and evaluation of anthropogenic urban soils are explained to stress the practicability of management tools for such soils.

Results and Discussion

A semi-quantitative consideration of parent material flows in anthropogenic urban soils indicates the enormous increase of the areas of supply of cities since the pre-industrial period. Since 1950, the inner-urban deposition of solid materials, including dust stopped to increase or increases slowly in the early industrialized regions. In contrast, the deposition and reuse of rubble, inorganic and organic waste as well as dust increases much in the late industrialized regions of the last decades.

Conclusions

The significance of anthropogenic urban soils in ecological soil management became obvious by numerous scientific studies. Moreover, it is recognized that management of different areas in urban environments must respect the functionality of their soils. It is therefore of importance that pedology is integrated with related disciplines such as archaeology, history and urban planning. The scientific knowledge, the appropriate methods and tools are now available to promote and support the management of anthropogenic urban soils.

Recommendations and Perspectives

It is recommended that research conducted over the past two decades should be introduced into soil management, especially with regard to the evaluation of soil quality. Accordingly, results of collaborative studies by soil scientists and city planners need to be integrated into political frameworks like the European Soil Strategy. It is also recognized that knowledge regarding anthropogenic urban soils in the tropics, the southern hemisphere and far north is lacking, a point which will need to be addressed in the future.

Dedication

This publication is dedicated to the 20th anniversary of the AKS (Arbeitskreis Stadtböden).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号