首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field crop responses to ultraviolet-B radiation: a review   总被引:6,自引:0,他引:6  
This paper provides an overview of existing literature on the ultraviolet-B (UV-B) radiation effects on field crops. Earlier reviews on field crop responses to UV-B considered few physiological processes or crops. For this review, we easily located about 129 studies on 35 crop species published since 1975. Here, we report the effects of UV-B radiation on visual symptoms, leaf ultrastructure and anatomy, photosynthetic pigments, UV-B absorbing compounds, photosynthesis, growth and development, yield, genotypic differences, and finally, interactions of UV-B with abiotic and biotic factors of crop plants. Experiments conducted in glasshouses, in closed and open top chambers, and under field conditions, with varying source (solar or artificial) and intensity of photosynthetically active radiation (PAR, 50–1800 μmol m−2 s−1) and UV-B (0–50 kJ m−2 per day) are included. It is easy to conduct experiments that purport to evaluate the effects of projected UV-B intensities on crop species by providing supplemental irradiance with lamps or by reducing UV-B with filters; however, it is very difficult to simulate UV-B irradiance spectral changes that are likely to occur in nature. Collated results for each process are presented as percent change from control along with the experimental conditions in tabular format. Many of the studies showed dramatic effects of UV-B radiation, but under conditions with supplemental UV-B irradiance that was higher than would ever occur outside experimental conditions or in which the longer wavelengths in the PAR and UV-A, which moderate UV-B effects, were greatly reduced. Only 25 of the studies reviewed used experimental conditions and supplemental UV-B irradiance that approached realism. However, unrealistic the experimental conditions might be, an increase in understanding of basic plant physiology was gained from most of the studies.Visual symptoms consisting of chlorotic or necrotic patches on leaves exposed to UV-B were not unique. Both vegetative and reproductive morphology were altered by UV-B radiation. Leaf anatomy was altered due to changes in thickness of epidermal, palisade, and mesophyll layers. Enhanced UV-B generally decreased chlorophyll content (10–70%), whereas it increased UV-B absorbing compounds (10–300%) in many crops. Decrease in photosynthesis (3–90%), particularly at higher UV-B doses, was due to both direct (effect on photosystem) and indirect (decrease in pigments and leaf area) effects. The decreases in chlorophyll pigments and photosynthesis resulted in lower biomass and yield of most crop plants. Genotypes of crop species exhibited variability in leaf wax layer thickness, loss of chlorophyll, and increase in phenolics as mechanisms of tolerance to enhanced UV-B radiation resulting in changes in biomass/yield. Results from the few studies on interaction of UV-B with other abiotic and biotic factors did not lead to useful conclusions. Studies are needed to quantify the effects of UV-B radiation on crops in order to develop dose response functions that can facilitate development of dynamic simulation models for use in UV-B and other environmental impact assessments.  相似文献   

2.
The effects of enhanced ultraviolet-B (UV-B) and nitrogen supply on the growth and mineral elements of mono maple (Acer mono Maxim) seedlings were studied in open semi-field conditions. Mono maple is a common species in reforestation processes in the southeast of the Qinhai-Tibetan Plateau of China. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 KJ/m2/day; enhanced UV-B, 14.33 KJ/m2/day) and two nitrogen levels (0; 20 g N/m2/a). No visible symptoms of nutrient deficiency were observed in seedlings grown under enhanced UV-B radiation during the experiment. However, there was visible damage of enhanced UV-B radiation on leaves. Enhanced UV-B significantly reduced plant height and biomass of plants, and changed biomass allocation between organs under supplemental nitrogen supply, which lead to a decrease in root/shoot ratio. On the other hand, nitrogen supply significantly increased plant height and biomass under ambient UV-B, whereas it reduced root mass and root weight ratio, and increased stem mass and stem weight ratio under enhanced UV-B. In addition, enhanced UV-B radiation and nitrogen supply significantly affected the concentration and allocation of most nutrients in various organs, and nitrogen supply could changed the effects of enhanced UV-B on mineral element in plant parts to some extent, which may have significant impacts on nutrient cycling and may lead to the disorder of nutrient balanced and influence the growth of plants.  相似文献   

3.
全生育期UV-B辐射增强对棉花生长及光合作用的影响   总被引:3,自引:1,他引:2  
植物光合系统是UV-B辐射最初和最重要的作用靶标。本文在大田条件下进行紫外灯照射处理,研究全生育期UV-B辐射增强(高于环境20%和40%)对棉花形态、干物质积累、光合色素和产量的影响,并通过分析棉花主茎功能叶片的气体交换参数和叶绿素荧光参数,探讨UV-B辐射增强影响棉花光合作用的机制。结果表明,UV-B辐射增强抑制了棉花生长和干物质积累,籽棉产量显著降低,且UV-B辐射越强,抑制作用越明显。随UV-B辐射的增强,棉花主茎功能叶的净光合速率(P_n)在各生育期均显著降低,叶绿素含量呈先升高后降低趋势,气孔导度(Gs)和蒸腾速率(Tr)未发生变化,胞间CO_2浓度(Ci)反而升高,说明P_n下降主要由非气孔限制因素造成。对叶绿素荧光参数的分析表明,PSⅡ的最大光化学量子产率(F_v/F_m)、实际光化学量子效率(ΦPSII)、线性电子传递速率(ETR)和光化学淬灭系数(qP)随着UV-B辐射的增强而降低,非光化学猝灭系数(NPQ)则显著升高,且各叶绿素荧光参数与Pn变化均显著相关;慢速弛豫NPQ(NPQS)及其在NPQ中的比例均随UV-B辐射的增强而显著提高,表明PSⅡ反应中心受损,光化学效率降低。以上结果证明,全生育期UV-B辐射增强降低了棉花的光合叶面积、叶绿素含量和净光合速率,引起棉花生长与物质积累受抑,产量降低。UV-B辐射增强引起的光合速率下降与PSⅡ反应中心遭到破坏密切相关。  相似文献   

4.
From 1999 to 2002, the variations in carbon flux due to management practices (shrub removal, thinning) and climate variability were observed in a young ponderosa pine forest originated from clear-cutting and plantation in 1990. These measurements were done at the Blodgett Forest Ameriflux site located in the Sierra Nevada Mountains of California. Thinning in spring 2000 decreased the leaf area index (LAI) by 34% and added 496 g C m−2 of wood and leaf debris at the soil surface. Total ecosystem respiration was not significantly affected by thinning (1261 g C m−2 in 1999 and 1273 g C m−2 in 2000), while canopy photosynthesis decreased by 202 g C m−2. As a result the ecosystem shifted from a net sink of CO2 in 1999 (−201 g C m−2) to a small net source in 2000 (13 g C m−2). Woody and leaf debris resulting from thinning only accounted for maximum 1% and 7% of the total respiration flux, respectively. Thinning did not affect the relative proportion of the different components of respiration to an observable degree. Low soil water availability in summer 2001 and 2002 decreased the proportion of soil respiration to the total respiration. It also imposed limitations on canopy photosynthesis: as a result the ecosystem shifted from a sink to a source of carbon 1 month earlier than in a wetter year (1999). The leaf area index and biomass of the stand increased rapidly after the thinning. The ecosystem was again a sink of carbon in 2001 (−97 g C m−2) and 2002 (−172 g C m−2). The net carbon uptake outside the traditionally-defined growing season can be important in this ecosystem (NEE = −50 g C m−2 in 2000), but interannual variations are significant due to differences in winter temperatures.  相似文献   

5.
6.
The aim of this study was to investigate the potential of silicon (Si) for alleviating Ultraviolet-B (UV-B) radiation stress based on changes in biomass, physiological attributes and photosynthetic characteristics of two soybean (Glycine max L.) cultivars, Kenjiandou 43 (‘K 43’) and Zhonghuang 35 (‘ZH 35’). The cultivars were raised with and without Si in the greenhouse, and then subjected to ambient, ambient + 2.7 kJ m?2d?1and ambient + 5.4 kJ m?2d?1of UV-B radiation. Depending on cultivar, plants suffered severe growth limitations under UV-B radiation, but the application of Si alleviated the adverse effects on growth and development by increasing the stem length, net photosynthetic rate (PN) and leaf chlorophyll content. Concurrently, it decreased the stomatal conductance (Sc) and intercellular carbon dioxide (CO2) concentration (Ci). In response to the UV-B radiation stress, the antioxidant enzyme activities of superoxide dismutase (SOD) increased by 41.2–72.7%, peroxidases (POD) by 49.5–85.7%, malodialdehyde (MDA) by 6.7–20.4% and soluble protein by 4.2–7.6%. The overall results indicated that media treatment with Si might improve soybean growth under elevated UV-B radiation through positive changes in biomass and some physiological attributes that were dependent on cultivar.  相似文献   

7.
Root, stem and leaf tissues, from cotton plants exposed to CO2 at ambient (370 μmol mol−1 (control)) or elevated (550 μmol mol−1 (FACE; free-air carbon dioxide enrichment)) levels in the field during the 1990 and 1991 growing seasons, were analyzed for nonstructural carbohydrates (glucose, fructose, sucrose and starch). Besides the FACE treatment, these plants were also exposed to two irrigation levels: 100% and 67% replacement of evapotranspiration. FACE had a greater effect upon cotton plant nonstructural carbohydrates than did irrigation treatments. Leaf carbohydrate content was increased by FACE, but this increase was much more pronounced in the stems and roots. Starch and soluble sugars in leaves in FACE plots tended to be consistently greater than in control leaves, without much change in carbohydrate content during the growing season. In contrast, root and stem, starch and soluble sugar pools were strongly increased by FACE and fluctuated strongly during the growing season. In both seasons, stem and taproot nonstructural carbohydrate content passed through a minimum during periods of heavy boll set. The fluctuations in stem and root carbohydrate content were therefore probably caused by the varying metabolic demands of the developing plant. These results suggest that a significant effect of CO2 enrichment on starch-accumulating plants is an increase of nonstructural carbohydrate, especially starch, in nonleaf storage pools. This buildup occurs somewhat independently of the water status of the plant, and these enlarged pools can be drawn upon by the growing plant to maintain growth during periods of high metabolic demand.  相似文献   

8.
The possible ameliorative effects of selenium (Se) addition to soil on the detrimental effects of enhanced UV-B radiation were tested on strawberry and barley during 4 months of field experiment in Kuopio, Central Finland. Control plants were exposed to ambient levels of UV radiation, using arrays of unenergized lamps. A control for UV-A radiation was also included in the experiment. Added Se, applied as H2SeO4, at the level of 0.1 mg kg−1 soil (low dosage) and 1 mg kg−1 soil (high dosage) increased Se concentrations in plants more than 10 and 100 times, respectively. After 4 months of exposure, strawberry and barley plants were harvested for biomass analysis. Chlorophyll fluorescence was measured using the Hansatech FMS2 fluorescence monitoring system. Leaf anatomy and ultrastructure were observed by light and transmission electron microscope. Several effects of UV and Se as well as their interaction were found, mostly for strawberry, but not for barley, indicating species-specific responses. Our results provided evidence that the high Se concentration in soil had no ameliorative effect but increased the sensitivity of strawberry to enhanced UV-B radiation in the field. Under ambient radiation, Se did not alter leaf growth of strawberry, whereas under UV-B radiation, the high Se addition significantly decreased leaf growth. Strawberry runner biomass was affected by the interaction of Se and UV. Under ambient radiation Se did not change dry weight of runners, but in combination with UV-A or UV-B radiation the high Se dosage decreased dry weight of runners by about 30%. Although the high Se concentration positively influenced on quantum efficiency of photosystem II (PSII) in strawberry leaves, it reduced runner biomass, leaf number and ratio of starch to chloroplast area. This suggests that the harmful effects of the high Se dosage on photosynthetic processes occurred as a result of changes in activity or/and biosynthesis of enzymes, rather than alteration of PSII. At the low concentration, Se effects were slight and variable.Although barley leaves accumulated higher Se concentrations than strawberry, there were no apparent changes in their growth, biomass or chlorophyll fluorescence due to Se effect either alone or in combination with UV-B. However, at the ultrastructural level, an enlargement in the peroxisome area was found due to combination of UV radiation with Se, suggesting the activation of antioxidative enzymes, possibly catalase. Decrease in mitochondrial density in barley cells in response to Se might be attributed to alteration of mitochondrial division. Increase in the proportion of cells with cytoplasmic lipid bodies due to combined effect of UV-B and Se indicated the alteration of lipid metabolism and the acceleration of cell senescence in barley. Main UV-B effects were found, mostly at the tissue and ultrastructural level in strawberry, but not in barley, indicating species-specific susceptibility to enhanced UV-B radiation. UV-B-treated strawberry plants developed marginally thinner leaves with reduced ratio of starch to chloroplast area in their cells, suggesting negative influence of UV-B on photosynthetic processes.  相似文献   

9.
CO2 treatment level control and CO2 use are reported for free-air carbon dioxide enrichment (FACE) facility operations at the University of Arizona's Maricopa Agricultural Center in 1990 and 1991. These are required for evaluation of the validity of biological experiments conducted in four replicates of paired experimental and control plots in a large cotton field and the cost-effectiveness of the plant fumigation facility. Gas concentration was controlled to 550 γmol mol-1 at the center of each experimental plot, just above the canopy. In both years, season-long (April–September) average CO2 levels during treatment hours (05:00–19:00 h Mountain Standard Time) were 550 γmol mol−1 measured at treatment plot centers when the facility was operating. Including downtime, the season average was 548 γmol mol−1 in 1991. In 1990, the season averages for the four elevated CO2 treatments varied from 522 to 544 γmol mol−1, owing to extended periods of downtime after lightning damage. Ambient CO2 concentration during treatment was 370 γmol mol−1. Instantaneous measurements of CO2 concentration were within 10% of the target concentration of 550 γmol mol−1 more than 65% of the time when the facility was operating, and 1 min averages were within 10% of the target concentration for 90% of the time. The long-term average of CO2 concentration measured over the 20 m diameter experimental area of one array at the height of the canopy was in the range 550–580 γmol mol−1 during July 1991, with the higher values near the edges. In 1991, CO2 demand averaged 1250 kg per array per 14 h treatment day, or 4 kg m−2 of fumigated plant canopy. The FACE facility provided good temporal and spatial control of CO2 concentration and was a cost-effective method for large-scale field evaluations of the biological effects of CO2.  相似文献   

10.
Extraction of protein from the leaves of green plants is very important because of the high cost of conventional forms of protein such as meat, milk and fish. In order to design machinery for this extraction, and also to embark on leaf protein concentrate extraction, it is necessary to measure and analyse the energy requirements to carry out each process involved in the extraction, using different plant species.Experiments were carried out to determine the amount of crude protein, and the thermal energy required to extract leaf protein concentrate, from juices obtained from the leaves of some plant species. Leaves from the following plants were selected: cassava (Manihot esculanta), Siam weed (Chromolaena odorata), bitter leaf (Vernonia amygdalina), gliricidia (Gliricidia maculata) and thorny tree (Hura crepetans). The leaves from the plant species were macerated in a laboratory pulper. Juice was obtained from the samples using perforated cylinders and a hydraulic press. The specific heat capacity of the juices was determined using the cooling curve method. The values of the heat capacities were used to calculate the amount of thermal energy required to raise the temperature of each juice from its normal temperature of about 25°C to a total protein coagulation temperature of about 80°C. The crude protein content of the extract was determined using the Kjeldal method.Results indicate that the green coagulum extracted from all the juices all have a protein content of at least 37%. The thermal energy required to coagulate protein from the juices ranges from 1·59 kJ kg−1 for Hura crepetans to 2·7 kJ kg−1 for Vernonia amygdalina. The energy requirement to obtain crude protein (CP) ranges from 8 kJ kg−1 [CP] with Hura crepetans to 182 kJ kg−1 [CP] with Vernonia amygdalina. Both results are statistically significant at the 0·01 confidence interval. It is concluded that the choice of plant species can significantly lower the thermal energy requirement for the extraction of leaf protein concentrate.  相似文献   

11.
日光温室黄瓜非均质冠层光合生产的模拟   总被引:1,自引:0,他引:1  
用均质冠层结构的光合模型来模拟非均质的日光温室黄瓜冠层光合速率则误差较大.该文所建立的日光温室黄瓜非均质冠层光合速率模型考虑到日光温室黄瓜冠层内光照分布以及叶片光合特性的不均匀性,其包含了非均匀冠层的透光模型和描述冠层叶片光合特性差异的经验公式.利用该模型对冠层光照分布和冠层光合速率的模拟结果表明:当模拟时所取的植株高度小于1.2 m,则冠层内直射光透光率和散射光透光率的模拟结果与验证值相比符合程度较好,但是对于模拟冠层单位体积内叶面积的总光合速率的结果还有待于进一步的验证.  相似文献   

12.
A decrease in stratospheric ozone may result in a serious threat to plants, since biologically active short-wavelength ultraviolet-B (UV-B 280–320 nm) radiation will increase even with a relatively small decrease in ozone. Numerous investigations have demonstrated that the effect of UV-B enhancements on plants includes reduction in grain yield, alteration in species competition, susceptibility to disease, and changes in plant structure and pigmentation. To determine the physiological effects on plants of any increases in UV-B radiation, the irradiances at the potential sensitive plant surface need to be known. A number of radiative transfer models exist but because of the importance of sky diffuse radiation to the global UV-B irradiance, models designed to estimate photosynthetically active radiation or total solar radiation may not accurately model the UV-B. This paper compares spatially and temporally averaged measurements of the UV-B canopy transmittance of a relatively dense maize canopy (sky view: 0.27°) to the estimations of two one-dimensional models differing mainly in the handling of sky radiance. The model that considered the distribution of sky radiance tended to underestimate the canopy transmittance, the model that assumed an isotropic sky radiance distribution tended to overestimate the canopy transmittance. However, the assumption concerning the sky radiance distribution accounted for only about 0.01 of the model error. Consequently, the sky radiance distribution is probably not important in modeling such dense crop canopies. The model that overestimated transmittance and had the generally larger errors, a modified Meyers model, used the assumption of uniform leaf angle distribution, whereas in the other model, designated the UVRT model, leaf angle distributions were estimated by sample measurements. Generally this model would be satisfactory in describing the statistically average UV-B irradiance conditions in the canopy. This model may also be applied to other dense plant canopies including forests.  相似文献   

13.
Soil or foliar application of nitrogen (N) can increase plant growth and salinity tolerance in cotton, but a combination of both methods is seldom studied under salinity stress. A pot experiment was conducted to study the effects of soil application (S), foliar application (F), and a combination of both (S+F) with labeled nitrogen (15N) on cotton growth, N uptake and translocation under salinity stress (ECe = 12.5 dS m?1). Plant biomass, leaf area, leaf chlorophyll (Chl) content, leaf net photosynthetic (Pn) rate, levels of 15N and [Na+] and K+/ Na+ ratio in plant tissues were determined at 3, 7, 14 and 28 days after N application (DAN). Results showed that soil or foliar nitrogen fertilization improved plant biomass, leaf area per plant and leaf photosynthesis, and a combination of soil- plus foliar-applied N was superior to either S or F alone under salinity stress. Although foliar application favored a rapid accumulation of leaf N and soil application a rapid accumulation of root N, S+F enhanced N accumulation in both leaf and root under salinity stress. The combined N application also maintained significantly greater [K+] and K+/Na+ than either soil or foliar application alone. Therefore, the improved plant growth and salinity tolerance under S+F relative to soil or foliar N application alone was attributed to the increased total uptake of N, balanced N concentrations in different tissues through enhanced uptake and accumulation in both leaves and roots, and higher ratio of K+/Na+.  相似文献   

14.
UV-B增加对玉米生长发育和产量的影响   总被引:14,自引:1,他引:14  
在大田栽培和自然光条件下,模拟紫外辐射增加对玉米生长发育、产量和品质的影响。分析结果表明,UV-B增加,导致株高变矮,叶面积降低,绿叶数、叶龄下降,干物重减少,发育期延迟,产量降低,玉米叶片类黄酮含量增加,叶绿素含量降低。这些变化具有随生育期不同而不同的特点。  相似文献   

15.
UV-B (280–320 nm) and visible (400–760 nm) spectral reflectance, transmittance, and absorptance; chlorophyll content; UV-B absorbing compound concentration; and leaf thickness were measured for pecan (Carya illinoensis) leaves over a growing season (April–October). Leaf samples were collected monthly from a pecan plantation located on the Southern University Horticultural Farm, Baton Rouge, Louisiana. The leaf spectral reflectance and transmittance were measured from 280 to 760 nm using a high-accuracy UV-Vis spectroradiometer with an integrating sphere. The spectral absorptance was calculated based on the reflectance and transmittance percentages. Total UV-B absorbing compounds concentration (A280–320 nm (cm−2)), chlorophyll content, and leaf thickness were related to the leaf optical properties. The patterns of the spectral distributions of optical properties over the growing season, effects of leaf age on the measured parameters, and their relationships were determined. Leaf optical properties were significantly affected by leaf age and the effects were more dramatic in the visible spectral region than in the UV-B region. Within the UV-B spectral region, leaf reflectance ranged between 4.27% (April) and 8.29% (July), transmittance between 0.01% (June) and 0.05% (April), and absorptance between 91.70% (July) and 95.68% (April). Within the visible spectral region, leaf optical properties changed significantly with the wavelength and leaf development. The visible spectral reflectance and transmittance had maxima at 555 nm and minima at 680 nm, and increased sharply afterwards. The highest visible spectral reflectance and transmittance occurred in the newly developed leaves, whereas the visible spectral absorptance increased with leaf maturation. Leaf chlorophyll content, thickness, and UV-B absorbing compound concentration significantly increased during leaf development (April–July). Correlation and regression analyses indicated that leaf chlorophyll content was a strong predictor of the green light reflectance, transmittance, and absorptance. The strongest predictors of UV-B reflectance were leaf thickness and leaf UV-B absorbing compound concentrations.  相似文献   

16.
Transpiration rates from poplar (Beaupré, Populus trichocarpa×deltoides) and willow (Germany, Salix burjatica) clones, grown as short-rotation coppice (three-year-old stems on four-year-old stools) at a site in south-west England, were measured through the summer of 1995. Area-averaged transpiration was estimated by scaling sap-flow rates measured in individual stems to a stand area basis using measurements of leaf area and stem diameter distribution. Sap flow in poplar was measured using the stem heat balance, heat pulse velocity and deuterium tracing techniques; in willow only the stem heat balance method was used. In June and early July the mean daily transpiration from the poplar was 6±0.5 mm day−1, stomatal conductances averaged 0.33 mol m−2 s−1 for leaves in the upper layer of the canopy and daily latent heat flux often exceeded the daily net radiation flux. Similarly high transpiration was estimated for the willow. The transpiration rates were higher than any reported rates from agricultural or tree crops grown in the UK and arose because of high aerodynamic and stomatal conductances. The high stomatal conductances were maintained even when atmospheric humidity deficits and soil water deficits were large. Much lower rates (1±1 mm day−1) from both clones were recorded in August at the end of a drought period.These results suggest that extensive plantation of poplar or willow short-rotation coppice will result in reduced drainage to stream flow and aquifer recharge.  相似文献   

17.
UV-B辐射对植物的形态建成有着重要的作用,并且随着地表UV-B辐射的加剧也必将对作物产生影响。本研究通过测定株高、节距、叶面积和根冠比等几个重要的形态指标,分析在增强UV-B辐射条件下马铃薯不同品种的形态响应差异,为综合评价UV-B辐射对马铃薯的影响和耐受性品种选育奠定基础。试验以4个普通和3个彩色马铃薯品种(系)为材料,采用自然光照(CK)和2个增强的UV-B辐射[2.5 k J?m-2?d-1(T1)、5.0 k J?m-2?d-1(T2)]进行处理,分别于处理15 d、30 d和45 d时测定株高、节距、叶面积和比叶重,收获时测定根冠比。最后得出几个形态指标的响应指数(RI),并以累积胁迫响应指数(CSRI)对试验品种的耐受性做出评价。结果显示:在增强UV-B辐射处理后,多数品种呈现株高降低、节距缩短、叶面积减小、比叶重增加的一致性变化趋势,且随着处理强度的增加和时间延长,处理与对照间的差异愈加显著。各品种对UV-B辐射的形态响应存在显著差异,普通品种的株高、节距、叶面积受UV-B辐射抑制较为明显,地上部分的生物量减幅较大,如‘合作88’地上部分(鲜重)RI值在T1、T2处理下分别为-60.28、-70.44,‘丽薯6号’则为-58.61、-66.44;彩色品种受到的影响较小,‘转心乌’地上部分RI值分别为107.75、21.4,‘21-1’为41.49、-45.72。随着地上生物量增长受到显著抑制,地下部分特别是根系也受到明显的影响,普通与彩色品种间根系RI值的变化规律与地上部分一致。由于地上部分生物量的减幅更显著,各品种(系)的根冠比均比对照增大(T2)。T1、T2处理下5个品种的CSRI值显示‘合作88’(-133.35、-240.85)与‘丽薯6号’(-104.09、-160.2)在增强的UV-B辐射处理下形态特征受到了显著的抑制;彩色品种(系)‘转心乌’(275.97、51.26)、‘21-1’(96.8、-142.17)比普通品种‘合作88’、‘丽薯6号’受到的影响相对较小,显示具有一定的UV-B辐射耐受性。  相似文献   

18.
Soybean [Glycine max (L.) Merr. cv Essex] was grown in sand in a greenhouse under 2 levels of biologically effective ultraviolet‐B radiation (effective daily dose: 0 and 11.5 kJ/m2 UV‐BBE and 2 levels of P (6.5 and 52 μM). Plants were grown in each treatment combination up to the fifth trifoliolate stage. UV‐B radiation had no affect on plant growth and net photosynthesis at 6.5 μM P supply but decreased both these parameters when grown in the higher P concentration. Reductions in net photosynthesis were apparently due to direct effects on the photosynthetic machinery, since chlorophyll concentration and stanatal conductance were unaffected by UV‐B radiation. Both UV‐B radiation and reduced P supply increased the level of UV‐B absorbing compounds in leaf tissues and their effects were additive. The reduced sensitivity of P deficient plants to UV‐B radiation may be the result of this increase in UV absorbing compounds and possibly uv protective mechanisms associated with growth inhibition.  相似文献   

19.
20.
Effectiveness of surface-applied unincorporated broiler litter as a fertilizer relative to conventional inorganic fertilizers under no-till or conventional-till cotton (Gossypium hirsutum L.) production systems in the upland soils of the southern and southeastern USA is not well documented. The objectives of this research were to (1) test if broiler litter improves plant macronutrient (N, P, K, and Mg) nutrition of cotton above that of cotton fertilized with conventional inorganic fertilizers and (2) determine if lack of incorporating litter into the soil reduces macronutrient concentration in cotton plant parts in an upland soil considered marginal for cotton. Six treatments consisting of an unfertilized control, a fertilized standard (STD), two litter-only, and two litter plus inorganic N as urea–ammonium nitrate solution (UAN) were tested in two adjacent fields, one under no-till (NT) and the other under conventional-till (CT) systems. Litter alone, UAN, or a combination of litter plus UAN were applied to supply 101 kg ha−1 plant available N assuming nearly all of the UAN-N and 50% of the total litter N becomes plant available during the cotton growing season. Concentration of N, P, K, and Mg were measured in leaves, stems, and reproductive parts on three or four dates between early flowering and maturity. Cotton fertilized with the litter-only treatments always had less N concentration but greater P and K concentration in leaves, stems, and reproductive parts than cotton that received the STD treatment. Leaf and stem Mg concentration seems to depend on the N concentration in these plant parts. Lack of incorporating litter into the soil reduced N concentration in nearly all plant parts at all growth stages, suggesting some amount of the litter-derived N is lost due to lack of incorporation. Lack of incorporation also reduced leaf and stem Mg concentration, which seemed to be due to its reducing effect on N concentration. Unlike N and Mg, lack of incorporation did not consistently affect concentrations of P and K in all plant parts. Regardless of the incorporation treatment, fertilization with the litter-only treatments increased tissue P and K concentration and supported lint yield exceeding that of the STD without increasing tissue N concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号