首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
基于RS与GIS的内蒙古武川县退耕还林生态成效监测   总被引:2,自引:1,他引:2  
为监测半干旱地区退耕还林工程实施的效果,基于MODIS NDVI时间序列数据及土地利用数据,该文对内蒙古武川县的土地利用变化及植被覆盖变化进行了研究。结果表明:1)2000-2013年,武川县植被覆盖呈增加趋势发展的面积占33.55%,呈减少趋势发展的面积占30.15%,无显著变化的占36.30%,植被覆盖变化的空间差异明显,植被退化的区域重点集中于武川县的西北部。2)1999-2010年间,研究区耕地面积净减少18 809.29 hm2,耕地转为草地13 873.48hm2,转为林地5 429.81 hm2,草地转为林地13 554.25 hm2;结合地形特征,退耕地重点分布于2°~15°坡度与1 500~2 000 m海拔范围,并随着坡度与海拔的增加,退耕的幅度越来越大。3)退耕区中,植被覆盖下降的面积占20.98%,植被覆盖增加的面积占43.89%;在非退耕区,植被覆盖下降的区域面积占29.40%,植被覆盖增加的占34.14%。整体来看,退耕区植被的改善程度要高于非退耕区。4)进一步分析发现,退耕区中,耕地-草地的植被呈退化趋势发展,退化区域集中于2°~15°坡度与1 500~2 000 m海拔范围;在耕地-林地与草地-林地区域,其整体植被覆盖均显著提高,其中,耕地-林地的植被改善区域集中于2°~6°坡度与1 500~1 750 m海拔范围,草地-林地的植被改善区域重点分布于6°~15°、2°~6°及15°~25°坡度范围与1 500~2 000 m海拔范围。在非退耕区,耕地保持区、林地保持区与林地-草地区域的植被覆盖整体增加,而草地保持区、草地-耕地与草地-沙地区域的植被覆盖整体下降。  相似文献   

2.
为了研究白于山区土壤侵蚀特征,基于MODIS-NDVI和Landsat影像、DEM和土地利用数据,分析了白于山区2000—2018年植被盖度时空变化规律,并结合坡度和土地利用资料评估了退耕还林(草)工程以来的土壤侵蚀强度变化状况。结果表明:(1)白于山区植被覆盖呈显著增加趋势,年均NDVI增幅为0.065/10 a(p0.01);(2)白于山区NDVI具有明显的空间分异性,高植被覆盖区主要集中在吴起县,低植被覆盖区主要集中在定边县西部和靖边县中部;受到地形因子的影响,NDVI分别在海拔1 250~1 400 m,坡度50°~56°范围内达到最大值,且阴坡植被覆盖大于阳坡;(3)白于山区植被盖度整体呈显著增加趋势,植被退化面积与恢复面积分别占研究区面积的3.18%,64.20%;(4)白于山区轻度侵蚀和中度侵蚀的面积减少,但强烈侵蚀、极强烈侵蚀和剧烈侵蚀的面积增加;(5)土壤侵蚀强度减弱的面积占总面积的51.30%,主要集中在吴起县,农耕地面积的减少是土壤侵蚀改善的主要原因。  相似文献   

3.
张小勇  卫海燕 《水土保持通报》2013,33(2):218-220,225
延安市1999年被确定为退耕还林示范地区,迄今实施退耕还林工程已10余年,研究和监测退耕前后植被覆盖变化就成为退耕还林工程的重要任务之一.选取了SPOT/VGT NDVI数据,借助Erdas和ArcGIS平台,利用一元趋势线模型和植被覆盖度模型对延安市1998-2008年间植被的动态变化进行了分析.结果表明:(1)延安市10a间大部分地区植被恢复情况良好,植被指数明显改善的地区占总面积的21.27%,中度改善地区占61.46%.(2)延安市植被覆盖率呈现为南高北低,该市平均覆盖度为0.519 8.(3)0°~35°坡度之间明显改善和中度改善的面积比例均超过了各自面积的75%,其中15°~25°坡度明显改善面积比例最高,占总面积的35.8%.  相似文献   

4.
[目的] 系统分析退耕还林以来植被覆盖时空变异特征,评估植被恢复的潜力,为陕西省生态环境建设的可持续发展提供科学的理论依据和实施建议。[方法] 以MODIS NDVI数据为基础,采用Sen+Mann-Kendall模型和Hurst指数探究了2000-2020年陕西省及秦巴山区、关中平原和黄土高原3个亚区植被覆盖度(fractional vegetation cover,FVC)的时空变化特征,并运用相似生境法测算了不同区域的植被恢复潜力。[结果] ①2000-2020年陕西省FVC增长率为0.002 9/a,74.58 %的区域有所改善。其中:黄土高原区FVC改善面积达84.46 %,且以显著改善为主;秦巴山区FVC改善面积为74.40 %,以轻微改善为主;而关中平原区FVC具有退化趋势,退化区域占64.56 %。②全省FVC持续性改善面积占19.80 %,黄土高原区和秦巴山区以持续性改善为主,面积比例分别为27.83 %和13.68 %,而关中平原区以持续性退化为主。③黄土高原区西北部及其与关中平原接壤地带的植被恢复空间较大,而子午岭林区植被恢复空间较小;秦巴山区森林覆盖率较高,几乎没有恢复空间;关中平原受城市化的影响,植被恢复空间小。[结论] 近几十年来,陕西省植被覆盖度显著提高,但受气候、地形、植被类型和人类活动等因素的影响,植被覆盖变化具有明显的空间异质性。陕西省植被恢复的增长速度趋于放缓,持续改善能力已经较低,植被覆盖趋于平稳,但是黄土高原西北部地区及其与关中平原的接壤处植被覆盖恢复潜力仍较大。  相似文献   

5.
2000-2009年青海省植被覆盖时空变化特征   总被引:2,自引:1,他引:1  
基于2000-2009年MODIS-NDVI植被覆盖指数,采用线性趋势分析、标准差等数理分析方法,对青海省"退耕还林还草"实施10 a来植被覆盖时空变化特征进行分析。结果表明:(1) 2000-2009年青海省植被覆盖呈明显增加趋势为0.018/10 a,远快于三北防护林工程区1982-2006年植被覆盖平均增速0.007/10 a; (2) 2000-2009年青海省植被恢复具有阶段性,"退耕还林还草"实施前6 a,植被覆盖呈现快速上升,2005年后呈波动下降趋势; (3)青海省植被恢复以轻微改善为主(32.66%),中度改善次之(13.32%),明显改善区主要分布在柴达木盆地东南边缘、青海湖盆地、茶卡-共和盆地、河湟谷地及黄南低地; (4)青海省植被呈退化趋势区域比重为18.40%,主要分布于青南高原三江源地区和祁连山中东段;(5)青海省2000-2009年植被稳定性存在明显地域差异。空间格局主要表现为"东南波动,西北稳定,高原温带波动,高原寒带、亚寒带稳定"。青海东部中低山地、丘陵、盆地地区变化幅度最为明显。  相似文献   

6.
为探究西南地区生长季植被覆盖时空变化特征以及驱动因子如何定量影响其动态变化,基于MODIS NDVI数据,通过趋势分析、变异系数、相关分析等方法研究了西南地区2000-2016年生长季植被覆盖的时空变化特征,并结合气候因子、DEM数据,分析了植被覆盖对气候与地形因子的影响程度。结果表明:西南地区近17年来生长季NDVI呈增长趋势(0.009/10 a),其中4月份增速最显著(0.029/10 a);呈增加趋势的区域占研究区总面积71.94%,主要分布在东部与东南部区域;植被覆盖变化以较低稳定(31.15%)与中度稳定(25.36%)占主导。研究区NDVI与气温、降水的相关性在空间分布上主要以正相关为主;月尺度NDVI与气候因子的相关性高于年尺度的值;植被覆盖度与月平均气温的相关性高于其与月降水量的相关性,植被生长对降水月变化的响应不明显,对气温的响应无明显滞后效应。研究区平均NDVI在海拔大于4 000 m区域最小(0.30),在坡度0°~5°区域最小(0.37),但是NDVI的显著退化趋势则是以海拔大于4 000 m处最大(14.33%);海拔大于4 000 m区域主要受降水控制,坡度5°~15°区域主要受气温控制;坡向对植被生长变化的影响没有海拔和坡度影响大。  相似文献   

7.
1981—2012年黄土高原植被覆盖度时空变化特征   总被引:3,自引:0,他引:3  
植被覆盖度是反映植被覆盖状况最直接的指标。基于1981—2012年的MODIS影像,采用像元二分模型反演黄土高原植被覆盖度,分析了黄土高原各省区、典型流域及土壤侵蚀类型区生长季(5—10月)的植被覆盖度时空动态变化。结果表明:1981—2012年期间,黄土高原生长季植被覆盖度由31%增加到50%,呈显著上升趋势,但各区域增长幅度不同。2001年之前,黄土高原植被覆盖度平均为36%,年际间以小幅波动为主;之后,该区生长季年平均植被覆盖度为41%,年际间呈显著增加趋势。按省区,河南省植被覆盖度增幅最大,陕西省次之,内蒙古、宁夏增幅不明显且覆盖度在20%左右波动。按典型流域,延河流域增幅最大,窟野河流域增幅最小。按土壤侵蚀类型,水力侵蚀区植被覆盖度增长较快,风力侵蚀区则变化不明显。按植被覆盖度构成,低覆盖度面积比例减少,高覆盖度面积比例增加,其中黄土高原丘陵沟壑区植被覆盖度增加趋势最为明显,植被恢复成效显著。  相似文献   

8.
玛纳斯河流域植被覆盖度随地形因子的变化特征   总被引:1,自引:0,他引:1  
基于2000-2016年MODIS NDVI数据,利用像元二分模型和ArcGIS空间分析功能对玛纳斯河流域植被覆盖度分布格局及动态变化特征进行研究,并分析植被覆盖度变化在高程、坡度和坡向上的空间分布差异。结果表明:(1)玛纳斯河流域以低等级植被覆盖为主,高等级植被覆盖面积显著增加,其它各等级面积波动较小,研究期内植被覆盖改善的面积比例(31.17%)远大于退化的面积比例(16.1%),研究区总体植被覆盖度增加,生态环境有所好转。(2)在海拔<800m,坡度<8°区域内,植被覆盖度明显改善,植被显著退化区主要分布在海拔1300-3400m,坡度>25°区域内,植被覆盖度未发生变化的区域主要集中在海拔>3600m范围内。(3)当海拔>2100m时,植被覆盖度随海拔增加呈现持续减少的趋势,海拔低于2100m的地带,植被覆盖度随海拔增加波动较大。(4)随着坡度的增加,植被覆盖度呈逐渐减小的趋势,全流域0?5°坡度范围内植被覆盖度最大(42.69%)。(5)在各坡向上,植被覆盖度差异不明显。流域内平地上的植被覆盖度最大(44.21%);阴坡的植被覆盖度优于阳坡,植被变化趋势除在平地区域较显著外,其余坡向间差异不大。  相似文献   

9.
2000-2020年黄土高原植被覆盖度时空格局变化分析   总被引:2,自引:0,他引:2  
以2000—2020年MODIS-NDVI植被指数为数据源,反演计算黄土高原植被覆盖度,通过转移矩阵和重心迁移等方法分析黄土高原植被覆盖度时空格局变化及其与降水、气温、坡度和土壤类型等因素的关系。结果表明:(1)2000—2020年黄土高原植被覆盖度由0.39提高到0.61,整体呈上升趋势,2017年后实现快速提升;(2)近20年,黄土高原植被覆盖度显著好转类型与极显著好转类型改善面积比例达到37.93%,2009年前以低覆盖和中低覆盖植被为主,2010年后以中覆盖及更高等级覆盖植被为主,2019年以后中高覆盖植被所占比例最高;(3)从2000年到2020年,黄土高原低覆盖、中低覆盖、中覆盖和中高覆盖植被向更高等级覆盖植被转化比例分别为93.10%,96.57%,82.99%,43.34%,中低覆盖、中覆盖、中高覆盖和高覆盖植被向更低等级覆盖植被转化比例分别为0.30%,2.21%,7.83%,12.47%;(4)近20年黄土高原植被覆盖度变化与气温和降水的变化表现敏感,斜坡地和陡坡地植被覆盖度较高,淋溶土类型下的植被覆盖度较高,国家政策和措施实施等人为因素对植被覆盖度改善发挥重要作用。  相似文献   

10.
分析退耕还林以来黄土高原气候的时间变化特征和空间分布特征,研究黄土高原局域气候变化的时空差异性及其与植被恢复的相关性,旨在探讨区域气候是否会对植被覆盖变化做出响应。使用GIS和统计学方法,基于黄土高原区1981年以来的气象数据和2000—2013年的MODIS/NDVI数据,使用趋势分析和Kriging插值,分析气候要素的时空变化特征,结合线性相关性,分析植被恢复和区域气候变化的关系。研究结果表明:1)近30年来黄土高原的气候变化总体趋势是气温上升,而其他气候要素无显著变化;退耕还林以后表现为降水增加、气温不再升高、风速降低、湿度减小。2)2000年以来,黄土高原最高气温变化率、最小相对湿度变化率空间特征表现为条带状,且与夏季NDVI变化率具有相似的空间分布特征。3)植被NDVI与1—4月份的最低气温正相关性显著,与7月份的最高气温负相关性显著,与5—9月份风速负相关性显著,与5月和7月的相对湿度正相关性显著。4)南温带植被NDVI与年均最大风速的负相关性显著,中温带植被NDVI与年均最小相对湿度的正相关性显著,还与春、秋季平均最小相对湿度的正相关性显著。总之,黄土高原的气候变化受到全球气候变化的影响,但是植被覆盖变化也是局地气候变化的1个因素,在温度、风速和湿度方面表现比较明显。  相似文献   

11.
基于GIS和RUSLE的拉萨河流域土壤侵蚀研究   总被引:5,自引:3,他引:5  
通过识别土壤侵蚀关键区域,为开展拉萨河流域生态治理与水土保持提供依据。研究将修正通用土壤侵蚀方程(RUSLE)与空间信息技术(GIS和RS)相结合,以2010年TM遥感影像为数据源,得到拉萨河流域土地利用图,结合流域数字高程模型、土壤类型分布、归一化植被指数和多年降雨数据,计算得到RUSLE模型中各因子值的空间分布数据,利用地理信息系统软件ArcGIS栅格计算功能得到研究区土壤侵蚀强度空间分布情况。对拉萨河流域土壤侵蚀特征进行分析,结果表明,流域年土壤侵蚀量为10 006.2万t/a,平均土壤侵蚀模数为3 076.6t/(km2·a),中度侵蚀面积比例达59.0%,强烈以上侵蚀面积很小,但侵蚀量占比为14.3%,呈大部分区域中度侵蚀、局部区域强烈和轻度侵蚀的特征,中度以上侵蚀分别有24.2%,20.5%和16.8%分布在墨竹工卡县、林周县和嘉黎县。研究区土壤侵蚀强度与地形、土地利用和植被覆盖表现出很大的相关性,坡度每增加1个等级,土壤侵蚀模数平均增加861.6t/(km2·a),土壤侵蚀面积最大的为坡度15°~25°,其次为25°~35°;裸地、稀疏植被、旱地和草地的土壤侵蚀模数分别为7 949,5 621,2 816,2 505t/(km2·a),中度以上侵蚀面积比例超过50%,其中稀疏植被和裸地均大于70%;植被覆盖度低于10%和10%~30%时,中度以上侵蚀面积比例分别为76.8%和90.5%,植被覆盖度高于60%时,中度以上侵蚀面积比例降低到28.3%。流域水土保持本底较好,但土壤侵蚀现状仍不容忽视,应对15°~25°坡度地区重点防治,同时防范陡坡地发生高强度侵蚀;对土壤侵蚀模数高的用地类型采取封育措施,促进自然修复,坡耕地采取增加地表覆盖、保护性耕作和间作套种等措施以提高水土保持功能;防止植被退化,结合综合运用林草措施和农业耕作措施提高植被覆盖度,达到防治土壤侵蚀目的。  相似文献   

12.
岷江上游流域植被覆盖度及其与地形因子的相关性   总被引:5,自引:3,他引:2  
[目的]研究岷江上游流域植被覆盖度随不同高程带、坡度带、坡向分布变化的特征及相关性,为该地区利用有利地形加强生态环境建设和防治水土流失提供依据。[方法]在GIS和RS技术支持下,利用Landsat-8OLI遥感影像和DEM数据提取植被覆盖度和地形因子进行叠加分析,构建统计样本定量分析植被覆盖度与地形因子间的相关关系。[结果]研究区总体植被覆盖情况良好,中度以上植被覆盖区占研究区面积75.0%,低植被覆盖区仅占15.2%。植被覆盖度随海拔高度和坡度的增加呈先增加后降低的趋势,在海拔2 500~3 000m和坡度25°~45°达到最大值;阳坡的植被覆盖度略大于阴坡。各地形因子对不同植被覆盖度的影响程度不同,低植被覆盖区受坡度影响较显著,极高度植被覆盖区受海拔高度影响较显著,其他植被覆盖区与地形因子的相关性无明显规律。[结论]岷江上游流域植被覆盖度与地形因子关系紧密,地形因子变化对生态环境有重要影响。  相似文献   

13.
基于2001—2014年的MODIS数据和Landsat数据,利用温度植被干旱指数对黄土高原土壤湿度进行了反演,并应用Theil-Sen趋势和Hurst指数,通过分析土壤湿度与植被覆盖的时空变化特征及其相互关系,得到了未来不同土壤湿度情境下植被覆盖的变化特征,经过筛选和分析划分出了黄土高原生态恢复项目适宜性区域。结果表明:(1)黄土高原TVDI的Hurst指数均值为0.49,其中持续性和反持续性面积分别占42.54%,57.46%。根据TVDI未来变化特征来看,未来土壤湿度减小的区域面积占54.08%且遍布整个研究区。(2) NDVI的Hurst均值为0.52,其中持续性面积占55.01%,表明黄土高原植被覆盖持续性强于反持续性。根据NDVI未来变化特征,植被覆盖持续改善面积达46.95%,退化转为改善占6.08%,呈良好趋势。(3)生态恢复项目弱适宜区面积最大,占总面积的59.90%,其次为不适宜区,面积占25.39%;适宜区面积仅占黄土高原的13.41%,较适宜区面积仅为1.30%。(4)未来的植被恢复工程主要针对坡度较大的耕地实施退耕还林,还需要考虑对土壤水分适宜的地区进行了退草还林,而且坡度较小的较适宜区应在粮食安全的基础上进行了退耕还林和退草还林。  相似文献   

14.
黄土高原植被覆盖时空变化及原因   总被引:1,自引:1,他引:0  
张家政  李崇贵  王涛 《水土保持研究》2022,29(1):224-230+241
研究黄土高原地区植被覆盖动态变化及其与人类活动和气象因子的关系对评价区域生态环境质量及生态过程具有重要意义。以黄土高原1982—2018年NDVI(1982—2011年GIMMS NDVI和2000—2018年MODIS NDVI)数据为基础,利用像元二分模型对植被覆盖度进行估算,借助植被绿度、相关分析和多元回归残差法分析了黄土高原植被覆盖度时空变化规律及其对人类活动和气象因子的响应特征。结果表明:(1)过去37年,黄土高原春、夏、秋和生长季植被覆盖度呈现升高趋势,且各季节FVC增加速率逐年升高,尤其以夏季和生长季增加速率的变化最为明显;(2)空间上,春、夏、秋和生长季FVC呈由西北向东南递增的趋势,且大部分地区呈显著上升趋势,植被呈现改善趋势的面积要大于呈现退化趋势的面积;(3)春、夏、秋和生长季人类活动对FVC主要以正面影响为主,且夏季人类活动对于FVC影响更为显著。在气象因素方面,FVC与平均气温在夏季和生长季呈现显著正相关的区域面积占比较大,FVC与总降水量在春季和秋季呈现显著正相关的区域面积占比较大。退耕还林(草)等生态工程的实施,使得黄土高原植被状态得到明显改善,但是城市扩张使得部分地区植被覆盖度呈现退化现象。  相似文献   

15.
探析黄土高原植被覆盖演变及其驱动因素,有助于了解黄土高原生态现状,剖析植被变化和驱动因素,以期为区域生态环境治理和规划提供科学依据。基于黄土高原NDVI、气温、降水数据,采用变化趋势率分析、多元回归残差分析等方法,研究了1981—2016年黄土高原区植被NDVI变化特征及对气候和人类活动的响应。结果表明:(1) 1981—2016年,黄土高原区植被NDVI呈东南高西北低的空间格局,整体上升率高,生态恢复效果显著;在选择的45个地州市中,榆林、铜川、延安和渭南等地植被NDVI增加最快,兰西城市群和内蒙古部分区域植被呈减小趋势。(2)气候变化和人类活动的共同作用是近35年来黄土高原区植被NDVI整体快速增加和巨大空间差异的主要原因。气候变化对黄土高原NDVI变化的影响主要以轻微促进和中度促进为主,而农村人类活动、城市人类活动的影响主要为明显抑制和轻微抑制。(3)气候变化、农村人类活动和城市人类活动对黄土高原区植被NDVI增加的贡献率分别为82.03%,11.68%和6.29%;气候变化贡献率大于60%的区域占黄土高原的76.9%,主要集中在黄土高原的东部和中部,人类活动对NDVI的影响主要...  相似文献   

16.
祁连山国家公园植被覆盖变化地形分异效应   总被引:2,自引:1,他引:1  
[目的] 分析祁连山国家公园不同时间植被覆盖变化情况以及不同高程、坡度、坡向等地形条件下植被覆盖变化的空间分异性,为祁连山生态环境修复和保护提供参考依据和数据支撑。[方法] 利用祁连山2006,2014,2019年3期遥感影像,采用像元二分模型估算植被覆盖度,结合趋势分析法和地形面积修正法,对不同地形条件下植被覆盖空间分异性及变化特征进行分析。[结果] ①祁连山植被覆盖度空间分布格局为西北部低,东南部高,总体以较低植被覆盖度为主。2006—2019年,祁连山植被覆盖度整体呈增加趋势,增加面积约占46.7%,减少面积约占33.3%,植被恢复状况较好,其中,低和较低植被覆盖度面积减小,其他等级植被覆盖度面积均有不同程度的增加。②祁连山植被覆盖变化在不同高程范围内存在明显差异:3 200 m以下中低海拔区域呈增加趋势,2 200 m以下低海拔区域增加特别明显;3 700 m以上中高海拔区域则呈减少趋势,且海拔越高减少趋势越明显。③随着坡度的增加,祁连山植被覆盖变化趋势由增加转为稳定再转为减少。坡度15°以下区域呈增加趋势;坡度25°以上区域呈减少趋势;坡度40°以上区域减少趋势尤其明显;坡度15°~25°范围内分布相对稳定。④从坡向来看,除平地外,祁连山植被覆盖变化类型在其他坡向上的差异较小。[结论] 祁连山植被覆盖变化在高程、坡度等地形条件下差异明显,坡向的地形效应不明显。  相似文献   

17.
太行山区不同坡度NDVI变化趋势差异分析   总被引:5,自引:1,他引:4  
山区坡度对土壤侵蚀和植被生长有重要影响。分析不同坡度NDVI变化趋势的差异有助于理解植被对不同坡度的响应情况,加深对植被变化影响机制的理解。本文基于MODIS数据和DEM数据,以生长季NDVI均值为表征指标,采用基于像元的趋势分析方法以及基于坡度的回归分析法,分析了太行山地区2000—2015年间植被变化情况,并且对植被变化趋势与坡度关系的规律做了系统性分析。同时,本文采用土地利用转移矩阵来分析2000年和2010年两期不同坡度土地类型流转的面积及方向,探讨土地利用变化对不同坡度植被变化的影响状况。结果表明:(1)研究时段内太行山区植被总体上得到改善,植被改善区域占该区总面积的93.5%。(2)NDVI增加趋势在中西部地区(山西省境内)最为明显,东部和南部部分中低海拔区出现减少趋势,主要集中在东部邻接华北平原的低山丘陵区。(3)坡度较大的区域生长季平均NDVI较高。(4)植被变化趋势(y)与坡度(x)之间的关系为非线性关系,可用二次函数来表示,其表达式为:y=?0.311x2+8.098x+28.027。(5)当坡度在7°~15°,植被变好趋势最为明显,其次是坡度为15°~20°,坡度7°~20°NDVI变化趋势均值分别比20°区域和≤7°区域高15.8%和29.8%。(6)2000—2010年在低(0°~7°)、中(7°~20°)和高坡度(20°)区域,耕地、林地、草地总面积均减少,主要流向了建设用地和水域。然而,3个坡度范围NDVI变化趋势均为正,且增加最明显的为中坡度地区,然后依次是高坡度地区和低坡度地区。(7)NDVI变化趋势受到土地利用类型和面积的影响较小,主要受到自身生化条件、自然环境条件和人为扰动(土地利用强度等)的综合作用。基于以上结果,本文对太行山区不同坡度土地资源的合理利用和生态环境保护具有重要意义。  相似文献   

18.
基于遥感和GIS技术,以MODIS NDVI为数据源,应用DEM和土地利用分类图,采用转移矩阵、一元线性回归模型等方法,对石羊河流域2000-2020年植被生态质量指数(Q)的时空变化特征进行研究,并对Q值基于不同海拔高度、坡度、坡向和植被类型的分布特征进行分析。结果表明:(1)2000-2020年石羊河流域的平均Q值为9.8,南北差异较大,Q值与海拔高度和坡度呈正相关;(2)分析Q转移矩阵,流域植被生态质量处于改善之中,2000-2010年植被生态质量改善和退化面积占总面积的比例分别为30.0%和2.2%,2010-2020年分别为13.7%和10.9%;(3)2000年以来流域Q值平均每10a增加1.2,呈增加趋势(Slope>0.0)的区域面积占整个研究区面积的90.3%;(4)Q值呈增加趋势的面积随着海拔高度的增大呈波动变化,随着坡度的增大先增加后减小;(5)森林、草地和灌木丛植被类型Q值呈增加趋势所占比例均在60.0%以上;(6)研究区Q值与气温、降水的相关系数分别为0.352和0.281,气温是植被生长的主要影响因素。  相似文献   

19.
近30 a黄土高原植被覆盖时空演变监测与分析   总被引:14,自引:2,他引:12  
为监测黄土高原植被建设成效,采用GIMMS和SPOT VGT 2种数据集的归一化植被指数作为植被覆盖评价指标,分析了近30 a黄土高原植被覆盖时空演变趋势。结果表明,大规模植被建设开始前,黄土高原植被覆盖以小幅波动为主,个别地区有所好转,但大部分区域无显著变化。1999年以后研究区归一化植被指数年度平均值增加显著,并以夏、秋两季增长贡献最大。植被覆盖在空间上呈现出明显的区域性增加趋势,其中黄土高原丘陵沟壑区增加趋势最为明显,植被恢复成效显著。研究区15°~25°和6°~15°坡地植被覆盖状况得到明显改善,对控制水土流失可产生积极影响。大规模植被建设促进了该区植被恢复,但截止2009年,黄土高原处于较低植被覆盖水平的区域面积依然占较大比重,生态环境建设仍须进一步加强。  相似文献   

20.
以延河流域为研究区,综合运用GIS和RS技术,基于Landsat TM影像,运用改进的像元二分模型估算了延河流域2000年和2010年的植被覆盖度,结合DEM数据提取的高程,坡度、坡向地形数据,分析了植被覆盖度与地形因子的相关性,以期为延河流域植被恢复和生态建设提供依据。结果表明:(1)延河流域植被覆盖度从2000年的29.18%增加到2010年的52.42%,呈上升趋势。(2)2000年植被覆盖度随高程的增加呈减小的趋势,2010年植被覆盖度随高程的增加呈先增加后减少的趋势。2000年和2010年植被覆盖度随坡度的升高,大致呈现先升高后降低的趋势,在30°~35°范围内最高。2000年和2010年植被覆盖度总体表现为阴坡(北、东北)半阳坡(东南、西)=半阴坡(东、西北)阳坡(南、西南)平地,其中阴坡的植被覆盖度最高,平地的植被覆盖度最低。(3)在高程1 000~1 500m,坡度在25°~45°范围内,植被覆盖度增加的值最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号