首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Abstract

The flow of water through plant roots is controlled by two driving forces, the transpiration rate (?P) and osmotic potential difference between the soil solution and inside the root (?π), and the root system hydraulic conductivity [Lroot (L?m‐2)]. Plant water status is affected by the source of nitrogen (N) supplied to the plant. This study was undertaken to isolate the effect of ammonium (NH4)‐N on Lroot from other factors affecting water transport through plants. The effect of NH4‐N on muskmelon (Cucumis melo L.) Lroot was determined by estimating conductance at high water flux rates where osmotic effects are negligible. Ammonium decreased Lroot by about 50%. At a given transpiration rate, the NH4‐N‐induced decrease in Lroot decreased leaf water potential [ψleaf (MPa)] which, in turn, may alter the behavior of the leaves as observed in other studies.  相似文献   

2.
Among the factors which may affect colonization of roots by soil bacteria is that of rhizosphere oxygen partial pressure (pO2). The oxygen concentration in the root zone influences both microbes and roots. Roots exposed to low pO2, as might occur during flooding and waterlogging of the soil, become more leaky and loss of soluble carbon increases. To determine whether periods of low pO2 increased root colonization by a genetically altered pseudomonad we inoculated 3- to 4-week-old maize plants, grown in soil and transferred to a hydroponic system or grown in fritted clay, with Pseudomonas putida PH6(L1019)(lacZY+) following exposure of the roots to air or cylinder N2. Numbers of heterotrophs and the marked pseudomonad were determined by dilution plating. Low pO2 generally increased the numbers of bacteria associated with roots exposed to the treatments in solution or in undisturbed fritted clay rooting medium. Under low pO2 in a hydroponic system, roots of intact maize plants tended also to have higher soluble organic C and hexose (anthrone-detectable sugars) than roots exposed to air. The effect of low pO2 was most pronounced in the fritted clay where low pO2 favored colonization by the marked strain; numbers were 3- to 96-fold greater than those on roots flushed with air but accounted for only 0.06–0.61% of the total population. Roots exposed to low pO2 tended to accumulate more C. Results suggest that in the fritted clay, the pseudomonad was able to exploit the increased C supply and to achieve greater numbers on roots exposed to low pO2, whereas the dilution of carbon released from roots in the hydroponic apparatus did not allow for the same magnitude of increase on roots. Received: 2 December 1996  相似文献   

3.
For a quantitative analysis of SOC dynamics it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. We used the 13C isotope to determine the incorporation of maize residues into the soil organic carbon (SOC), to trace the origin of the dissolved organic carbon (DOC), and to quantify the fraction of the maize C in the soil respiration. The maize‐derived SOC was quantified in soil samples collected to a depth of 65 cm from two plots, one ’︁continuous maize’ and the other ’︁continuous rye’ (reference site) from the long‐term field experiment ’︁Ewiger Roggen’ in Halle. This field trial was established in 1878 and was partly changed to a continuous maize cropping system in 1961. Production rates and δ13C of DOC and CO2 were determined for the Ap horizon in incubation experiments with undisturbed soil columns. After 37 years of continuous maize cropping, 15% of the total SOC in the topsoil originated from maize C. The fraction of the maize‐derived C below the ploughed horizon was only 5 to 3%. The total amount of maize C stored in the profile was 9080 kg ha−1 which was equal to about 31% of the estimated total C input via maize residues (roots and stubble). Total leaching of DOC during the incubation period of 16 weeks was 1.1 g m−2 and one third of the DOC derived from maize C. The specific DOC production rate from the maize‐derived SOC was 2.5 times higher than that from the older humus formed by C3 plants. The total CO2‐C emission for 16 weeks was 18 g m−2. Fifty‐eight percent of the soil respiration originated from maize C. The specific CO2 formation from maize‐derived SOC was 8 times higher than that from the older SOC formed by C3 plants. The ratio of DOC production to CO2‐C production was three times smaller for the young, maize‐derived SOC than for the older humus formed by C3 plants.  相似文献   

4.
四端子电极提高根系生物量电容法估测的有效性   总被引:1,自引:1,他引:0  
二端子结构在测定根系电容时伴生的电极接触效应会影响根系电容的有效测量。分别采用二端子和四端子2种结构在土壤相对含水率为25%~30%、55%~60%和85%~90%下测定玉米根系电容,研究土壤含水率对电极接触效应的影响,并建立不同土壤水分条件和结构下根系电容与根系生物量的关系,探讨四端子结构在电容法估测根系生物量中的有效性。结果表明,二端子结构测定的根系电容较四端子结构小,随着土壤含水率减小,电极接触效应增大,在土壤相对含水率为25%~30%下最为明显。在土壤相对含水率为85%~90%时,2种结构下玉米根系电容表征根系生物量的有效性相近(二端子结构:R~2=0.63,P0.05;四端子结构:R~2=0.66,P0.05),但随土壤含水率减小,与四端子结构相比,二端子结构下玉米根系电容表征根系生物量的有效性急剧下降,在土壤相对含水率为25%~30%时最为明显,二端子结构R~2=0.37(P0.05)而四端子结构R~2=0.59(P0.05)。研究认为,土壤含水率越低,与二端子结构相比,四端子结构下根系电容表征根系生物量的有效性越好。  相似文献   

5.
Plant growth, nutritional status, and proline content were investigated in non-grafted and grafted greenhouse tomato plants onto five rootstocks of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato, exposed to 0, 5, and 10 mM sodium bicarbonate (NaHCO3) to determine whether grafting could improve alkalinity tolerance of tomato. The leaf fresh mass of ungrafted and grafted tomato plants decreased significantly as NaHCO3 levels increased. Despite other rootstocks and ungrafted plants, alkalinity had no significant effect on stem and root fresh mass and shoot phosphorus (P), potassium (K) and magnesium (Mg) concentrations of datura grafted plants. The lowest solution pH and electrical conductivity (EC) values and the highest leaf proline content were observed in the plants grafted onto datura rootstock. Moreover, sodium (Na) concentration in shoots was lower in plants grafted onto datura rootstock than in other plants especially under high NaHCO3 levels. Overall, using datura rootstock improved alkalinity tolerance of tomato plants under NaHCO3 stress.  相似文献   

6.
  • 1 The dependence of the morphology of the maize (Zea mays L.) seminal root system on physical, chemical and biotic parameters was investigated with pot cultures in quartz sand and in a natural loamy sand soil. Low O2-supply to the soil resulted in a substantially smaller root biomass despite a relative increase in total root length. Reduced N-supply also stimulated root length growth, but also enhanced the formation of laterals. The presence of soil microorganisms, in comparison to sterile cultures, resulted in a reduced length of the main roots, and the production of slender laterals with a decreased root hair density. Generally, the structural variability of laterals in response to different growth conditions was much more pronounced than that of the main roots.
  • 2 A major part of the work reported here was dedicated to a detailed study of phosphate (P) acquisition by the maize root system under field conditions. Radioactive labelling of the roots and radioautography of soil cores revealed the in situ distribution pattern of the maize root system. Controlled labelling of the soil with radioactive phosphate allowed the documentation of the development and replenishment of the phosphate depletion zone around roots. Finally, the longevity and phosphate uptake activity of the different parts and tissues of the primary root system of maize was examined by electron microscopy and tracer studies including pulse chase experiments. From these studies the phosphate-acquiring strategy of the maize root system appears as follows: The capability of P uptake decreases in the order: root hairs, 1st order laterals, 2nd order laterals, main root. The life-spans of the components of the maize root system increase by the sequence: root hairs, laterals, main root. Inorganic P uptake, therefore, mainly occurs during the first weeks of root development. Dying back of the root occurs in an ordered manner resulting in a relocation of stored P predominantly into the main root cortex. Furthermore, it could be shown that competition for P between roots of the same or of adjacent maize and/or lupin plants virtually does not occur in situ.
  • 3 The utilization of phytate-P was studied with 14C/32P-labelled Camyo-inositol-hexaphosphate supplied to maize plants grown in sterile quartz sand or in hydroponic cultures. The ratio of P- and C-uptake as well as the incidence of phytate hydrolysis products in the rooting medium indicated the capability of maize roots to acquire P from phytate by enzymatic hydrolysis. This was confirmed by enzyme studies of the root tissues. A specific hydrolyzing enzyme (phytase; molecular weight 51 kD) could be detected in the cell wall of the root, especially in the root tip, which initiates phytate dephosphorylation. Further breakdown is presumably accomplished by monophosphoric phosphohydrolases.
  相似文献   

7.
A natural‐13C‐labeling approach—formerly observed under controlled conditions—was tested in the field to partition total soil CO2 efflux into root respiration, rhizomicrobial respiration, and soil organic matter (SOM) decomposition. Different results were expected in the field due to different climate, site, and microbial properties in contrast to the laboratory. Within this isotopic method, maize was planted on soil with C3‐vegetation history and the total CO2 efflux from soil was subdivided by isotopic mass balance. The C4‐derived C in soil microbial biomass was also determined. Additionally, in a root‐exclusion approach, root‐ and SOM‐derived CO2 were determined by the total CO2 effluxes from maize (Zea mays L.) and bare‐fallow plots. In both approaches, maize‐derived CO2 contributed 22% to 35% to the total CO2 efflux during the growth period, which was comparable to other field studies. In our laboratory study, this CO2 fraction was tripled due to different climate, soil, and sampling conditions. In the natural‐13C‐labeling approach, rhizomicrobial respiration was low compared to other studies, which was related to a low amount of C4‐derived microbial biomass. At the end of the growth period, however, 64% root respiration and 36% rhizomicrobial respiration in relation to total root‐derived CO2 were calculated when considering high isotopic fractionations between SOM, microbial biomass, and CO2. This relationship was closer to the 50% : 50% partitioning described in the literature than without fractionation (23% root respiration, 77% rhizomicrobial respiration). Fractionation processes of 13C must be taken into account when calculating CO2 partitioning in soil. Both methods—natural 13C labeling and root exclusion—showed the same partitioning results when 13C isotopic fractionation during microbial respiration was considered and may therefore be used to separate plant‐ and SOM‐derived CO2 sources.  相似文献   

8.
水分胁迫条件下玉米毛状根再生植株耐旱性研究   总被引:1,自引:2,他引:1  
以玉米毛状根再生植株为材料探讨其抗旱性,通过形态学指标:株高胁迫指数、干物质胁迫指数、根数、根长、根体积、根干质量、根的总吸收面积、根的活跃吸收面积及根冠比在水分胁迫下的变化的分析、灰色系统分析,表明根干质量、干物质胁迫系数、单株叶面积、根冠比、根体积与抗旱指数关系较密切。研究表明,毛状根再生植株由于强大的根系,即使在水分胁迫下仍能保持良好的根源水分信号,具有较强的抗旱能力。  相似文献   

9.
Nitrogenase activity estimated in the rhizospheres of rice, maize and different tropical grasses grown under controlled laboratory conditions was shown to depend upon plant species. High nitrogenase activity (2000–6000 nmoles C2H4 h?1 g?1 dry root) occurred in rice rhizosphere, this activity being only 10 times lower than that of symbiotic systems; in the rhizosphere of many other grasses grown in a similar way nitrogenase activity was as low as 10 nmoles C2H4 h?1 g?1 dry root. The influence of soil type on nitrogenase activity was impressive; but the exact nature of the factors implicated could not be established. A rather weak flush of nitrogenase activity in the rhizosphere occurred in the early stage of the plant growth; it was probably due to the exudation of compounds from the seed and lasted 2 or 4 days according to the size of the seed. When the plant entered into its intense photosynthetic phase, the nitrogenase activity gradually increased. When the shoots were severed, nitrogenase activity in the rhizosphere ceased. Nitrogenase activity in the rhizosphere responded greatly to light intensity. Extrapolation of these laboratory findings to the field is discussed.  相似文献   

10.
The objective of this study was to determine the effect of nitrogen fertilization rate on growth and quality of leafy lettuce grown during the winter season in non-circulating hydroponic system. Plants were subjected to seven nitrogen (N) concentrations, i.e. 0, 30, 60, 90, 120, 150 and 180 mg L?1 N using ammonium nitrate. Nitrogen treatments did not have a significant effect on leaf fresh and dry mass, root fresh and dry mass, number leaves and leaf area. Leaf ascorbic acid and total phenolic content, and antioxidant capacity peaked at 100 and 120 mg L?1 N, whereas leaf chlorophyll concentration linearly increased with increasing N application. The results indicate that a solution N concentration of 100 and 120 mg L?1 may be sufficient to improve growth, yield and quality parameters of leafy lettuce grown in non-circulating hydroponic system.  相似文献   

11.
Summary The pectic nature of root mucilages suggests a hypothetical action of these substances on heavy metal flux into the root. In this study the existence of relations between heavy metals and root mucilages were verified and quantified. In order to obtain substantial amounts of pure root mucilages, two methods of collection were developed, using: (1) maize plants grown in the field and (2) hydroponic axenic cultures. The study of mucilage-metal binding was conducted using the dialysis method, which was developed in a previous work. Results show that root mucilages are able to bind metals. The importance of the binding depends on the nature of the cation, following the order Pb > Cu > Cd. These reactions could be due to exchange processes involving mucilage cations (Ca2+, Mg2+) and heavy metals. The role of mucilages on the retention of heavy metals in the rhizosphere is also discussed.  相似文献   

12.
The aliphatic biopolyesters cutins and suberins have been suggested to significantly contribute to the stable pool of soil organic matter (SOM), and to be tracers for the above- or belowground origin of plant material. Contrary to other plant-derived aliphatic molecules found in the lipid fraction of soils, the stable isotope derived estimates of turnover of cutins and suberins have never been studied in soils. The aim of this study was to analyse the dynamics of shoot- and root-derived biomarkers in soils using a wheat and maize (C3/C4) chronosequence, where changes in the natural 13C abundance can be used to evaluate the incorporation of new carbon into SOM at the molecular level. The relative distribution of aliphatic monomers in wheat and maize roots and shoots suggested that α,ω-alkanedioic acids can be considered as root-specific markers and mid-chain hydroxy acids as shoot-specific markers.The contrasting distribution of the plant-specific monomers in plants and soils might be explained by different chemical mechanisms leading to selective degradation or stabilization of some biomarkers. The changes of the 13C isotopic signatures of these markers with years of maize cropping after wheat evidenced their contrasted behaviour in soil. After 12 years of maize cropping, shoot markers present in soil samples probably originated from old C3 vegetation suggesting that new maize cutin added to soils was mostly degraded within a year. The reasons for long-term stabilization of shoot biomarkers remain unclear. By contrast, maize root markers were highly incorporated into SOM during the first six years of maize crop, which suggested a selective preservation of root biomass when compared to shoots, possibly due to physical protection.  相似文献   

13.
The composition of root‐derived substances is of great importance for the understanding of processes in the rhizosphere. Therefore, methods allowing a comprehensive collection and chemical analysis of the organic root exudates are necessary. In this study, we compare different methods with regard to their suitability to collect and characterize root exudates. Because the percolation or water logging method failed to quantitatively extract root exudates, a dipping method was developed which allowed an almost complete sampling of coldwater‐soluble root exudates. By 14CO2 labeling of the shoots the composition of root exudates was found to be influenced by plant species and growth stage. In comparison to pea plants maize plants had a higher share of carboxylic acids and a lower share of sugars. Younger maize plants exuded considerably higher amounts of 14C labeled organic substances per g root dry matter than older ones. During plant development the relative amount of sugars decreased at the expense of carboxylic acids. The described methods are well suited for the elucidation of the influence of growth factors on root exudation.  相似文献   

14.
The contamination of agriculture soils with heavy metals is increasing due to both natural and anthropogenic activities. This has resulted in lowering the yield and quality of agriculture crops. The aim of the present investigation was to determine the effect of Moringa oleifera (M. oleifera) aqueous leaf extract (MALE) on growth and Hg phytoextraction potential of maize cv. Azam under mercuric chloride (HgCl2)-induced stress. Soil was contaminated with different concentrations of HgCl2 (1 and 0.5?mg/kg). The MALE was applied at 5% and 2.5% as seed soaking prior to sowing of seeds in the pots. The M. oleifera leaf was a good source of macronutrients (Na, K, Ca and Mg) and micronutrients (Fe, Zn, Mn, Co and Ni) as well as natural phenolics. The induced HgCl2 stress significantly reduced seed germination (%), shoot dry weight, root dry weight, chlorophyll content and carotenoids content. The HgCl2-induced stress was associated with accumulation of phenolics and Hg in roots. The accumulation of Hg in roots was significantly correlated with phenolics content (r?=?.8007, p?=?.000). The exogenous application of MALE significantly ameliorated adverse effects of HgCl2 stress on maize plants. The accumulation of Hg in roots was significantly increased by MALE. It is inferred from findings of the present investigation that MALE served as bioregulator and can be applied to reduce adverse effects of HgCl2 on maize. Moreover, MALE can enhance the Hg phytoremediation potential of maize.  相似文献   

15.
Subirrigation systems in which water and nutrients are supplied to the substrate through wick strips for upward nutrient solution (NS) movement can be a feasible alternative to improve lettuce quality with low environmental pollution, enabling production with reduced labor and electricity or in regions with high air temperature. The objective of this study was to compare the performance of two wick irrigation systems using self-compensating troughs filled with either pine bark (WPB) or coconut coir (WCC) with nutrient film technique (NFT) hydroponic system for greenhouse lettuce production. The daily monitoring of electrical conductivity (EC) and pH allowed the experiment management according to the recommended values for optimal lettuce growth. The EC showed variation among troughs and salt accumulation in substrates, with WPB exhibiting two times greater EC than WCC (ranging from 0.95 to 7.57 and from 0.68 to 3.67 dS·m?1, respectively), while the pH values were stable over time. The WCC promoted greater root length and shoot diameter, while WPB produced shorter plants compared to the other two treatments. NFT resulted in an 83% lower leaf area and 44% lower root volume than WPB and WCC. The fresh and dry shoot masses with NFT were 58% and 24% lower than with WPB and WCC, respectively. The fresh root mass was also reduced in NFT plants, which was 67% smaller than WCC and 59% smaller than WPB. Root dry mass of NFT was 35% lower than the average of WPB and WCC. Nitrate (NO3)-nitrogen (N), ammonium (NH4)-N, phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) concentrations in plant shoot and root at the end of the experiment as well as the same nutrients, chloride, sodium, and bicarbonate concentrations in substrate and NS determined weekly differed among the treatments (P < 0.01). The EC and nutrient concentration in the substrates increased over time. The wick irrigation system with both substrates resulted in higher productivity than NFT, with higher yield and plant quality in WCC, indicating its feasibility as an alternative system for lettuce production in greenhouses. However, due to the salinity buildup, water and nutrition management needs to be optimized for self-compensating troughs to avoid an increase in substrate EC over time.  相似文献   

16.
This research was carried out in order to find out the effect of zinc application on the methods which can be used to determine available iron content of paddy soils. For this purpose, an experiment was carried out in greenhouse conditions by growing maize. The effect of increasing rates of zinc application on biological indexes of maize plants was determined. Eight chemical extraction methods for available iron content of soils were used and these methods are: 0.005 M DTPA+0.01 M CaCl2+0.1 M TEA; 0.005 N HCl+0.025 N H2SO4; 1 N NH4Oac; 0.01 N Na2EDTA+1 N NH4Oac; 2 N MgCl2; 0.01 M Na2EDTA +1 M (NH4)2CO3; 0.01 N Na2EDTA and 0.005 M DTPA+NH4HCO3. The relationships between biological indexes and chemical extraction methods were determined at the end of the experiment. The highest correlation coefficient was determined with the method 0.005 M DTPA+0.01 M CaCl2+0.1 M TEA. The iron content of maize plants decreased with zinc application and dry matter content increased with zinc application.  相似文献   

17.
The accumulation of total soluble and cell wall-bound phenolics and total soluble proteins in Zea mays plants exposed to drought stress and foliar spray of salicylic acid (SA) at 10?4?mol/L and 10?5?mol/L was investigated. Drought stress was imposed at the four-leaf stage for 10 days (30–35% field capacity). Dehydration of maize leaves was accompanied by the accumulation of both total soluble and cell wall-bound phenolics, reduction in leaf relative water content (LRWC), and shoot and root growth attributes. Foliar spraying of SA further augmented the content of total soluble and cell wall-bound phenolics and total soluble proteins content under drought stress. SA ameliorated the adverse effects of drought stress on LRWC, shoot fresh weight, shoot dry weight, root fresh weight, root dry weight, root length and root area. The accumulation of both soluble and cell wall-bound phenolics by foliar spray of SA may be a mechanism related to SA-induced drought stress tolerance in maize. It was concluded that foliar spraying of SA at 10?5?mol/L can be highly economical and effective for modifying the effects of drought stress on maize at the four-leaf stage.  相似文献   

18.
Maize (Zea mays L.) plants in the early stage of development were treated with 80 mM sodium chloride (NaCl) with or without supplemental calcium (Ca2+) (8.75 mM) for a seven day period. The effects of salinity on dry matter production and shoot and root concentrations of sodium (Na+), Ca2+, and potassium (K+) were measured for seven Pioneer maize cultivars. Salinity significantly reduced total dry weight, leaf area, and shoot and root dry weight below control levels. For all seven cultivars, Na+concentrations were reduced and leaf area was significantly increased by supplementing salinized nutrient solutions with 8.75 mM calcium chloride (CaCl2). The two cultivars with the lowest shoot and root Na+ concentrations under NaCl‐salinity showed the greatest increases in total, shoot and root dry weights with the addition of supplemental Ca. Shoot fresh weight/dry weight ratios for all cultivars were decreased significantly by both salinity treatments, but supplemental Ca2+ increased the ratio relative to salinity treatments without supplemental Ca. Root fresh weight/dry weight ratios were decreased only by salinity treatments with supplemental Ca. With NaCl‐salinity, cultivars which had lower shoot and root Na+ concentrations were found to be more salt sensitive and had significantly lower amounts of dry matter production than those cultivars which had higher shoot and root Na+ concentrations. It was concluded that Na+ exclusion from the shoot was not correlated with and was an unreliable indicator of salt tolerance for maize.  相似文献   

19.
Aquaponics is the combined culture of fish and plants in recirculating systems. This experiment was conducted to evaluate the production of basil out of the aquaponic system by irrigation of the plants with different ratios of hydroponic and aquaponic solutions. Basil seedlings were irrigated three times day?1 with 200 mL aquaponic-aquaponic-aquaponic (AAA), aquaponic-hydroponic-aquaponic (AHA), hydroponic-aquaponic-hydroponic (HAH), and hydroponic-hydroponic-hydroponic (HHH) solutions, respectively. Fresh and dry mass of shoots and roots of basil decreased at AAA treatment significantly. The plants were slightly less green at AHA treatments, and a visible chlorosis appeared in the leaves of AAA-treated plants. This chlorosis resulted lower net carbon dioxide (CO2) assimilation rate, transpiration rate, and stomatal conductance in AAA treatment. Iron (Fe), manganese (Mn), and potassium (K) concentrations in leaves decreased and zinc (Zn) concentration increased in higher ratios of aquaponic:hydroponic solution. Lower Fe, Mn, and K concentrations in aquaponic solution may be a main part of the reason for growth reduction.  相似文献   

20.
Nutrient source limitation in desert ecosystems enhances competition among plant communities, leading to creation of microhabitats beneath the shrubs that can determine composition and abundance of soil organisms. The aim of the study was to determine the effect of plant ecophysiological adaptation on soil nematode communities in the rhizosphere of tightly interweaving shrubby communities. Soil samples were collected monthly under the canopies of three perennial desert shrubs: Artemesia herba-alba, possessing the allelopathic ability to dominate in relationships with other plants; Reaumuria negevensis, a salt-resistant plant; and Noea mucronata, a typical dry desert shrub. An inter-plant area was used as a control. The results demonstrated that soil water content (SWC) and total organic carbon (Corg) were significantly different under different plants and inter-plant areas, with the highest values found under R. negevensis (SWC) and N. mucronata and R. negevensis (Corg). Plant parasite and omnivore-predator nematodes were more sensitive to the ecophysiological individual features of observed plants versus the total number of nematodes and bacteria- and fungi-feeding nematodes. Generally accepted ecological indices such as Wasilewska (WI), trophic diversity (T), maturity (MI, MMI), basal (BI), enrichment (EI), structure (SI), and channel (CI), pointed to specific ecological conditions under canopies of the observed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号