首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Soil & Tillage Research》2007,92(1-2):75-81
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   

2.
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

3.
Conservation tillage practices are intended to minimize soil erosion. Yet little is known concerning changes in physical properties of subarctic soils subject to tillage practices. This study ascertained whether physical properties of a newly cleared subarctic soil are altered after 7 years of continuous barley (Hordeum vulgare L.) using different tillage and straw management strategies. Tillage and straw treatments were established in 1983 near Delta Junction, Alaska, and consisted of conventional fall and spring disk, fall chisel plow, spring disk, and no-tillage. Tillage plots were split by straw management practices, which included straw and stubble, stubble only, and no straw or stubble. Soil samples were collected from the upper 0.15 m of the profile in the spring of 1990 to assess water content, bulk density, saturated hydraulic conductivity, dry aggregate and mechanical stability, penetration resistance, water retention, and particle size distribution. Percent non-erodible aggregates, mechanical stability, and penetration resistance were greater for no-tillage compared to conventional tillage, chisel plow, and spring disk. No-tillage soils were also typically wetter, denser, and had a greater hydraulic conductivity. The spring disk treatment was least susceptible to erosion and also conserved soil water compared with chisel plow. Straw maintained on the surface conserved water and promoted soil stability.  相似文献   

4.
《Soil & Tillage Research》2007,92(1-2):82-88
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

5.
The objective of this study was to investigate the effect of tillage and cropping system on near-saturated hydraulic conductivity, residue cover and surface roughness to improve soil management for moisture conservation under semiarid Mediterranean conditions. Three tillage systems were compared (subsoil tillage, minimum tillage and no-tillage) under three field situations (continuous crop, fallow and crop after fallow) on two soils (Fluventic Xerochrept and Lithic Xeric Torriorthent). Soil under no-tillage had lower hydraulic conductivity (5.0 cm day−1) than under subsoil tillage (15.5 cm day−1) or minimum tillage (14.3 cm day−1) during 1 of 2 years in continuous crop due to a reduction of soil porosity. Residue cover at sowing was greater under no-tillage (60%) than under subsoil or minimum tillage (<10%) in continuous crop. Under fallow, residue cover was low (10%) at sowing of the following crop for all tillage systems in both soils. Surface roughness increased with tillage, with a high value of 16% and decreasing following rainfall. Under no-tillage, surface roughness was relatively low (3–4%). Greater surface residue cover under no-tillage helped conserve water, despite indications of lower hydraulic conductivity. To overcome the condition of low infiltration and high evaporation when no-till fallow is expected in a cropping sequence, either greater residue production should be planed prior to fallow (e.g. no residue harvest) or surface tillage may be needed during fallow.  相似文献   

6.
Soil water content during tillage can have a large impact on soil properties and tillage outcome. Measurement of soil relief in relation to fixed elevation points provides a non-destructive method of monitoring loosening/compacting processes during the year. The main objective of this study was to determine the effect of soil water content during primary tillage on soil physical properties.

The treatments included mouldboard and chisel ploughing of a clay soil on three occasions in the autumn, with gradually increasing water content (0.76, 0.91 and 1.01 × plastic limit). Soil surface height was measured by laser within a 0.64 m2 area from fixed steel plates after each tillage occasion, and before and after seedbed preparation in the following spring. The measurements of surface height were compared with measurements of other soil physical properties, such as bulk density, saturated hydraulic conductivity and seedbed properties.

Tillage at the lowest water content (0.76 × plastic limit) produced the greatest proportion of small aggregates, and generally the most favourable soil conditions for crop growth. Soil loosening, as measured by increase in soil height during primary tillage, was highest for mouldboard ploughing and for tillage at the lowest water content. Differences between tillage treatments decreased with time, but were still significant after sowing in the spring. Natural consolidation during winter was smaller than the compaction during seedbed preparation in the spring. No significant differences in bulk density were found between treatments, and thus soil surface height was a more sensitive parameter than bulk density determined by core sampling to detect differences between treatments.

Late tillage under wet conditions caused a greater roughness of the soil surface and the seedbed base, which was also found in the traditional seedbed investigation. The effect of tillage time on seedbed properties also resulted in a lower number of emerged plants in later tillage treatments.

The laser measurements were effective for studying changes in soil structure over time. The results emphasize the need to determine changes in soil physical properties for different tillage systems over time in order to model soil processes.  相似文献   


7.
Tillage and residue management practices are sought in the subarctic where small grain production is often curtailed by the lack of soil water. Barley (Hordeum vulgare L.) grain yield and evapotranspiration were compared among four tillage and three residue management practices near Delta Junction, Alaska, USA from 1988 through 1991. Barley was hand-harvested in the fall whereas soil water content was determined biweekly during the growing season by neutron attenuation. Grain yield was similar for spring disk, fall chisel, and conventional (fall and spring disk) tillage across years. No tillage, however, resulted in a 260 kg ha−1 greater yield as compared with fall chisel and conventional tillage in 1990 when evaporative demand exceeded that in other years by nearly 10%. In 1990 and 1991, grain yield from plots devoid of stubble and loose straw was at least 200 kg ha−1 greater than from plots with stubble or stubble and loose straw. Barley consumed at least 15 mm more water to achieve the greater yield on no tillage or no stubble and loose straw plots. Water-use efficiency did not vary among tillage treatments, but was greatest in 1990 for plots devoid of stubble and loose straw. This study suggests that, in dry years with high evaporative demand, no tillage or removal of stubble and loose straw from the soil surface will enhance grain production and water-use efficiency of barley in the subarctic.  相似文献   

8.
Little is known about the long-term effects of tillage and crop residue management on soil quality and organic matter conservation in subarctic regions. Therefore, we quantified wet aggregate stability, bulk density, pH, total organic C and N, inorganic N, microbial biomass C and N, microbial biomass C:N ratio, microbial quotient, and potential C and N mineralization for a tillage/crop residue management study in central Alaska. Soil from no-till (NT), disked once each spring (DO), and disked twice (DT, spring and fall) treatments was sampled to 20 cm depth in spring and fall of the 16th and 17th years of the study. Crop residues were either retained or removed after harvest each year. Reducing tillage intensity had greater impact on most soil properties than removing crop residues with the most notable effects in the top 10 cm. Bulk density was the only indicator that showed significant differences for the 10–20 cm depth, with values of 0.74 Mg m−3 in the surface 10 cm in NT compared to 0.86 in DT and 1.22 Mg m−3 in NT compared to 1.31 in DT for the 10–20 cm depth. Wet aggregate stability ranged from 10% in DT to 20% in NT. Use of NT or DO conserved soil organic matter more than DT. Compared to measurements made in the 3rd and 4th years of the study, the DT treatment lost almost 20% of the soil organic matter. Retaining crop residues on the soil conserved about 650 g m−2 greater C than removing all residues each year. Soil microbial biomass C and mineralizable C were highest in NT, but the microbial C quotient, which averaged only 0.9%, was not affected by tillage or crop residue treatment. Microbial biomass C:N ratio was 11.3 in DT and 14.4 in the NT, indicating an increasing predominance of fungi with decreasing tillage intensity. Barley grain yield, which averaged 1980 kg ha−1 over the entire 17 years of the study, was highest in DO and not significantly different between NT and DT, but weeds were a serious problem in NT. Reduced tillage can improve important soil quality indicators and conserve organic matter, but long-term NT may not be feasible in the subarctic because of weed problems and build up of surface organic matter.  相似文献   

9.
Tillage and crop management effects on soil erosion in central Croatia   总被引:4,自引:0,他引:4  
Soil erosion continues to be a primary cause for soil degradation and the loss of soil quality throughout the world. Our objectives were to quantify soil erosion (referred to as erosional drift) and to assign erosion risk to six tillage and crop management treatments evaluated from 1995 to 1999 for a 5-year maize (Zea mays L.), soybean (Glycine hyspida L.), winter wheat (Triticum aestivum L.), oil-seed rape (Brassica napus var. oleifera L.), and spring barley (Hordeum vulgare L.) plus double-crop soybean rotation on Stagnic Luvisols in central Croatia. Standard black fallow (tilled, unsown, and without any vegetative cover) Universal Soil Loss Equation (USLE) plots were used to establish the erosion potential associated with the rainfall pattern for each year. Soil loss from the check plots was several times greater than the T value, which is estimated to be 10 t ha−1 per year. During the 2 years when spring seeded maize or soybean were grown (1995 and 1996) erosion risk was extremely high, especially for treatments where tillage and planting (row direction) were up and down the slope. When autumn seeded winter wheat or oil-seed rape were grown (1996/1997 or 1997/1998), soil erosion was insignificant. Also, except when plowing and sowing were up and down slope, erosion loss for the spring barley plus double-crop soybean crops in 1999 was insignificant. With no-tillage, soil erosion from the maize and soybean crops was reduced 40 and 65% compared to plowing up and down slope, even though the planting direction was still up and down the slope. With the exception of maize in 1995, erosion losses were moderate to insignificant when plowing and planting were performed across the slope. We conclude that erosion risk can be used as a reliable indicator of sustainable land management and that using no-tillage or plowing and planting perpendicular to the predominant slope are effective soil conservation practices for this region.  相似文献   

10.
土壤风蚀是指松散的土壤物质被风吹起、搬运和堆积的过程以及地表物质受到风吹起的颗粒的磨蚀过程,其实质是在风力的作用下,表层土壤中的细颗粒和营养物质的吹蚀、搬运与沉积的过程。我国受土壤风蚀及土地沙漠化影响的面积占国土总面积的1/2以上,主要分布于北方干旱、半干旱地区。甘肃河西走廊是我国荒漠化最严重的地带之一,该地区春小麦种植长期采用铧式犁翻耕是导致该地区农田土壤风蚀的主要原因。通过室内风洞试验揭示了冬小麦保护性耕作措施条件下风蚀量、起动风速、风速廓线、地表粗糙度的差异及相关关系。结果表明,各个处理风蚀量、起动风速均高于对照处理,风蚀量与风速存在幂函数关系,16 m s-1风速是土壤风蚀程度由轻变重的一个转折点;在距土样表面5~50 mm范围内,随着高度的递增免耕秸秆覆盖(NTS)、免耕不覆盖(NT)处理较秸秆翻压(TIS)、传统耕作(T)处理风速增加缓慢,每个处理高度(H)与风速(V)遵循指数函数。NT、NTS处理与对照(SWT)的粗糙度K的差异在0.01水平上达到了极显著,TIS处理与对照(SWT)在0.05水平上差异显著,而T处理与对照(SWT)差异不显著。风蚀率(Q)与地表粗糙度(K)之间存在显著负相关关系。起动风速与地表粗糙度存在显著负相关关系。  相似文献   

11.
保护性耕作对农田土壤风蚀影响的试验研究   总被引:41,自引:10,他引:41       下载免费PDF全文
在河北省北部的丰宁县坝上地区建立农田土壤风蚀试验区,采用美国BSNE采样器观测不同耕作处理条件下的农田风蚀土壤损失情况。试验结果表明:在风蚀过程中,土壤颗粒主要集中在近地表层运动,悬浮在空气中的土壤颗粒随着高度的增加逐渐减少,且与高度之间符合幂函数关系;风蚀土壤颗粒粒度组成随高度增加,砂粒级颗粒含量减少,而粉砂及粘土含量增加;免耕覆盖(NTC)、免耕覆盖+耙(NTCH)和免耕无覆盖(NTN)三种处理分别比传统翻耕减少风蚀量73.75%、75.31%和14.17%,由秸秆覆盖和少免耕相结合的保护性耕作可明显地减少农田土壤损失;在覆盖和耕作两因素中,覆盖对减小风蚀的作用最大,地表耕作的作用次之;另外,保护性耕作地能够减少农田土壤养分损失。  相似文献   

12.
Conservation management decreases surface runoff and soil erosion   总被引:1,自引:1,他引:0  
Conservation management practices – including agroforestry, cover cropping, no-till, reduced tillage, and residue return – have been applied for decades to control surface runoff and soil erosion, yet results have not been integrated and evaluated across cropping systems. In this study we collected data comparing agricultural production with and without conservation management strategies. We used a bootstrap resampling analysis to explore interactions between practice type, soil texture, surface runoff, and soil erosion. We then used a correlation analysis to relate changes in surface runoff and soil erosion to 13 other soil health and agronomic indicators, including soil organic carbon, soil aggregation, infiltration, porosity, subsurface leaching, and cash crop yield. Across all conservation management practices, surface runoff and erosion had respective mean decreases of 67% and 80% compared with controls. Use of cover cropping provided the largest decreases in erosion and surface runoff, thus emphasizing the importance of maintaining continuous vegetative cover on soils. Coarse- and medium-textured soils had greater decreases in both erosion and runoff than fine-textured soils. Changes in surface runoff and soil erosion under conservation management were highly correlated with soil organic carbon, aggregation, porosity, infiltration, leaching, and yield, showing that conservation practices help drive important interactions between these different facets of soil health. This study offers the first large-scale comparison of how different conservation agriculture practices reduce surface runoff and soil erosion, and at the same time provides new insight into how these interactions influence the improvement or loss of soil health.  相似文献   

13.
沙区旱垄作对油菜生长环境的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
垄作是沙区旱作农田常用的集水防风耕作技术。本文通过野外试验观测和土壤样品分析,对不同结构的垄作与平作下油菜生长环境进行了研究。结果表明,垄作相对于平作增加了生长季内土壤耕作层水分含量,降低了其波动幅度,改变了土壤水分在垂直剖面上的分布,使湿润锋位于耕作层,有利于油菜对土壤水分的吸收,对缓解干旱对作物生长的胁迫有积极作用。垄作下土壤易蚀性颗粒含量降低,地表粗糙度和垂直风速梯度增大,有效降低了土壤可蚀性和近地表风速,对防治土壤风蚀和保护作物幼苗有重要作用。不同结构的垄作比较,垄高15 cm、垄沟比1/12和垄高25 cm、垄沟比1/24的两种垄作在油菜生长季内集水效果较优,而垄高25 cm、垄沟比1/6的垄作在农田休闲期内防治风蚀效果较好。故结构合理的垄作是沙区旱作农田微观土地利用结构调整的有效措施。  相似文献   

14.
Soil erosion contributes to the removal and redistribution of soil organic C from cultivated fields. The soil organic C content of wind erodible and water unstable aggregates is an important factor in determining the amount of carbon loss occurring in erosion processes. The relative distribution of organic carbon among aggregate size fractions may also affect the response of soils to erosion. Soil organic C distribution is dependent on the chosen management system. The effects of no-till, till, and grassland management systems on organic C content of erodible and non-erodible aggregates were examined in six Ustolls and two Usterts of central South Dakota. Organic C contents were related to dry- and wet-sieving to represent the potential influence of wind and water erosion on C loss in the absence of vegetative cover. Loss of aggregate stability in cultivated soils was associated with organic C loss. Most structural characteristics developed under tilled systems persisted after 6–16 years of no-till. Changes in distribution of organic C due to management systems were most evident in Ustolls where cultivation resulted in net soil C losses. Soil organic C was not significantly increased by the no-tillage practices applied in this on-farm study (in Ustolls 49 Mg ha−1 in no-till versus 41 Mg ha−1 in till, for 0–0.20 m depth). Soil properties of Usterts were less affected by land use and management practices due to the high shrink swell action and self-mixing. In both soil orders the greater concentration of organic C in the wind erodible (<1 mm) dry aggregate size fraction implies a high potential for organic C loss by erosion in addition to organic C loss from mineralization after tillage. Grassland when compared to cultivated topsoil showed the largest amounts of organic carbon stored and the minimal potential for erosion loss of soil organic C.  相似文献   

15.
Interrill soil erosion as affected by tillage and residue cover   总被引:3,自引:0,他引:3  
No-till cropping systems are effective in reducing soil erosion. The objective of this study was to determine whether high infiltration rates and low runoff and soil loss under long-term, no-till conditions in loessial regions of the Midwest US result from both the well-structured, porous condition of the soil and the protective cover of crop residue or primarily from residue cover. Soil loss, runoff, and infiltration were measured using a rainfall simulator on interrill erosion plots with and without residue cover on a conventional and two no-till systems in central Illinois. For both conventional till and no-till conditions, removing surface residue significantly decreased infiltration rates and increased soil loss. Tilling the no-till surface while maintaining an equal surface cover as with the no-till system slightly increased interrill erosion. Removing residue on a no-till system, however, increased soil loss significantly. A no-till soil condition without adequate residue cover will seal, crust, and erode with extremely high soil losses following surface drying.  相似文献   

16.
In Scandinavia high losses of soil and particulate-bound phosphorus (PP) have been shown to occur from tine-cultivated and mouldboard-ploughed soils in clay soil areas, especially in relatively warm, wet winters. The omission in the autumn of primary tillage (not ploughing) and the maintenance of a continuous crop cover are generally used to control soil erosion. In Norway, ploughing and shallow cultivation of sloping fields in spring instead of ploughing in autumn have been shown to reduce particle transport by up to 89% on highly erodible soils. Particle erosion from clay soils can be reduced by 79% by direct drilling in spring compared with autumn ploughing. Field experiments in Scandinavia with ploughless tillage of clay loams and clay soils compared to conventional autumn ploughing usually show reductions in total P losses of 10–80% by both surface and subsurface runoff (lateral movements to drains). However, the effects of not ploughing during the autumn on losses of dissolved reactive P (DRP) are frequently negative, since the DRP losses without ploughing compared to conventional ploughing have increased up to fourfold in field experiments. In addition, a comprehensive Norwegian field experiment at a site with high erosion risk has shown that the proportion of DRP compared to total P was twice as high in runoff water after direct drilling compared to ploughing. Therefore, erosion control measures should be further evaluated for fields with an erosion risk since reduction in PP losses may be low and DRP losses still high. Ploughless tillage systems have potential side-effects, including an increased need for pesticides to control weeds [e.g. Elytrigia repens (L.) Desv. ex Nevski] and plant diseases (e.g. Fusarium spp.) harboured by crop residues on the soil surface. Overall, soil tillage systems should be appraised for their positive and negative environmental effects before they are widely used for all types of soil, management practice, climate and landscape.  相似文献   

17.
沙地土壤风蚀动力因子分析   总被引:13,自引:1,他引:12  
地表粗糙度反映地表对风速减弱的作用以及对风沙流的影响 ,其值大小取决于地形、植被覆盖及作物的播种方向 ,粗糙度越大风蚀强度越小。吉林省西部流动沙丘的起沙风速为 1 0 3m/s,风蚀耕地的起沙风速为 6 3~ 7.9m/s。春季侵蚀性风能为 1 72 1 8(v·u)。该区风蚀性气候因子和侵蚀性风能自东向西递增 ,西北部的通榆为最大  相似文献   

18.
In the U.S. Southeastern Coastal Plains conservation tillage (CT) became useful as a management system with the development of in-row subsoiling systems capable of planting into heavy residues. Research priorities associated with the development of CT included: reducing cover crop water loss, improving stand establishment, assessing nutrient and water management requirements, determining optimal subsoiling strategies, understanding long-term conservation tillage effects on soil properties, evaluating the interaction of crop residue removal with tillage systems, and documenting tillage impact on pests and beneficial organisms. Since the late 1970s the Coastal Plains Soil and Water Conservation Research Center in Florence, SC has made a concerted effort to study these interactions and alleviate them as obstructions to the use of CT management. These studies showed that for Coastal Plain soils such as Norfolk sandy loam (fine-loamy, siliceous thermic, Typic Paleudults) winter cover crops such as rye (Secale cereale L.) desiccated the soil profile by evapotranspiration in the spring. This delayed emergence and early season growth of corn (Zea mays L.) but not full-season soybean (Glycine max (L.) Merr.). Conservation tillage helped manage soil strength by gradually increasing soil organic matter content, restricting traffic patterns and maintaining higher soil water contents. Laboratory studies demonstrated a negative correlation (R2=0.85) between proctor soil strength and organic matter content. Conservation tillage affected nematode, Bradyrhizobium japonicum and Heliothis species populations. Alternate cropping systems using rapeseed (Brassica napus L.) as a winter crop or sunflower (Helianthus annuus L.) either before soybean or after corn provided crop cover against potential soil loss from late autumn through early spring, when bare soil is exposed to intense rainfall. Water quality questions associated with CT have been raised but remain unanswered. Although CT can reduce runoff and erosion, the crop residues can support higher insect populations and pathogen inoculum levels, and thus prompt greater pesticide use. Quantifying relationships between soil strength, macropore formation and persistence, and water infiltration with surface and subsurface water quality is the focus of new long-term evaluations. The findings of these studies, published to date, are summarized in this paper.  相似文献   

19.
降雨条件下耕作方式对地表糙度的溅蚀效应   总被引:8,自引:4,他引:4  
地表糙度是影响坡耕地土壤侵蚀的主要因素之一,为了进一步明确耕作方式对地表糙度的侵蚀效应,该文通过室内人工模拟降雨的方法,就单雨强与组合雨强条件下耕作方式对溅蚀的作用以及地表糙度的变化进行了研究。结果表明,从对照坡面,经耙耱地、人工锄耕、人工掏挖到等高耕作方式的坡面,在雨强0.62 mm/min条件下,不同耕作方式坡面向上坡溅蚀量呈先增加再减小的变化,向下坡和总溅蚀量均呈先增加再减小最后增加的变化;除耙耱地外,其他耕作方式坡面的地表糙度呈减小的变化。在雨强1.53 mm/min条件下,不同耕作方式坡面向上坡、向下坡和总溅蚀量均呈先增加再减小最后增加的变化;地表糙度与对照坡面相反,均呈增加的变化。组合雨强条件下,随降雨强度的增加,耙耱地总溅蚀量与地表糙度呈一直增加的变化趋势;其他耕作方式下,随降雨强度的增加,坡面总溅蚀量呈先增加后减小的变化趋势,地表糙度却呈先减小后增大的变化。这为揭示地表糙度的侵蚀特征提供了一定的理论依据,同时也可服务于黄土高原坡耕地的水土流失治理。  相似文献   

20.
Soil movement by tillage redistributes soil within the profile and throughout the landscape, resulting in soil removal from convex slope positions and soil accumulation in concave slope positions. Previous investigations of the spatial variability in surface soil properties and crop yield in a glacial till landscape in west central Minnesota indicated that wheat (Triticum aestivum) yields were decreased in upper hillslope positions affected by high soil erosion loss. In the present study, soil cores were collected and characterized to indicate the effects of long-term intensive tillage on soil properties as a function of depth and tillage erosion. This study provides quantitative measures of the chemical and physical properties of soil profiles in a landscape subject to prolonged tillage erosion, and compares the properties of soil profiles in areas of differing rates of tillage erosion and an uncultivated hillslope. These comparisons emphasize the influence of soil translocation within the landscape by tillage on soil profile characteristics. Soil profiles in areas subject to soil loss by tillage erosion >20 Mg ha−1 year−1 were characterized by truncated profiles, a shallow depth to the C horizon (mean upper boundary 75 cm from the soil surface), a calcic subsoil and a tilled layer containing 19 g kg−1 of inorganic carbon. In contrast, profiles in areas of soil accumulation by tillage >10 Mg ha−1 year−1 exhibited thick sola with low inorganic carbon content (mean 3 g kg−1) and a large depth to the C horizon (usually >1.5 m below the soil surface). When compared to areas of soil accumulation, organic carbon, total nitrogen and Olsen-extractable phosphorus contents measured lower, whereas inorganic carbon content, pH and soil strength measured higher throughout the profile in eroded landscape positions because of the reduced soil organic matter content and the influence of calcic subsoil material. The mean surface soil organic carbon and total nitrogen contents in cultivated areas (regardless of erosion status) were less than half that measured in an uncultivated area, indicating that intensive tillage and cropping has significantly depleted the surface soil organic matter in this landscape. Prolonged intensive tillage and cropping at this site has effectively removed at least 20 cm of soil from the upper hillslope positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号