首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
基于温湿度与遥感植被指数的冬小麦赤霉病估测   总被引:1,自引:1,他引:0  
为明晰江淮区域大田冬小麦赤霉病的发生特征,建立冬小麦赤霉病遥感估测模型,该文分析了冬小麦赤霉病病情指数与气候因素(不同时间尺度日均气温和日均空气相对湿度)、生长参数(生物量、叶面积指数和叶片叶绿素含量)和光谱信息(NDVI、RVI和DVI)之间的互作关系。结果表明:1)不同时间尺度日均气温之间存在较好相关性,5日均气温与冬小麦赤霉病病情指数间的相关系数最大为0.77。与日均气温相类似,不同时间尺度日均空气相对湿度之间也存在不同程度的相关性,5日均空气相对湿度与赤霉病病情指数间的相关性最大,其相关性高于5日均气温。2)冬小麦生物量、叶面积指数和叶片叶绿素含量与赤霉病病情指数之间均呈线性正相关关系,且均达到显著水平,说明冬小麦群体密度大、郁闭程度高以及长势过旺是赤霉病易发的主要农学诱因。3)遥感植被指数NDVI(normalized difference vegetation index)、RVI(ratio vegetation index)和DVI(difference vegetation index)分别与冬小麦叶面积指数、生物量和叶片叶绿素含量之间有较好相关性,可以利用NDVI、RVI和DVI分别替换叶面积指数、生物量和叶片叶绿素含量参与建模。4)综合5日均气温、5日均空气相对湿度、NDVI、RVI和DVI 5个敏感因子,构建基于温湿度与遥感植被指数的冬小麦赤霉病病情指数估测模型,模型的估测值与实测值较为一致,RMSE为5.3%,相对误差为9.54%。说明本研究所建立的估测模型可以实现对冬小麦始花期赤霉病的有效估测,该研究可为江淮区域冬小麦生产中防病减灾的信息获取提供方法参考。  相似文献   

2.
无人机多光谱遥感反演冬小麦SPAD值   总被引:4,自引:4,他引:0  
为研究无人机多光谱遥感5个波段光谱反射率反演冬小麦SPAD(Soil and Plant Analyzer Development)值的可行性,该研究采用六旋翼无人机搭载五波段多光谱相机,采集冬小麦拔节期、孕穗期、抽穗期、开花期的冠层光谱影像并提取反射率特征参数,建立SPAD值的反演模型。结果表明,当波长范围在蓝光、绿光和红光波段,冬小麦拔节期、孕穗期和开花期的无人机多光谱影像反射率参数与SPAD值呈负相关关系,而在抽穗期,二者呈正相关;当波长范围为红边及近红外波段,在整个生长期,二者均呈现正相关关系。该研究构建冬小麦SPAD值反演模型采用了主成分回归、逐步回归和岭回归法,经对比发现基于逐步回归法构建的模型效果最优,该模型的校正决定系数为0.77,主成分回归法次之,岭回归法较差。此外,冬小麦抽穗期多光谱反射率反演SPAD值效果最显著,3种回归模型的校正决定系数分别为0.72、0.74和0.77。该研究可为无人机多光谱遥感监测作物长势、实现精准农业生产管理提供技术依据。  相似文献   

3.
基于综合指标的冬小麦长势无人机遥感监测   总被引:10,自引:7,他引:3  
作物长势监测可以及时获取作物的长势信息,该文尝试建立新型长势指标,监测小麦总体长势情况。将反映小麦长势的叶面积指数(leaf area index,LAI)、叶片叶绿素含量、植株氮含量、植株水分含量和生物量5个指标按照均等权重综合成一个指标,综合长势指标(comprehensive growth index,CGI)。利用450~882 nm范围内单波段和任意两个波段构建归一化光谱指数(normalized difference spectral index,NDSI),比值光谱指数(ratio spectral index,RSI)和简单光谱指数(simple spectral index,SSI),计算CGI与光谱指数的相关性,筛选出相关性好的光谱指数,结合偏最小二乘回归(partial least squares regression,PLSR)建立反演模型。以CGI为指标,运用无人机高光谱影像对2015年小麦多生育期的长势监测。结果表明:1)冬小麦各生育期,总体上CGI与光谱指数的决定系数R~2均好于各项单独指标与相应光谱指数的R~2。仅孕穗期CGI和RSI(754,694)的R~2比叶绿素和RSI(486,518)的R~2低,开花期的CGI和R570的R~2比生物量和R834的R~2低以及灌浆期CGI和SSI(582,498)的R~2比植株含水量和SSI(790,862)的R~2低。2)拔节期,孕穗期,开花期,灌浆期和全生育期PLSR模型的建模R~2分别为0.70,0.72,0.78,0.78和0.61。拔节期,孕穗期和开花期的无人机CGI影像验证模型的均方根误差RMSE(root mean square error)分别为0.050,0.032和0.047。CGI与相应光谱指数的R~2高于单独各项指标与相应光谱指数的R~2,光谱指数能够很好反映CGI包含的信息。无人机高光谱影像反演CGI精度较高,能够判断出小麦总体的长势差异,可为监测小麦长势提供参考。  相似文献   

4.
变量施肥条件下冬小麦长势及品质变异遥感监测   总被引:7,自引:6,他引:1  
卫星遥感数据能够在作物生长期内获取大范围“面状”地物光谱信息,反映作物的长势变异情况,以2005-2006年度国家精准农业研究示范基地冬小麦变量施肥试验为基础,以高空间分辨率卫星遥感影像Quickbird为数据源,结合地面获取的冬小麦品质、产量等数据,研究冬小麦长势及品质的变异情况。研究结果表明,Quickbird光谱参数能够反映冬小麦不同施肥处理小区的长势变异,而冬小麦早期的空间长势变异与其最终产量、品质变异有着密切的关系;冬小麦孕穗后期长势光谱信息与其产量有着很好的正相关关系,而与其品质信息存在着显著的负相关关系,其中OSAVI与产量的相关性达到0.536、GNDVI与冬小麦籽粒蛋白质及湿面筋含量的相关性分别达到了-0.531和-0.535;研究还发现,不同植被指数所反映的作物长势存在一定差异,反映冬小麦群体长势的植被参数和反映冬小麦叶绿素密度的植被指数在指示作物空间长势变异上有所不同。因此,利用遥感影像监测作物长势及其品质空间变异在技术上是可行的。  相似文献   

5.
冬小麦叶面积指数高光谱遥感反演方法对比   总被引:26,自引:13,他引:13  
冬小麦叶面积指数(LAI,leafarea index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

6.
叶面积指数(LAI,leaf area index)和地上部生物量是评价冬小麦长势的重要农学参数,其实时动态监测对冬小麦的长势诊断、产量预测和管理调控等具有重要意义。该研究通过分析叶面积指数、地上部生物量与冬小麦冠层光谱参数的相关性,筛选出冬小麦长势指标敏感波段及最佳带宽范围;基于敏感光谱波段下图像的彩色因子,构建冬小麦叶面积指数和地上部生物量监测模型。结果表明,叶面积指数、地上部生物量长势指标的敏感波段及最佳带宽范围为(560±6)和(810±10)nm。敏感波段560、810 nm波段下获得的图像特征因子中,RGB颜色空间R810、G560、B810对叶面积指数的拟合效果最好,决定系数高达0.989;HSI颜色空间H810、S810、I560对地上部生物量的拟合效果最好,决定系数为0.937。试验数据检验表明,叶面积指数、地上部生物量监测模型的均方根误差RMSE分别为0.4515、3.3556,相对误差分别为15.7%、15.9%,所构建监测模型的精确度较高。因此,基于敏感光谱波段及相应图像特征构建的监测模型可有效对冬小麦叶面积指数、地上部生物量进行实时、快速、准确监测与诊断。  相似文献   

7.
ASTER卫星遥感影像在冬小麦品质监测方面的初步应用   总被引:7,自引:2,他引:7  
该文利用ASTER遥感数据在冬小麦品质监测方面进行了初步的应用。根据2004年搭载ASTER传感器的Terra卫星的过境周期,对北京郊区21个冬小麦试验点进行田间取样试验,通过分析试验点冬小麦叶片生化组分(叶绿素a)与氮素间的关系、冬小麦叶片氮素含量与籽粒品质(蛋白质含量)间的关系、以及冬小麦ASTER影像冠层光谱信息与叶片生化组分和籽粒品质之间的关系,发现:冬小麦灌浆期小麦叶片叶绿素含量与同期ASTER影像的光谱信息-NDVI之间有良好的相关性,而冬小麦籽粒蛋白质含量也与ASTER影像波段2之间有很好的相关性;利用ASTER遥感影像对冬小麦灌浆期叶绿素以及籽粒蛋白质含量进行建模并反演,能够在较大的范围里了解冬小麦的品质信息,并能够在一定程度上对作物的籽粒蛋白质含量等品质进行预测;研究还表明,利用遥感技术来进行小麦籽粒蛋白质等主要品质指标的预测是可行的。研究成果为利用遥感技术监测冬小麦长势和籽粒品质提供了理论依据,开辟了遥感应用的新途径。  相似文献   

8.
基于LISS4数据的小麦氮素营养状况反演研究   总被引:6,自引:3,他引:3  
利用LISS4卫星遥感数据在小麦氮素营养状况监测方面进行了初步研究。根据搭载多光谱传感器LISS4的IRS-P6的过境周期,2006年5月3日在江苏省盐城地区进行同步地面取样测试,通过分析试验点小麦LISS4影像光谱信息与小麦叶面积指数及叶片氮含量的相关关系,发现小麦叶面积指数和叶片氮含量与LISS4影像三个波段反射率及植被指数RVI、NDVI、GNDVI均密切相关,表明利用LISS4遥感影像监测小麦氮素营养状况是可行的。比较不同波段原始反射率和植被指数,在本研究中LISS4影像波段4反射率与小麦氮素营养状况相关最密切。检验结果也表明利用LISS4影像波段4反射率估测小麦氮素营养状况是可行的。研究成果为利用遥感技术大面积监测小麦氮素营养状况和实施精确栽培管理提供了理论依据。  相似文献   

9.
冬小麦叶面积指数(LAI, leaf area index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

10.
基于SPAD-502与GreenSeeker的冬小麦氮营养诊断研究   总被引:12,自引:3,他引:9  
用GreenSeeker和SPAD-502测定了不同氮素处理的冬小麦冠层NDVI与叶片SPAD值, 分析了它们与叶片全氮、叶绿素含量及产量间的关系。结果表明: 冬小麦抽穗期SPAD值和NDVI值均与叶绿素含量呈极显著正相关; 除抽穗期和返青期外, SPAD值与叶氮含量、叶绿素含量的相关系数在其余各生育期均达到显著或极显著水平; NDVI值与叶氮含量、叶绿素含量在拔节期、乳熟期的相关性同SPAD值一致; SPAD值可以进行叶绿素的诊断, NDVI值可以进行氮的诊断。氮营养诊断时期应该选择拔节期。通过回归建立了基于SPAD值、NDVI值的产量估测模型, 可以通过SPAD值、NDVI值对冬小麦产量进行估算。  相似文献   

11.
基于无人机数码影像的冬小麦叶面积指数探测研究   总被引:18,自引:1,他引:17  
叶面积指数(LAI)是评价作物长势的重要农学参数之一,利用遥感技术准确估测作物叶面积指数(LAI)对精准农业意义重大。目前,数码相机与无人机系统组成的高性价比遥感监测系统在农业研究中已取得一些成果,但利用无人机数码影像开展作物LAI估测研究还少有尝试。为论证利用无人机数码影像估测冬小麦LAI的可行性,本文以获取到的3个关键生育期(孕穗期、开花期和灌浆期)冬小麦无人机数码影像为数据源,利用数字图像转换原理构建出10种数字图像特征参数,并系统地分析了3个生育期内两个冬小麦品种在4种氮水平下的LAI与数字图像特征参数之间的关联性。结果表明,在LAI随生育期发生变化的同时,10种数字图像特征参数中R/(R+G+B)和本文提出的基于无人机数码影像红、绿、蓝通道DN值以及可见光大气阻抗植被指数(VARI)计算原理构建的数字图像特征参数UAV-based VARIRGB也有规律性变化,说明冬小麦的施氮差异不仅对LAI有影响,也对某些数字图像特征参数有一定影响;在不同条件(品种、氮营养水平以及生育期)下的数字图像特征参数与LAI的相关性分析中,R/(R+G+B)和UAV-based VARIRGB与LAI显著相关。进而,研究评价了R/(R+G+B)和UAV-based VARIRGB构建的LAI估测模型,最终确定UAV-based VARIRGB为估测冬小麦LAI的最佳参数指标。结果表明UAV-based VARIRGB指数模型估测的LAI与实测LAI拟合性较好(R2=0.71,RMSE=0.8,P0.01)。本研究证明将无人机数码影像应用于冬小麦LAI探测是可行的,这也为高性价比无人机遥感系统的精准农业应用增添了新成果和经验。  相似文献   

12.
基于无人机高光谱遥感的冬小麦叶面积指数反演   总被引:22,自引:12,他引:10  
叶面积指数(leaf area index,LAI)是评价作物长势和预测产量的重要依据。光谱特征信息作为高光谱遥感的突出优势在追踪LAI动态变化方面极其重要;然而,围绕光谱特征信息所开展的无人机高光谱遥感反演作物LAI的相关研究鲜有报道。该文利用ASD Field Spec FR Pro 2500光谱辐射仪(ASD Field Spec FR Pro 2500 spectroradiometer,ASD)和Cubert UHD185 Firefly成像光谱仪(Cuber UHD185 Firefly imaging spectrometer,UHD185)在冬小麦试验田进行空地联合试验,基于获取的孕穗期、开花期以及灌浆期地面数据和无人机高光谱遥感数据,估测冬小麦LAI。该文选择同步获取的冬小麦冠层ASD光谱反射率数据作为评价无人机UHD185高光谱数据质量的标准,依次从光谱曲线变化趋势、光谱相关性以及目标地物光谱差异三方面展开分析,结果表明458~830 nm(第3~96波段)的UHD185光谱数据可靠,可使用其探测冬小麦LAI,这为今后无人机UHD185高光谱数据的使用提供了参考。该文研究对比分析了UHD185数据计算的红边参数和光谱指数与冬小麦LAI的相关性,结果表明:12种参数中比值型光谱指数RSI(494,610)与LAI高度正相关,是估测LAI的最佳参数;基于比值型光谱指数的对数形式lg(RSI)构建的线性模型展现出lg(RSI)与lg(LAI)较优的线性关系(决定系数R2=0.737,参与建模的样本个数n=103),且lg(LAI)预测值和lg(LAI)实测值高度拟合性(R2=0.783,均方根误差RMSE=0.127,n=41,P0.001);该研究为利用无人机高光谱遥感数据开展相关研究积累了经验,也为发展无人机高光谱遥感的精准农业应用提供了参考。  相似文献   

13.
基于GF-1卫星数据的冬小麦叶片氮含量遥感估算   总被引:5,自引:4,他引:1  
以陕西关中地区大田和小区试验下的冬小麦为研究对象,探讨基于国产高分辨率卫星GF-1号多光谱数据的冬小麦叶片氮含量估算方法和空间分布格局。基于GF-1号光谱响应函数对地面实测冬小麦冠层高光谱进行重采样,获取GF-1号卫星可见光-近红外波段的模拟反射率,并构建光谱指数,利用与叶片氮含量在0.01水平下显著相关的8类光谱指数,分别建立叶片氮含量的一元线性、一元二次多项式和指数回归模型。通过光谱指数与叶片氮含量的敏感性分析,以及所建模型的综合对比分析,获取适合冬小麦叶片氮含量估算的最佳模型。结果表明:模拟卫星宽波段光谱反射率和卫星实测光谱反射率间的相关系数高于0.95,具有一致性;改进型的敏感性指数综合考虑了模型的稳定性、敏感性和变量的动态范围,敏感性分析表明比值植被指数对叶片氮含量的变化响应能力最强;综合模拟方程决定系数、模型敏感性分析、精度检验和遥感制图的结果,认为基于比值植被指数建立的叶片氮含量估算模型适用性最强,模拟结果与实际空间分布格局最为接近,为基于GF-1卫星数据的区域性小麦氮素营养监测提供了理论依据和技术支持。  相似文献   

14.
基于无人机图像分割的冬小麦叶绿素与叶面积指数反演   总被引:2,自引:1,他引:1  
叶绿素含量与叶面积指数是反映作物长势的重要理化参数,准确、高效定量估计小麦叶绿素含量与叶面积指数对于产量预测和田间管理决策具有重要意义,无人机(Unmanned Aerial Vehicle,UAV)遥感影像具有高空间分辨率的优势,被广泛应用于作物理化参数反演,但现有叶绿素含量与叶面积指数反演模型受土壤、阴影等背景噪声...  相似文献   

15.
利用无人机多光谱估算小麦叶面积指数和叶绿素含量   总被引:6,自引:4,他引:2  
利用无人机遥感的方式进行农作物长势监测是目前精准农业、智慧农业发展的重要方向,为了探究无人机多光谱反演小麦叶面积指数(Leaf Area Index,LAI)和叶绿素含量的模型估算潜力,该研究在3个飞行高度(30、60、120 m)采集多光谱影像,通过使用全波段差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)、归一化光谱指数(Normalized Spectral Index,NDSI)和经验植被指数与地面实测数据进行相关性分析,获得不同高度下的光谱指数与LAI和叶绿素含量的关系模型及其决定系数,以决定系数为依据分别构建多元逐步回归、偏最小二乘回归和人工神经网络模型,分析不同飞行高度无人机多光谱反演小麦冠层LAI和叶绿素含量SPAD(Soil and Plant Analyzer Development)值的精度。结果表明:1)30 m高度下,绿-红比值光谱指数与小麦LAI的相关性最高,相关系数为0.84;60 m高度下,红-蓝比值光谱指数与小麦叶绿素含量的相关性最高,相关系数为0.68;2)在60 m高度下,经验植被指数与小麦LAI和叶绿素含量的相关性较好,最大相关系数分别为0.77和0.50;3)利用偏最小二乘回归反演小麦LAI的精度最高,决定系数为0.732,均方根误差为0.055;利用人工神经网络模型反演小麦叶绿素含量的精度最高,决定系数为0.804,均方根误差0.135。该研究成果可为基于无人机平台的高通量作物监测提供理论依据,并为筛选无人机多光谱波段实现作物长势参数快速估测提供应用参考。  相似文献   

16.
为了通过数据同化方法提高冬小麦的估产精度,以陕西省关中平原为研究区域,采用标定的CERES-Wheat模型模拟8个典型样点冬小麦整个生育期的叶面积指数(LAI),通过四维变分(4DVAR)和集合卡尔曼滤波(En KF)2种同化算法同化CERES-Wheat模型模拟的LAI和遥感数据反演的LAI,获得单点尺度的LAI同化数据,将单点尺度的LAI同化值扩展到区域尺度,对两种同化方法的单点尺度和区域尺度的同化结果进行对比与分析。结果表明,两种同化方法均能综合遥感反演LAI和模型模拟LAI的优势,使LAI同化值更符合冬小麦LAI的实际变化规律;在单点尺度和区域尺度上,En KF-LAI均更能反映关中平原冬小麦的实际生长状况。采用En KF-LAI构建关中平原冬小麦估产模型估测2008年和2014年的冬小麦单产,通过实测单产对估产模型进行验证,结果表明,2008年样点估测单产与实测单产的相对误差均小于15%,部分县估测单产与实测单产的相对误差均小于10%;与2014年模拟单产与实测单产间的相对误差相比,估测单产与实测单产间的相对误差降低0.57%~9.30%,RMSE降低217 kg/hm2,其中,8个样点的估产精度达到94%以上,表明组合估产模型的估产精度较高。  相似文献   

17.
基于无人机多光谱影像的夏玉米叶片氮含量遥感估测   总被引:6,自引:6,他引:0  
利用无人机平台搭载多光谱相机组成的遥感监测系统在农业上已取得了一些成果,但利用无人机多光谱影像开展作物氮素估测研究少有尝试。基于此,该文利用国家精准农业基地2017年夏玉米3个关键生育期无人机多光谱影像和田间实测叶片氮含量数据,开展夏玉米叶片氮素含量的无人机遥感估测研究。对该研究选用的15个光谱变量,通过相关性分析解析光谱变量与LNC的相关关系,筛选出对玉米叶片氮素含量敏感的光谱变量;应用后向逐步回归方法分析不同变量指数下估测精度变化,最终确定不同生育期夏玉米LNC估测的光谱变量,实现对夏玉米叶片氮含量的较高精度监测。研究发现:1)在3个生育时期,GRE和GNDVI与LNC都有很强的相关性,表明绿波段可以很好地进行夏玉米生物理化参数的反演;2)在喇叭口期和灌浆期,OSAVI、SAVI与LNC具有高度相关性,证明在夏玉米生长前期和后期选择控制土壤因素的光谱变量可以提高对氮素估测的能力。在筛选最优光谱变量建模过程中发现,喇叭口期选取5个光谱变量(GNDVI、GRE、OSAVI、REG、SAVI)建模效果最好,估测模型的R~2、RMSE和nRMSE分别为0.63、27.63%、11.62%;抽雄吐丝期选取6个光谱变量(REG、GRE、GNDVI、MNLI、RED、NDVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.64、20.50%、7.80%;灌浆期选取5个光谱变量(GRE、GNDVI、RED、NDVI、OSAVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.56、31.12%、12.71%;在不同生育期选取最优光谱变量进行夏玉米LNC估测具有很好的效果。应用无人机多光谱遥感影像数据可以很好地监测田块尺度夏玉米LNC的空间分布,可为玉米田间氮素精准管理提供空间决策服务信息支持。  相似文献   

18.
无人机高光谱遥感估算冬小麦叶面积指数   总被引:6,自引:6,他引:0  
为探讨利用低空无人机平台和高光谱影像对冬小麦叶面积指数进行遥感估算,该研究以拔节期冬小麦小区试验为基础,对原始冠层光谱进行一阶导数和连续统去除光谱变换,并在此基础上提取任意两波段组合的差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)和归一化光谱指数(Normalized Spectral Index,NDSI),以最优窄波段光谱指数进行叶面积指数估算模型的构建。结果表明,最优窄波段指数的构成波段主要位于红边区域,最优窄波段指数与叶面积指数均呈现非线性关系;光谱变换显著提升了光谱变量与叶面积指数的相关性,其中连续统去除光谱所获取的NDSI(738,822)光谱指数与叶面积指数的相关性最佳;窄波段光谱指数和随机森林回归算法的叶面积指数估算模型精度最高,其相对预测偏差为2.01,验证集的决定系数和均方根误差分别为0.77和0.27。基于随机森林回归算法的无人机高光谱叶面积指数估算模型能够准确地实现小区域的叶面积指数遥感填图,为后期作物长势、变量施肥等提供理论依据。  相似文献   

19.
基于卫星光谱尺度反射率的冬小麦生物量估算   总被引:1,自引:1,他引:0  
为探索基于光学卫星遥感数据的冬小麦地上生物量估算方法,本研究通过3年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期和灌浆期)和3种施氮水平下的地上生物量以及对应的近地冠层高光谱反射率数据。通过将高光谱数据重采样为具有红边波段的RapidEye、Sentinel-2和WorldView-2卫星波段反射率数据,构建任意两波段归一化植被指数。同时,将卫星波段反射率数据与6种机器学习和深度学习算法相结合,构建冬小麦生物量估算模型。研究结果表明:任意两波段构建的最佳植被指数在冬小麦开花期对生物量的敏感性最强(决定系数R2为0.50~0.56)。在不同施氮水平条件下,高施氮水平增强了植被指数对生物量的敏感性。Sentinel-2波段数据所构建的植被指数优于其他两颗卫星波段数据。对6种机器学习和深度学习算法,总的来说,基于深度神经网络(Deep Neural Networks,DNN)算法所构建的模型要优于其他算法。在单一生育期中,在拔节期(R2为0.69~0.78,归一化均方根误差为26%~31%)和开花期(R2为0.69~0.70,归一化均方根误差为24%~25%)的估算精度最高。Sentinel-2波段数据与DNN算法结合的估算精度最高,在全生育期中预测精度R2为0.70。施氮水平的提高同样增强了DNN模型的估算精度,3颗卫星波段数据在300 kg/hm2施氮条件下的预测精度R2都在0.71以上,均方根误差小于219 g/m2。研究结果揭示了光学卫星遥感数据在不同生育期和施氮条件下估算冬小麦生物量的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号