首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
日光温室墙体蓄放热层温度变化规律研究   总被引:3,自引:3,他引:0  
墙体的蓄热保温性能决定了日光温室在室外环境作用下的温度变化。该文建立了单一材料墙体的温度变化估算模型,对黏土砖墙、砾石墙、加草黏土墙及夯土墙的温度变化进行了预测;采用CFD方法分析了墙体总厚度相同(0.60 m)和总厚度不同(0.60和0.72m)情况下,复合墙体各方案中蓄热材料层的温度变化特点。单一材料墙体温度变化预测结果显示,导温系数较大的砾石墙内部温度变化较其他墙体传播快;温度波动厚度还与墙内表面温度振幅有关,黏土砖墙内表面振幅从5℃增加到15℃,墙体内部振幅达到0.1℃时的波动厚度从0.42 m增加到0.54 m。此外,由预测的墙体温度变化可以确定单一材料墙体蓄放热层厚度。模型估算的夯土墙温度变化及蓄放热层厚度与已有文献测试值比较,吻合较好。复合墙体温度CFD模拟分析表明,墙总厚度0.60 m不变,蓄热材料层越厚内部温度衰减越快;蓄热材料层厚保持0.36 m,墙总厚度从0.60 m增加到0.72 m时,蓄热材料层温度均值最大升高1.7℃。研究还发现,复合墙体较厚的蓄热材料层比同材料单一材料墙体同厚度处温度衰减快,复合墙体蓄放热层厚度的确定取决于隔热层的位置。单一材料墙体及复合墙体蓄热材料层温度模拟模型可以为日光温室墙体的厚度及组成设计提供理论参考。  相似文献   

2.
日光温室墙体传热特性的研究   总被引:39,自引:11,他引:28       下载免费PDF全文
为提高日光温室的节能效果、探索能有效提高温室热环境的墙体材料及组成,对结构相同、墙体材料不同的温室温度环境进行了测试,用频率响应法对不同材料组成的600 mm厚墙体的传热特性分别进行了理论分析。测试结果表明:在同一温室内,复合异质墙体夜间内表面温度比纯砖墙内表面温度平均提高3.7℃;在相同室外温度环境条件下,复合异质墙体温室内夜间空气温度比夯实土墙温室的室内温度平均提高3.0℃。理论分析结果显示:复合异质墙体对室外温度扰量的衰减倍数是聚苯乙烯泡沫塑料板(以下简称聚苯板)墙体的12.3倍、是纯砖墙的9.5倍;单位面积复合异质墙体全天向室外传热量是纯砖墙的1/17。理论分析及试验都证明聚苯板作为墙体的隔热材料、砖作为墙体的蓄热材料是合理的。该文给出了最佳墙体的组成。  相似文献   

3.
墙体材料对日光温室温度环境影响的CFD模拟   总被引:35,自引:21,他引:14       下载免费PDF全文
日光温室墙体材料影响温室的蓄热保温性能。该研究以室外气象因子为模拟输入条件,分别对复合墙、全砖墙及全苯板墙的12 m跨度日光温室的温度环境进行了模拟,复合墙、全砖墙内的温度分布变化与以往的测试结果一致。以2004年2月18日实测的气候条件为输入条件,模拟得到复合墙温室温度超过全砖墙温室温度最大值为0.8℃,复合墙温室夜间室温超过全苯板墙温室温度最大值为1℃。早晨揭帘前,复合墙中隔热层以内的砖墙及部分隔热层成为放热体,砖墙中靠近室内近1/3的墙体温度高于室内空气温度,而全苯板墙只有内表面附近略高于室内空气温度。白天复合墙、全砖墙及全苯板墙温度均低于室内空气温度,均为吸热体。采用日光温室温度环境动态模拟模型,可以预测不同温室墙体可能形成的室内温度状况,并且根据不同墙体内温度分布,可优选温室墙体结构。  相似文献   

4.
温室墙体中覆铝箔封闭空气腔热工性能模拟分析   总被引:3,自引:2,他引:1  
通过建立封闭空气腔二维稳态流动传热模型和温室墙体一维非稳态导热模型,模拟计算封闭腔内空气温度分布,研究了日光温室墙体中覆铝箔封闭空气腔的热工性能。结果表明:壁面覆铝箔可有效减少封闭空气腔的辐射换热量;封闭空气腔的热阻随封闭腔高度的增加而增大,高度达1.5 m后,热阻趋于不变;封闭空气腔的厚度小于0.03 m时,其热阻随厚度增加而增大,厚度超过0.03 m后,热阻逐渐减小;覆铝箔封闭空气腔高度为1.5 m、厚度为0.03 m、内外壁面温差为2~20 K时,热阻为0.70~0.55 K·m~2/W,保温隔热效果相当于0.81~0.64 m厚夯实黏土结构、0.55~0.43 m厚红砖砌体结构墙体或0.20~0.16 m厚煤渣、0.06~0.05 m厚珍珠岩、0.03~0.02 m厚聚苯板隔热材料。3组30 mm厚覆铝箔封闭空气腔加480 mm红砖复合墙体(360 mm红砖墙+3组30 mm封闭空气腔+120 mm红砖墙,240 mm红砖墙+3组30 mm封闭空气腔+240 mm红砖墙),其夜间向室内放热量较单一480 mm红砖墙体提高99.5%~104.2%,与相同结构聚苯板红砖复合墙体无明显差距。  相似文献   

5.
基于CFD的日光温室墙体蓄热层厚度的确定   总被引:5,自引:4,他引:1  
日光温室墙体蓄放热能力的优劣取决于墙体蓄放热特性与蓄热层厚度,确定日光温室蓄热层厚度,对于推进日光温室墙体改进意义重大。该研究以温室内太阳辐射与室外气温作为输入条件,按照试验温室实际尺寸和相关关系进行参数化建模并模拟计算不同月份墙体蓄热层厚度。选择乌鲁木齐地区2018年1月-4月典型晴天进行测试,以温室地面、墙体表面的太阳辐射为输入条件,室外空气温度为边界条件,利用AutodeskCFD软件对晴天9:00至次日9:00的温室砖墙内部温度场进行了模拟,并通过对比墙体内部0、10、20、30、40、50 cm处温度测点的实测值与模拟值验证模拟结果的准确性。结果表明,温室墙体模拟结果与测试结果吻合度较高,1月9日、2月9日、3月6日各层平均误差均在1.5℃以下,4月6日实际值与模拟值误差较大,模拟值较实际值滞后,趋势随着深度与墙体温度的升高而更加明显。在温室墙体材料、结构、室内外的光温环境的共同影响下,温室墙体传热是一个复杂的非稳态过程。砖墙温室与土墙温室类似,墙体可划分为"保温层、稳定层、蓄热层",各层的厚度与墙体蓄热材料、保温材料的热物性有关。对墙体温度场、各层的温度衰减因子以及延迟时间分析可知,墙体厚度在0~30 cm范围内,墙体温度波动较为明显,墙体厚度大于30 cm时,温室墙体一天内温度波动较为平缓,波幅较小。随着气温回升,温室墙体内部温度整体提高,各层温度波动相差不大。在温室结构、保温性能不变的情况下,温室蓄热层厚度及波动情况受外界光温环境的综合影响较小。综上所述,采用CFD模拟温室墙体温度场的变化,并根据温室墙体温度场变化确定温室墙体蓄热层厚度是可行的,可靠性较高。该研究可为其他区域优选温室墙体结构,推进日光温室墙体改进提供依据和参考。  相似文献   

6.
日光温室土质墙体内热流测试与分析   总被引:7,自引:0,他引:7  
对山东省寿光市下沉式日光温室的土质墙体内不同厚度处的温度、室内外气温及墙体表面太阳辐射进行连续观测,以分析土墙内温度和热流的变化,探明日光温室后墙热传导规律。结果表明:日光温室土质后墙内热量传递呈现一定的日变化规律,墙体热流传导主要沿厚度方向,表层蓄、放热过程明显。在试验条件下,晴天时,白天通过墙体累计吸热量为2657kJ·m-2,夜间向温室内累计放热量为1865kJ·m-2;雪天时,通过墙体累计吸热量为18kJ·m-2,累计放热量为859kJ·m-2。在下沉式日光温室土质墙体内存在有效蓄热层和保温层,墙体各层功能不同,因此建议在墙体建造时选用不同功能材料分层处理,以发挥日光温室墙体的最大蓄热保温能力。  相似文献   

7.
秸秆块墙体日光温室在苏北地区应用效果试验   总被引:6,自引:3,他引:3  
为探讨秸秆块构建日光温室墙体的可行性,分析了小麦秸秆块对空气水分吸附解析性能及其导热性能,并在苏北地区建造了一座小麦秸秆块墙体日光温室,以土墙体和砖墙体日光温室为对照,监测了3种温室室内外空气温度、空气湿度、土壤温度、土壤湿度及作物产量。结果显示,小麦秸秆具有相对稳定水吸附与解吸性能,高空气湿度下小麦秸秆吸附空气水分,低空气湿度下小麦秸秆所吸附的水发生解吸作用,秸秆含水率与所处空气湿度呈正相关。与砖墙和土墙相比,秸秆块墙热传导率、体积热容和热扩散系数显著低于前两者,这种热工特性利于隔热保温但不利于蓄积热量。田间监测发现,秸秆块墙体温室内平均气温和土温比土墙体温室分别低2.1和1.1℃、比砖墙体温室分别高1.3和1.2℃,但整个冬季秸秆块墙体温室最低气温为9.6℃,最低土温为12.1℃,可以保障所定植彩椒安全越冬;冬季覆膜条件下,秸秆块墙体温室室内空气湿度最低,砖墙和土墙温室空气湿度比秸秆块墙体温室平均高出10个百分点,秸秆块墙体秸秆含水率在12.5%~23.6%区间波动;土墙体、砖墙体和秸秆块墙体日光温室的彩椒产量分别为6 375,7 130和6 833 kg。秸秆块替代土壤、红砖等常规建材构建日光温室保温墙体具有可行性,有利于节约土地资源和实现秸秆综合利用。  相似文献   

8.
北疆麦壳砂浆砌块填充蓄热材料复合墙体日光温室热性能   总被引:3,自引:2,他引:1  
针对新疆戈壁沙漠区日光温室在冬季严寒条件下,传统墙体在夜间难以满足作物生长对热环境需求的问题,该文研究新型的保温蓄热墙体材料和结构。将墙体主体结构采用麦壳砂浆砌块,砌块中间空格填充蓄热材料,对麦壳砂浆砌块进行配比试验和性能测试,筛选出抗压强度、导热性能较优的砌块建造温室墙体,把麦壳砂浆砌块+红砖复合墙体日光温室和37 cm砖混墙体日光温室进行热性能对比试验,并种植番茄验证。试验结果表明:在相同外界环境下,室外最低温-20.8℃时,麦壳砂浆砌块复合墙体日光温室内温度为7.5℃,而砖混墙体日光温室内温度为3.2℃,砌块复合墙体日光温室内夜间出现最低室温时间较砖混墙体日光温室延迟42 min;相同条件下砌块复合墙体日光温室栽培的番茄收获期早16 d,单棚产量高18.4%,验证了砌块复合墙体日光温室的保温蓄热性能优于砖混墙体日光温室,且满足果蔬生长对热环境需求。该文提出的适应戈壁沙漠区日光温室麦壳砂浆砌块复合墙体及构造条件,为新型复合墙体在日光温室中的应用研究、设计提供理论参考。  相似文献   

9.
下沉式日光温室土质墙体热特性的试验与分析   总被引:9,自引:5,他引:4  
为探明下沉式日光温室土质后墙温度分布及变化规律,进而正确评价其保温性能,2009年12月-2011年6月在河南省荥阳市对下沉式日光温室的土质墙体的热特性进行了2a的连续监测,并对结果进行系统分析。结果表明:墙面温度受室内、外气温和太阳辐射的共同影响,具有与气温相同的日变化和季节变化规律;墙面温度影响墙内各深度层次的温度分布,沿墙的厚度方向由室内表面向室外表面温度递减;墙内存在热稳定层,其位置及厚度随季节而变化,厚度与墙体厚度正相关;1~3月份,热稳定层位于墙体厚度的中心位置,2m厚的墙体处没有热稳定层,3m厚的墙体处热稳定层厚30cm,4m厚的墙体处热稳定层厚70cm;4、5月份,其位置外移至距外表面100cm处,厚度也比1~3月份增加10~20cm;综合温室造价、墙体保温性及土地利用率等各方面因素,建议在河南地区下沉式日光温室土质后墙建造参数为顶宽2.5m,底厚(后墙与室外地面连接处)4.0m,后墙高度(距室外地面)不宜大于2.5m。该研究为该型温室的建造和发展提供一定的参考。  相似文献   

10.
日光温室保温被保温性能影响因素的分析   总被引:6,自引:6,他引:0  
日光温室保温被保温性能受多种因素的影响。该文采用日光温室保温被传热理论模型,针对影响保温被传热系数的主要因素进行了模拟分析。结果显示:保温被的上表面红外辐射特性对其保温性能的影响更加显著;当保温被的厚度为40~50 mm时,普通隔热材料作为保温芯材,均可满足设施园艺覆盖材料保温性能要求;保温芯材在不考虑保温被冷风渗透的情况下,当保温被的传热系数较大,上表面发射率较小时,保温被传热系数随室外风速的增大而增大;当保温被的传热系数较小,保温被上表面发射率较大,保温被的传热系数随室外风速的增大而减小。在此基础上,构建了能反映保温被传热系数与各影响因素间的关系的传热系数经验计算式。该文分析结果及成果为保温被的合理开发及应用提供了参考依据。  相似文献   

11.
日光温室三重结构相变蓄热墙体传热特性分析   总被引:27,自引:21,他引:6  
针对目前国内日光温室墙体在热工性能设计方法方面存在的不足,该文提出了日光温室三重结构相变蓄热墙体构筑方法;结合试验结果,提出了关于该结构墙体传热性能分析方法及其评价指标。分析结果表明:1)三重结构墙体有着较好的蓄放热性能,利用墙体内侧(温室侧)的相变蓄热材料,可以显著提高墙体太阳能利用率,在太阳日累计辐照量为9.32 MJ/m2下,比参照温室北墙体的有效蓄热量提高了26.6%;夜间,相变温室三重结构墙体的累积供热量比参照温室砌块砖墙体的提高了16.2%,并且该墙体相变材料层的单位体积有效蓄热量为80.0 MJ/m3,是三重结构墙体中砌块砖层有效蓄热量的10倍;2)透过前坡屋面照射在温室北墙内表面太阳能影响墙体温度变化的深度有限,约占0.90 m厚三重结构墙体的33.3%,并且在温室墙体内部存在着温度稳定区,其厚度占0.90 m厚三重结构墙体的61.1%。试验结果表明仅通过增加温室墙体厚度以提高墙体的太阳能显热蓄热效率是非常有限的。该研究结果可为日光温室墙体的合理构筑、相变蓄热技术在日光温室的应用以及温室墙体的相变传热问题分析提供参考。  相似文献   

12.
北京市繁殖猪舍高温环境控制状况   总被引:8,自引:3,他引:5  
高温是影响猪繁殖性能的重要环境因素。为了缓解北京市繁殖猪的热应激,于2009年对北京市猪舍的建筑类型、降温方式进行了调查,对常见猪舍外墙类型的隔热指标进行了计算评价,并对繁殖猪舍内温度进行了测试,结果表明:北京市猪舍建筑类型调查样本中,有窗封闭式、半开放式和温室大棚式猪舍的比例分别为74.0%、23.7%和2.3%;繁殖猪舍的降温方式中,通风降温和以水为媒介的降温方式各占50%左右;在现有猪舍外墙构造类型中,外贴聚苯板内砌砖的复合墙体的隔热性能最好。北京市夏季繁殖猪舍内温度与舍外变化趋势基本一致,多数时间内舍内温度高于舍外。最后,提出北京市目前繁殖猪舍的高温环境调控建议。  相似文献   

13.
相变蓄热墙体对日光温室热环境的改善   总被引:21,自引:14,他引:7  
该文以北京市郊区某蔬菜种植基地日光温室为研究对象,将所研制的新型相变蓄热墙体材料应用于日光温室北墙内表面,通过提高温室墙体太阳能集热与蓄热能力,达到提高太阳能热利用效率和改善日光温室热环境的目的。采用40mm厚相变蓄热墙体材料板的试验温室与同尺寸的普通砖墙的对照温室比较,2010年12月21日至2011年1月18日的比较试验结果表明:草帘开启时段(白天),前者后墙表面温度平均提高1~2.7℃,耕作层(0~20cm)土壤平均温度提升0.5℃,室内环境平均温度提升0.2~2.1℃;草帘关闭时段(夜间),试验温室后墙表面温度平均提高2.1~4.3℃,耕作层土壤平均温度提升0.5~1.4℃,室内环境平均温度提升1.6~2.1℃。所研制的相变蓄热墙体材料较好地改善了温室作物生长热环境,提高了日光温室的太阳能热利用率。  相似文献   

14.
北方地区冬季寒冷漫长,为探究北方冬季养猪的采光及保温问题,该文基于Ecotect软件,以吉林省内某大型猪场的典型猪舍为对象,等比例建模仿真,研究猪舍的光热环境及猪场生产区光环境,探究猪舍内不同高度的采光系数及猪场生产区采光情况,分析4种形式不同墙体材料猪舍的保温性能。结果表明,试验猪舍各研究高度采光系数均高于2%,满足绿色建筑标准;猪场生产区采光良好,在大寒日的太阳辐射量可达5.38 MJ/(m2·d),日照充足无遮挡;通过对比4种形式不同墙体材料猪舍的逐月能耗值,计算出4种形式猪舍中黏土多孔砖猪舍、泡沫混凝土猪舍、酚醛夹芯板彩钢猪舍和低密度聚乙烯薄膜温室大棚猪舍的保温性能最好,考虑成本后更推荐炉渣砖砌体猪舍、粉煤灰加气砌块猪舍、聚苯夹芯板彩钢猪舍和低密度聚乙烯薄膜温室大棚猪舍;通过将试验实测值与软件模拟值进行数据对比,计算得出相对误差范围为0.74%~8.62%,验证了模型的可靠性。该文可以为探究北方猪舍的光热环境提供理论依据,为建筑设计师在方案实施前提供更多优化设计方案的思路。  相似文献   

15.
日光温室土墙传热特性及轻简化路径的理论分析   总被引:8,自引:6,他引:2  
为减小日光温室土墙厚度,该研究在分析土墙温度变化的基础上提出了土墙轻简化路径并进行了理论分析。根据测试分析,土墙可划分为用于储蓄热量的蓄热层和防止热量从蓄热层向室外方向流失的保温层。土墙86.9%的部分为保温层。模拟结果表明使用由47 cm厚夯土和7 cm厚聚苯板(热阻等于3.13 m厚夯土保温层)构成的复合墙在夜间的放热量与3.6 m厚土墙相近。使用保温材料替代夯土保温层来减薄土墙在理论上可行。另外,根据模拟,当土壤20 cm深处温度提高至23℃后,土壤供热量可超过测试条件下土壤和土墙放热量总和。为此,土墙在理论上可通过以下2条途径实现轻简化:1)使用保温材料建造墙体保温层;2)使用土壤蓄热替代墙体蓄热。  相似文献   

16.
日光温室土墙体温度变化及蓄热放热特点   总被引:6,自引:5,他引:1  
为研究日光温室土墙体温度变化规律及蓄放热特性,以泰安市下挖式土墙日光温室为研究对象,在温室北墙布置5个测试层,通过各测试层最冷季节(30 d)温室内气温、墙体温度、室外气温及室外太阳辐照度测试数据,分析了土墙日光温室内部温度及墙体内温度的分布规律。结果表明:各测试层墙体表面及0.1~0.6 m处测点的温度均呈现出随温室气温周期性变化的规律,且随着墙体厚度的增加温度的波动幅值逐渐减小,相位明显后移;0.7 m以后测点的温度幅值趋于稳定,处于稳态向室外的导热过程。基于墙体温度分布规律,对墙体白天的蓄热量、夜间的放热量及墙体夜间放热效率进行了计算,得出墙体夜间放热效率为43%,表明土墙白天蓄积热量的43%用于改善夜间温室内热环境。对墙体蓄热和放热量计算,综合评价墙体的平均放热效率,可以为土墙日光温室结构优化及热负荷计算提供指导,为各地土墙温室轻简化技术研究提供理论基础。  相似文献   

17.
为研究日光温室装配式土质夹心墙体的热湿迁移及蓄放热性能,通过可控式墙体热湿耦合试验台控制墙体两侧温度、相对湿度的不同,实测墙内温度、相对湿度的稳态分布及瞬态变化,并对墙体的蓄放热性能进行定量计算与分析。结果表明:该层状异质结构复合墙体,热湿迁移存在耦合但并不明显;墙内填土始终保持高湿状态,有利于墙体蓄放热,是该墙体的主要蓄放热体;外侧墙板保温隔热效能明显,室外环境变化对墙体保温蓄热性能影响较小,且能使墙内热量主要向室内单向释放;墙内热量释放存在滞后效应,最长可持续6 d+6.5 h,但以快速放热期(4 d+8 h内)所释放热量为主,约占总放热量的85.64%~91.21%;所建立的数值分析方法可为不同厚度的同类墙体设计与建造提供参考,具有指导生产意义。该新型墙体设计理念先进,蓄放热性能优越,且能够快速装配、重复利用、就地还田,适于在中国大面积推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号