首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-exchangeable potassium (Knex) contributes to soil K availability and several extractants are used to access its contribution. This study evaluated sodium tetraphenylboron (NaBPh4) as a soil test of K availability in 20 soils from Northern Greece. Winter wheat (Triticum aestivum L. var. ‘Yecora’) was sown in a greenhouse pot experiment and five cropping cycles were carried out until K-depletion. Soils were analyzed with NH4OAc and NaBPh4 (1 and 5 min incubation periods). Critical levels of K ranged between 130–140 and 330–340 mg K kg?1 of soil for NH4OAc and NaBPh4 (1 min incubation period), respectively, and between 32 and 35 g K kg?1 of wheat dry matter. NaBPh4-K (1 min) related better with K concentration and uptake compared to NH4OAc for each cropping cycle (r2 = 0.45–0.83 and 0.44–0.89) and for all soils (r2 = 0.58 and 0.51). Similar results obtained in soils low in exchangeable K (r2 = 0.41 and 0.39). Correlation between NH4Oac- and NaBPh4-extractable K was weaker among soils below the critical level (r = 0.70) compared to those above (r = 0.93). Inclusion of illitic K and cation exchange capacity in a multiple linear regression between NH4OAc- and NaBPh4-extractable K showed that they significantly contributed to NaBPh4-extractable K.  相似文献   

2.
The suitability of seven chemical extractants was evaluated on 24 Indian coastal soils for prediction of plant-available potassium (K) to rice (Oryza sativa L. var. NC 492) grown in modified Neubauer technique. Average amounts of soil K extracted were in descending order: 0.5 M NaHCO3 > neutral 1 N NH4OAc > 0.02 M CaCl2 > Bray and Kurtz No.1 > 1 N HNO3 > 0.1 N HNO3 > distilled water. The highest simple correlation with plant K uptake was obtained with 0.1 N HNO3-K (r = 0.848) and lowest with CaCl2-K (r = 0.805). Predictive models were developed using plant K uptake as the dependent variable and extractable soil K, sand, silt, soil pH, and electrical conductivity as the independent variables. Based on the final R2 and ease of measurement, distilled water, 1 N NH4OAc, and 0.1 N HNO3 models were the best predictors of plant-available K in coastal soils when used along with sand or soil pH.  相似文献   

3.
ABSTRACT

Quantity-Intensity (Q/I) parameters were used for elucidating the role of buffering properties of soils through K depletion. Winter wheat was sown in a greenhouse pot experiment until K-depletion and soils were analyzed with NH4OAc and NaBPh4 (1 min incubation period). Q/I isotherms (partitioned in exchangeable and non-exchangeable form) were constructed for the soils before and at the end of the K-exhaustion experiment. Results showed that NaBPh4-K correlated better than NH4OAc-K with intensity parameter (AReK) or labile K (-ΔΚ0) in K-depleted soils (r = 0.41 and 0.70), indicating the importance of non-exchangeable K in K dynamics. The latter was confirmed from the comparison of buffering characteristics between initial and K-depleted soils which showed that among the soils studied there was a group whose increase in buffering capacity (PBCKt) was due to non-exchangeable K fixation. Furthermore, NaBPh4-K was well predicted by the sum of exchangeable K and the quantity of K that has to be applied to achieve K balance as derived from Q/I isotherms (EK0 + CK0). Finally, relationships were found between Q/I parameters of the initial soils (-ΔΚ0i, ΕΚ0i, ΕΚri, CK0i) and the K-depleted ones (ΕΚrd, ΕΚ0d, CK0d, CKrd) which allowed corresponding prediction of the initial parameters (r2 = 0.78–0.87).  相似文献   

4.
The effectiveness of eight chemical extraction methods was evaluated on 15 Indian soils for the prediction of plant-available potassium (K+) to Sudan grass (Sorghum vulgare var. sudanensis) grown in modified Neubauer technique. Average amounts of soil K+ extracted were in descending order: Morgan’s reagent > 0.5 M sodium bicarbonate (NaHCO3) > neutral 1N ammonium acetate (NH4OAc) > 1N nitric acid (HNO3) > 0.02 M calcium chloride (CaCl2) > 0.1N HNO3 > Bray and Kurtz No.1> distilled water. The highest simple correlation with plant K+ uptake was obtained with NH4OAc-K+ (r = 0.866**) and the lowest with CaCl2-K+ (r = 0.45*). To develop the predictive models using stepwise regression, plant K+ uptake was used as the dependent variable and the extractable soil K+, pH, sand, silt and organic carbon (C) contents as the independent variables. Based on the final R2, the NH4OAc model was found to be the best predictor of plant-available K+ in the soils when used along with sand and organic C.  相似文献   

5.
Abstract

Potassium (K) fixation and release in soil are important issues in long‐term sustainability of a cropping system. Fixation and release behavior of potassium were studied in the surface and subsurface horizons in five benchmark soil series, viz. Dhar, Gurdaspur, Naura, Ladowal, and Nabha, under rice–wheat cropping system in the Indo‐Gangetic plains of India. Potassium fixation was noted by adding six rates of K varying from 0 to 500 mg kg?1 soil in plastic beakers while K release characteristics were studied by repeated extractions with 1 M HNO3 and 1 M NH4OAc extractants. The initial status of K was satisfactory to adequate. Potassium fixation of added K increased with the rate of added K irrespective of soil mineralogy and soil depth. Soils rich in K (Ladowal and Nabha) fixed lower amounts (18–42%) of added K as compared to Gurdaspur, Dhar, and Naura (44.6–86.4%) soils low in K. The unit fertilizer requirement for unit increase in available K was more in low‐K soils. The study highlights the need for more studies on K fixation in relation to the associated minerals in a particular soil. Potassium‐release parameters such as total extractable K, total step K, and CR‐K varied widely in different soil series, indicating wide variation in the K‐supplying capacity of these soils. K released with 1 M NH4OAc extractant was 20–33% of that obtained with 1 M HNO3. Total extractable K using 1 M HNO3 varied from 213 to 528 mg kg?1 and NH4OAc‐extractable K ranged from 71 to 312 mg kg?1 soil in surface and subsurface layers of different soil series. The Ladowal and Nabha series showed higher rates of K release than Gurdaspur, Dhar, and Naura series, indicating their greater K‐supplying capacity.  相似文献   

6.
To evaluate whether the capacity of interlayer sites affects the dynamics of fixed ammonium (NH4+) in a paddy soil, a combination of potassium (K)–saturation treatment and stepwise extraction of nonexchangeable K with 0.01 mol L?1 hydrochloric acid was applied to a soil incubated anaerobically up to 70 days. The capacity of interlayer sites increased with an increase of weakly fixed NH4+ during the initial 28 days (r = 0.78, P < 0.01), and remained stable thereafter. On the other hand, the concentration of exchangeable NH4+ increased curvilinearly during the whole incubation period, which was correlated with an increase of weakly fixed NH4+ (r = 0.85, P < 0.01). These results suggested that the dynamics of weakly fixed NH4+ in a paddy soil is regulated not only by the chemical equilibrium between exchangeable and weakly fixed NH4+ but also by the capacity of interlayer sites within a few weeks after flooding.  相似文献   

7.
Determining potassium (K) fertilizer requirement using sorption isotherms is considered more accurate than conventional soil K tests. A total of 59 surface soil samples were used to establish K exchange isotherm. To evaluate K requirement sorption test, a glasshouse experiment using perennial ryegrass (Lolium perenne, cv. Roper) was carried out on 10 soil samples. The experiment was laid out as a completely randomized design with four replications and four K levels (K0, K20, K40, K80). Concentrations of K in solution established by adding K in the pots estimated from the sorption curve ranged from 20 to 80 mg K l?1 including check treatment (no K). Dry matter yield of ryegrass in most soils approached maximum as adjusted K levels were increased to 20 mg K l?1. The amounts of K required to bring the soils to 20 mg l?1 in soil solution varied among soils and ranged from 99 to 399 mg kg?1, on average 205 mg kg?1 soil. It was found that a useful regression model for the prediction of standard K requirement (K20) included the combination of plant available K extracted by NH4OAc (Av-K) and clay content: K20 = ?41 ? 0.63 Av-K + 9.0 Clay (R2 = 0.61, p < 0.001, n = 59).  相似文献   

8.
Data from 147 field trials were collected to study the influence of straw incorporation on soil potassium (K) under an intensive rice–oilseed rape rotation system, while pot experiments were conducted to evaluate the effects of rice straw incorporation on soil K availability. A significant correlation was observed between the soil available K and the relative yield (RRY) and the relative K uptake (RKU) of oilseed rape, with R2 values ranging from 0.07 to 0.08 and from 0.10 to 0.11, respectively, when data were fitted to a logarithmic equation model. In approximately 30% of trials, RRY reached 90%, while soil test available K values were below the critical limit, indicating that soil K values at the time of sampling (within 1 week of rice harvest) underestimated the actual soil K supply capacity. The pot experiment results showed that soil available K was affected by straw incorporation and soil type in the fallow period. The NH4OAc‐K and NaBPh4‐K concentrations of soils increased at first, and then, plateaued after 28 days. Straw incorporation significantly influenced the critical soil K concentration, which is important for making accurate K fertilizer recommendation. These results suggested that straw K should be seriously considered in making K fertilizer recommendations. Extending the sampling time from 1 to 3 weeks after the harvesting of rice to stabilize the effects of straw incorporation may help achieve a more accurate evaluation of soil available K.  相似文献   

9.
Berpura alluvial soil series of the Indo‐Gangetic Plains is situated in the Ambala District of the Haryana State of India. Soils of this series had medium concentrations of both potassium (K) and phosphorus (P) and large concentrations of sulfur (S) before 1970. To study different fractions of K, Olsen P, and 0.15% calcium chloride (CaCl2)–extractable (available) S of soils of the Berpura series and to create nutrient indexing of rice crops growing on this series, surface soil samples were collected from 100 farmers' fields after the harvest of the wheat crop in 2005. During kharif season of same year, samples of upper two leaves at anthesis growth stage of rice crop were also collected from the same 100 farmers' fields that had earlier been sampled for soil analysis. Analysis of soil samples showed more K depletion in soils of this series, of which 86% of farmers' fields were deficient in ammonium acetate (NH4OAc) K (available K). Thirty and 62% of leaf samples of the rice crop growing on the 100 fields of this series were extremely and moderately deficient in K, respectively. The mean values of water‐soluble, exchangeable, nonexchangeable, lattice, and total K were 10.6, 30.3, 390.0, 8204, and 8635 mg kg?1, respectively. In soils of this series, 0.123, 0.351, 4.517, and 95.009% of total K were found in water‐soluble, exchangeable, nonexchangeable, and lattice K forms, respectively. On the other hand, long‐term farmers' practice of more application of P fertilizer in wheat crop has resulted in P buildup in the soils of the Berpura series. Olsen P in soils of farmers' fields of this series ranged from 9.0 to 153.0 mg kg?1, with the mean value of 41.8 mg kg?1. Eighty‐two percent of leaf samples of rice crops grown on this series without application of P fertilizer were sufficient in P. The analysis of soil and rice crops for P and K proved the suitability of 0.5 M sodium bicarbonate (NaHCO3) and 1 N NH4OAc for extracting available P and K, respectively, in alluvial soils of the Indo‐Gangetic Plains. The 0.15% CaCl2–extractable S in this soil ranged from 9.6 to 307 mg kg?1 with a mean value of 34.6 mg kg?1. Four and 26% of soil samples had low and medium, respectively, in 0.15% CaCl2–extractable S. S deficiency was recorded in rice crops, as 29% of the leaf samples were extremely deficient in S and 58% were moderately deficient in S. This indicated the unsuitability of the 0.15% CaCl2 to extract available S from the Udic ustochrept utilized for cultivation of rice crops.  相似文献   

10.
Surface and subsurface horizons of 16 representative sugarcane growing soils with varying soil properties in the eastern region of Thailand were collected to determine the potassium (K) fertility status and its availability by using the quantity/intensity relationship (potential buffering capacity of K (PBCk)). The results showed that most soils had a low K fertility status and lack of reserved K from K-bearing minerals. The PBCk values of the studied soils ranged from 3.75 to 168 cmol kg?1/(mol L?1)1/2, and the coarse-textured soil group showed much lower PBCk values; these results suggested a low capability of these soils to replenish K removal by plant uptake compared with that of the fine-textured soil group. The negative delta K (ΔK°) values of the coarse-textured soil group also indicated a large quantity of readily available K for plant uptake that easily leaches at the same time. The higher K activity ratio (ARke) of the coarse-textured soil group (>0.001 mol L?1)1/2) than that of the fine-textured soil group (<0.001 mol L?1)1/2) suggested that readily available K was desorbed from the non-specific sites of 1:1 clay minerals and specific sites of 2:1 clay minerals, respectively. The ΔK° value of the studied soils was more significantly correlated to K concentration in sugarcane stalks (R2 = 0.64) than that of readily available K content (R2 = 0.54). Therefore, the results of this study suggested that ΔK° represents a better parameter to estimate K availability in these soils compared to conventional ammonium acetate (NH4OAc)-extractable K content.  相似文献   

11.
土壤非交换态钾与结构态钾能够区分吗?   总被引:2,自引:0,他引:2  
Nonexchangeable K (NEK) is the major portion of the reserve of available K in soil and a primary factor in determining soil K fertility. The questions of how much NEK is in soils and how to quantify total NEK in soils are so far still unclear due to the complicated effects of various minerals on K fixation. In this study, the NEK in 9 soils was extracted with sodium tetraphenylboron (NaBPh4) for various time periods longer than 1 d. The results showed that the NEK extracted by NaBPh4 gradually increased with time, but showed no more increase after the duration of extraction exceeded 10--20 d. As the temperature increased from 25 to 45 oC, the duration to obtain the maximum extraction of NEK was reduced from 20 to 10 d, and the maximum values of NEK released at both temperatures was almost the same for each soil. The maximum NEK (MNEK) of the 9 soils extracted by NaBPh4 varied from 3 074 to 10 081 mg kg-1, accounting for 21%--56% of the total soil K. There was no significant correlation between MNEK released by NaBPh4 and other forms of K, such as NH4OAc-extracted K, HNO3-extracted K and total K in soils, which indicates that NEK is a special form of K that has no inevitable relationship to the other forms of K in soils. The MNEK extraction by NaBPh4 in this study indicated that the total NEK in the soils could be differentiated from soil structural K and quantified with the modified NaBPh4 method. The high MNEK in soils made NEK much more important in the role of the plant-available K pool. How to fractionate NEK into different fractions and establish the methods to quantify each NEK fraction according to their bioavailability is of great importance for future research.  相似文献   

12.
Most Brazilian soil-testing laboratories use Mehlich 1 and 1.0 M potassium chloride (KCl) solutions as extractants for the determination of phosphorus (P), potassium (K), and sodium (Na) and for exchangeable calcium (Ca), magnesium (Mg), manganese (Mn), and aluminum (Al) in agricultural soil samples. Other laboratories use a combination of exchangeable ionic resin and KCl procedures. With recent adoption of the inductively coupled plasma (ICP-OES) in routine soil-testing laboratories, soil extraction with 1.0 M ammonium chloride (NH4Cl) became an alternative due to the possibility of determining all exchangeable elements in one run (Ca, Mg, K, Mn, Na, and Al), leaving determination of phosphorus (P) with Mehlich 1 or exchangeable ionic resin. To evaluate the performance of the NH4Cl solution, an experiment was carried out with thirty-seven samples of soils representative of the southernmost state of Brazil, Rio Grande do Sul. Four extraction solutions [Mehlich 1 at soil/solution ratio of 1:10 and 1.0 M ammonium acetate (NH4OAc), 1.0 M KCl, and 1.0 M NH4Cl at soil/solution ratio 1:20] were used with three different shaking times (5, 30, and 60 min). Correlation coefficients among all methods were high. Mehlich 1 did not perform well against NH4OAc and NH4Cl, despite the high correlation coefficients, with values consistently lower for K, even when the time of extraction was increased from 5 to 30 or 60 min. However, for concentrations less than 0.30 cmol kg?1 (i.e., in the range of K deficiency), both solutions performed similarly. Calcium and Mg increased with time of shaking. Comparable values of exchangeable Ca, Mg, and K, as well as of Al and Mn, were obtained with 1.0 M NH4Cl with 60 min shaking and the standard procedures of 1.0 M NH4OAc and 1.0 M KCl. The determination of Al by traditional titration/back-titration of the 1.0 M KCl solution gave slightly greater results compared to ICP-OES obtained using extraction with 1.0 M NH4Cl. The results indicate that for Ca, Mg, Mn, and Al, it is possible to replace the traditional 1.0 M KCl extraction with 1.0 M NH4Cl solution, with 60 min shaking time and a soil/solution ratio of 1:20.  相似文献   

13.
Accurate estimation of the available potassium (K+) supplied by calcareous soils in arid and semi‐arid regions is becoming more important. Exchangeable K+, determined by ammonium acetate (NH4OAc), might not be the best predictor of the soil K+ available to crops in soils containing micaceous minerals. The effectiveness of different extraction methods for the prediction of K‐supplying capacities and quantity–intensity relationships was studied in 10 calcareous soils in western Iran. Total K+ uptake by wheat grown in the greenhouse was used to measure plant‐available soil K+. The following methods extracted increasingly higher average amounts of soil K+: 0.025 M H2SO4 (45 mg K+ kg?1), 1 M NaCl (92 mg K+ kg?1), 0.01 M CaCl2 (104 mg K+ kg?1), 0.1 M BaCl2 (126 mg K+ kg?1), and 1 M NH4OAc (312 mg K+ kg?1). Potassium extracted by 0.01 M CaCl2, 1 M NaCl, 0.1 M BaCl2, and 0.025 M H2SO4 showed higher correlation with K+ uptake by the crop (P < 0.01) than did NH4OAc (P < 0.05), which is used to extract K+ in the soils of the studied area. There were significant correlations among exchangeable K+ adsorbed on the planar surfaces of soils (labile K+) and K+ plant uptake and K+ extracted by all extractants. It would appear that both 0.01 M CaCl2 and 1 M NaCl extractants and labile K+ may provide the most useful prediction of K+ uptake by plants in these calcareous soils containing micaceous minerals.  相似文献   

14.
Surface soil (0–15 cm) and foliar samples of wheat, rice, sugarcane, and cotton crops growing in eight intensively cultivated soil series of India were collected from farmers' fields during 2004 and 2005. Analysis of soil and leaf samples indicated widespread potassium (K) deficiency in soils and crops. Potassium deficiency in wheat growing in Lukhi series (Udic Ustocrept) and Akbarpur series (Udic Haplustulf) and in cotton growing in Typic Torrifluvent were comparable to 1N ammonium acetate (NH4OAc)–K (available K) soil test values. Rice cultivated on Udic Ustocrept soils in summer monsoon season showed relatively less K deficiency in comparison to winter wheat, and K deficiency in growing rice did not match 1N NH4OAc‐K soil test values. In the Khatki series, K deficiency in sugarcane was much less than 1N NH4OAc‐K soil test values. In the Arsia series (Typic Haplustert), despite the high 1N NH4OAc‐K status of soils, K deficiency in growing wheat was observed.  相似文献   

15.
ABSTRACT

The 1 M ammonium acetate (NH4OAc) (AA) is the most widely used method for soil-test potassium (K), but other methods have been also suggested to estimate crop available K. The accuracy of these extractants may be influenced by soil texture and clay mineralogy. This study evaluated the relationships among AA, Mehlich-3 (M3), and sodium tetraphenylboron (TPhB) methods using soils differing in texture and clay minerals from the agricultural area of Uruguay. The M3 and AA extractable K concentrations were highly correlated (R2 > 0.97) across soils, although AA extracted slightly higher amount of K than M3. The TPhB method extracted more K than AA and M3, indicating that extracted K from different pools. The slopes of the relationships between TPhB and AA or M3 varied among soils being higher in fine-textured and illitic soils than in coarse soils. These results would be useful for evaluating the feasibility of incorporating M3 into a test program using the existing calibrations of the AA method. In addition, TPhB could be considered a complementary tool to improve the interpretations of the extractants to estimate soil-test K along with other characteristics such as the texture and clay mineralogy.  相似文献   

16.
Potassium (K) fixation and release in soil are important factors in the long-term sustainability of a cropping system. Changes in K concentration and characteristics of K fixation and release in rhizosphere and nonrhizosphere soils in the rapeseed (Brassica napus L.)–rice (Oryza sativa L.) rotation were investigated using a rhizobox system. The concentrations of different forms of K in both rhizosphere and nonrhizosphere soils decreased with plants compared to without plants, regardless of K fertilizer application. Potassium uptake by crops mainly came from the rhizosphere soil. In the treatment without K fertilizer (–K), the main form of K supplied by the soil to the crops was 1.0 mol L?1 nitric acid (HNO3) nonextractable K, followed by nonexchangeable K, and then exchangeable K. In the treatment with K fertilizer (+K), the main K forms supplied by the soil to the crops were exchangeable K and nonexchangeable K. The amount and rate of K fixation after one cycle of the rapeseed–rice rotation was greater in rhizosphere soil than in nonrhizosphere soil. The amount and rate of K fixation of soil in the +K treatment were significantly less than in the –K treatment. The cumulative amounts of K released with 1.0 mol L?1 ammonium acetate (NH4OAc) and 1.0 mol L?1 HNO3 extraction increased with the increasing numbers of extractions, but the K-releasing power of soil by successive extraction decreased gradually and finally became almost constant. The release of K was less in rhizosphere soil than in nonrhizosphere soil. The release of K in the +K treatment was similar to that in the –K treatment in rhizosphere soil, but the K release in nonrhizosphere soil was greater with the +K than the –K treatment. Overall, the information obtained in this study will be helpful in formulating more precise K fertilizer recommendations for certain soils.  相似文献   

17.
Relationship between the N uptake of plants and the mobilization of nonexchangeable NH4-N In a pot experiment with ryegrass (Lolium multiflorum) the relationship between the release of nonexchangeable NH4+ and the N uptake of plants was studied. For this purpose the surface soil of an alluvial soil and of a grey brown podsolic soil was labelled with 15NH4-N. The following results were obtained: After treating the soil with 15-N the alluvial soil contained 4,55 mg and the grey brown podsolic soil 1,64 mg nonexchangeable 15NH4-N/100 g soil. In the alluvial soil 72% and in the grey brown podsolic soil 66% of the nonexchangeable 15NH4+ had been released during the growing season when ryegrass was planted. However, without plants there was no change in the content of labelled nonexchangeable NH4+ in the alluvial soil or only a slight decrease in the grey brown podsolic soil. A highly significant correlation was found between the 15NH4-N released and the 15N uptake of ryegrass in the alluvial soil (r = 0,78+++) as well as in the grey brown podsolic soil (r = 0,98+++).  相似文献   

18.
Potassium (K) is one of the essential elements for plants. There has been enough research to determine pollution of nitrogen (N), phosphorus (P), and heavy metals in soil. However, by comparison research on the storage and transport of K has been neglected. Chemical fertilizer usage leads to serious environmental problems in Iran. Leaching of K can be affected by type of anions and cations present in the chemical fertilizers. Potassium leaching experiments were performed using 10 mM NH4Cl, (NH4)2HPO4, NH4H2PO4, NH4NO3, NH4OAC, CaCl2, Ca(NO3)2, NaNO3, and CO(NH3)2. The leaching experiment was lasted for 20 days (15 pore volumes). In addition, a set of experiments were conducted, where potato and wheat residues and poultry manure and sheep manure were added to soil at the rate of 5% and distilled water was used as the leaching solution to investigate impacts of organic residues on K leaching. In general, maximum K release was observed using NH4Cl (566 kg ha?1). Potato and wheat residues had maximum and minimum impacts on K leaching, respectively. Potassium fractionation was carried out after the end of the leaching experiment. The results indicated that leaching of soil in the presence of soluble salts and organic residues altered K distribution in different parts of soil.  相似文献   

19.
Soil testing is widely adopted as an essential diagnostic tool for identifying soil nutrient factors that limit sustained crop production. A systematic approach for rapid soil testing and fertilizer recommendation has been introduced and widely used in China by Agro Services International (ASI), USA. To verify the usefulness and reliability of the ASI method in soil testing and fertilizer recommendation in comparison with other commonly used traditional soil testing methods, 294 soil samples from major agricultural regions and soil types in China with a wide range of soil pH, from 5.1 to 8.9, were taken and analyzed for available phosphorus (P) and potassium (K) by the ASI multielement extraction solution and selected traditional methods, Olsen extractant for P, ammonium acetate (NH4OAc) extractant for K, and multielement extractant Mehlich 3 for P and K. Also, 46 soils were selected from northern China regions for a greenhouse trial with sorghum seedlings to determine if the soil testing values correlate well with plant response. Results indicated that the amount of soil P extracted by the ASI method (ASI P) was correlated to both soil extractable P tested by the Olsen extractant (Olsen P) and Mehlich 3 extractant (Mehlich 3 P). The correlation coefficient of ASI P with Mehlich 3 P (R2 = 0.86) was greater than that of ASI P with Olsen P (R2 = 0.74) across all selected soils. A good correlation was also found between the exchangeable K from the ASI method with the traditional ammonium acetate method (R2 = 0.81) and the Mehlich 3 method (R2 = 0.85). The results from the greenhouse trial showed that the extractable P and exchangeable K by the ASI multielement extraction solution could be used to represent the fertility status of soil P and K for the selected soils. Regression analysis indicated that the relative dry-matter yield of the sorghum plants can be predicted with either ASI P and ASI K values with the correlation coefficients (R2) values of 0.78 and 0.72 respectively and could be a good measure for soil testing and fertilizer recommendation in the selected soils and regions in China.  相似文献   

20.
A long-term field experiment with rice-wheat cropping was started in the wet season of 1988 with four levels of lantana (Lantana camara L.) (0, 10, 20, and 30 Mg ha?1 on fresh weight basis) and three tillage practices (No puddling, puddling, and soil compaction). From wet season of 1997, however, three tillage practices were replaced with three levels of nitrogen (N) and potassium (K) to rice (33, 66, and 100% of recommended) and 66% of recommended N, phosphorus (P), and K to wheat. Phosphorus was totally omitted for the rice crop. The recommended N and K for rice was 90 and 40 kg ha?1, whereas the recommendations for N, P, and K for wheat were 120, 90 and 30 kg ha?1. Organic amendments are known to improve soil productivity under rice-wheat cropping by improving physical conditions and nutrient status of the soil, but their availability is restricted. There is a need to identify locally available and cost-effective organic materials that have minimal alternate uses as fodder and fuel. We evaluated Lantana camara L. residues, a fast-growing weed in nearby wastelands, as a potential soil organic amendment. Among the different fractions of K, nonexchangeable K was dominant followed by exchangeable and water soluble K. The incorporation of lantana (10 to 30 Mg ha?1) over the last 12 years has resulted in a significant build-up of all the K fractions, the maximum being in water-soluble K (10 to 32%) followed by exchangeable K (18 to 27%) and least in nonexchangeable K (5 to 7%) over no lantana incorporation. The increasing levels of these two inputs significantly and consistently increased ammonium acetate (NH4OAc)- extracted K (available K) content in soil and also resulted in significantly higher accumulation of K by the crops during the years of experimentation. Among different K fractions, exchangeable K was observed to be the most important K fraction contributing towards wheat and rice yields as well as K accumulation by wheat and rice. Stepwise multiple regression equations indicated that exchangeable K was the most important variable contributing towards total variation in grain yield and K accumulation by wheat or rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号