首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Long-term effects of the different combinations of nutrient-management treatments were studied on crop yields of sorghum + cowpea in rotation with cotton + black gram. The effects of rainfall, soil temperature, and evaporation on the status of soil fertility and productivity of crops were also modeled and evaluated using a multivariate regression technique. The study was conducted on a permanent experimental site of rain-fed semi-arid Vertisol at the All-India Coordinated Research Project on Dryland Agriculture, Kovilpatti Centre, India, during 1995 to 2007 using 13 combinations of nutrient-management treatments. Application of 20 kg nitrogen (N) (urea) + 20 kg N [farmyard manure (FYM)] + 20 kg phosphorus (P) ha?1 gave the greatest mean grain yield (2146 kg ha?1) of sorghum and the fourth greatest mean yield (76 kg ha?1) of cowpea under sorghum + cowpea system. The same treatment maintained the greatest mean yield of cotton (546 kg ha?1) and black gram (236 kg ha?1) under a cotton + cowpea system. When soil fertility was monitored, this treatment maintained the greatest mean soil organic carbon (4.4 g kg?1), available soil P (10.9 kg ha?1), and available soil potassium (K) (411 kg ha?1), and the second greatest level of mean available soil N (135 kg ha?1) after the 13-year study. The treatments differed significantly from each other in influencing soil organic carbon (C); available soil N, P, and K; and yield of crops attained under sorghum + cowpea and cotton + black gram rotations. Soil temperature at different soil depths at 07:20 h and rainfall had a significant influence on the status of soil organic C. Based on the prediction models developed between long-term yield and soil fertility variables, 20 kg N (urea) + 20 kg N (FYM) + 20 kg P ha?1 could be prescribed for sorghum + cowpea, and 20 kg N (urea) + 20 kg N (FYM) could be prescribed for cotton + black gram. These combinations of treatments would provide a sustainable yield in the range of 1681 to 2146 kg ha?1 of sorghum, 74 to 76 kg ha?1 of cowpea, 486 to 546 kg ha?1 of cotton, and 180 to 236 kg ha?1 of black gram over the years. Beside assuring greater yields, these soil and nutrient management options would also help in maintaining maximum soil organic C of 3.8 to 4.4 g kg?1 soil, available N of 126 to 135 kg ha?1, available soil P of 8.9 to 10.9 kg ha?1, and available soil K of 392 to 411 kg ha?1 over the years. These prediction models for crop yields and fertility status can help us to understand the quantitative relationships between crop yields and nutrients status in soil. Because black gram is unsustainable, as an alternative, sorghum + cowpea could be rotated with cotton for attaining maximum productivity, assuring sustainability, and maintaining soil fertility on rain-fed semi-arid Vertisol soils.  相似文献   

2.
The aim of this study was to assess the changes in soil organic carbon (SOC) stock in relation to the carbon (C) input from nine wheat-based cropping systems and untilled grass. The SOC pool ranged from 32.1 to 49.4 Mg ha?1 at 0–20 cm and from 94 to 171 Mg ha?1 at 0–100 cm for the arable soil, while in untilled grassland, it was higher (54 and 185 Mg C ha?1, respectively). SOC stock was observed to be lower at the unfertilized 2-year rotation and higher at the 4-year rotation with manure and mineral fertilization. The study showed a winter wheat yield decrease of 176.8 kg ha?1 for a 1- Mg ha?1 SOC stock change in the 0–20-cm soil depth. The estimated C input for SOC stock maintenance was from 266 to 340 g C m?2 year?1 for winter wheat and rotations, respectively. Additional C input did not increase the SOC pool, suggesting that arable plots had a limited ability to increase SOC. These results provide guidance for the selection of management practices to improve C sequestration.  相似文献   

3.
Application of nitrogen (N) fertilizers to increase crop yield is a worldwide practice, which also has a positive influence on the soil organic carbon (SOC) increase. This study was carried out to investigate the dynamics of SOC and its fractions under different levels of N fertilization in wheat grown inceptisols of Northeast India over a period of 2 years. For the purpose of this study, fertilizer treatments with five N levels (40, 60, 72, 80, and 100 kg N ha?1) were applied in randomized block design. Increased SOC particulate organic carbon (POC), humic acid carbon, and fulvic acid carbon were recorded under application of higher N. Stability of SOC as indicated by E4/E6 ratio and microbial biomass carbon (MBC) was higher on application of 72 kg N ha?1. Among the SOC fractions, POC and MBC respond rapidly to different N fertilization rates. Available N and phosphatase activity increased while pH and urease activity (UA) decreased as a function of applied N fertilizer levels. Nitrogen fertilization increased wheat yield and biomass with insignificant differences among 100, 80, and 72 kg N ha?1. Thus, under the present experimental conditions, application of 72 kg N ha?1 can sustain SOC and soil health without compromising wheat yield in the inceptisols of Northeast India.  相似文献   

4.
A long-term field experiment (1984–2011), was conducted on a Calcic Haploxeralf from semi-arid central Spain to evaluate the combined effect of three treatments: farmyard manure (FYM), straw and control without organic amendments (WOA) and five increasing rates of mineral N on: (1) some energetic parameters of crop production, and (2) the effect of the different treatments on soil organic carbon (SOC) and total N stocks. Crop rotation included spring barley, wheat and sorghum. The energy balance variables considered were net energy produced (energy output minus energy input), the energy output/input ratio and energy productivity (crop yield per unit energy input). Results showed small differences between treatments. Total energy inputs varied from 9.86 GJ ha?1 year?1 (WOA) to 11.14 GJ ha?1 year?1 in the FYM system. For the three crops, total energy inputs increased with increasing rates of mineral N. Energy output was slightly lower in the WOA (33.40 GJ ha?1 year?1) than in the two organic systems (37.34 and 34.96 GJ ha?1 year?1 for FYM and straw respectively). Net energy followed a similar trend. At the end of the 27-year period, the stocks of SOC and total N had increased noticeably in the soil profile (0–30 cm) as a result of application of the two organic amendments. Most important SOC changes occurred in the FYM plots, with mean increases in the 0–10 cm depth, amounting an average of 9.9 Mg C ha?1 (667 kg C ha?1 year?1). Increases in N stocks in the top layer were similar under FYM and straw and ranged from 0.94 to 1.55 Mg N ha?1. By contrast, simultaneous addition of increasing rates of mineral N showed no significant effect on SOC and total N storage.  相似文献   

5.
ABSTRACT

In sorghum and mungbean – lentil cropping system, field experiments were conducted for three successive years to assess the effect of mung bean residue incorporation on sorghum and succeeding lentil productivity along with different doses of phosphorus (P; 0, 30, 60 kg ha? 1) applied to these crops. The level of soil fertility was also tested with or without incorporation of mung bean residue. The interaction of phosphorus to mungbean residue incorporation was thus studied in relation to improve crop productivity with balancing fertilizer requirements through an eco-friendly approach. Sorghum grain yield increased significantly when 60 kg P2O5 ha? 1 was applied and mungbean residue incorporated. The response was reduced to 30 kg P2O5 ha? 1 when mungbean residue was not incorporated. The succeeding lentil crop responded up to 60 kg P2O5 ha? 1 only when preceding sorghum crop received 0 or 30 kg P2O5 ha? 1. Response to applied P2O5 to lentil reduced to 30 kg ha? 1 when preceding sorghum crop received 60 kg P2O5 ha? 1 and mungbean residue incorporated. Available soil nitrogen, phosphorus, and organic carbon content increased when mungbean residue was incorporated; however, available potassium (K) of the soil decreased from its initial value.  相似文献   

6.
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   

7.
Tillage is an important agricultural operation which influences soil properties, crop yield and environment. Nine combinations of three tillage practices including conventional tillage (CT), minimum tillage (MT) and zero tillage (ZT) were evaluated in fodder sorghum (Sorghum bicolor) + cowpea (Vigna unguiculata) – wheat (Triticum durum) cropping system for 5 years (2009–2014) on clay loam soil under limited irrigation. Continuous ZT practices significantly improved surface soil organic carbon, bulk density, infiltration rate and maximum water holding capacity. Carbon sequestration rate, soil organic carbon stock and soil enzymatic activities were relatively more under ZT than CT-CT practice. Higher fodder yield of sorghum + cowpea was recorded with CT (kharif) while wheat grain yield with ZT (rabi). However, the system productivity was statistically similar in all the tillage treatments on pooled data basis. The economic benefits were also maximum under ZT-ZT practice. The ZT-ZT practice recorded significantly lowest energy input (17.1 GJ ha?1) which resulted in highest energy use efficiency (13.6) and energy productivity (518 kg GJ?1). Thus, adoption of ZT significantly improved soil health, stabilized crop yield, increased profitability and energy use efficiency in the semi-arid agro-ecosystem.  相似文献   

8.
Carbon sequestration via sound agronomic practices can assist in combating global warming. Three long-term experiments (Experiment 502, Experiment 222, and The Magruder Plots) were used to evaluate the effect of fertilizer nitrogen (N) application on soil organic carbon (SOC), total nitrogen (TN), and pH in continuous winter wheat. Soil samples (0–15 cm) were obtained after harvest in 2014, analyzed, and compared to soil test results from these experiments in 1993. Soil pH decreased with increasing N fertilization, and more so at high rates. Nitrogen application significantly increased TN in Experiment 502 from 1993 to 2014, and TN tended to be high at high N rates. Fertilizer N significantly increased SOC, especially when N rates exceeded 90 kg ha?1. The highest SOC (13.1 g kg?1) occurred when 134 kg N ha?1 was applied annually. Long-term N application at high rates increased TN and SOC in the surface soil.  相似文献   

9.
No-tillage and manure application effect on soil organic carbon (SOC) and total nitrogen (N) concentrations were studied under a 27-year-old 4-year rotation consisting corn (Zea mays L.)-soybean (Glycine max L.)-wheat (Triticum aestivum L.)-field pea (Pisum sativum L.). Under each crop, four applied N treatments were control, annual urea-N applications at the rate of 45 and 89 kg N ha?1, and composted beef cattle feedlot manure-N at the rate 179 kg N ha?1 applied once every four year. For each fertilizer treatment, no-till (NT) and conventional till (CT) were compared for basic soil properties, SOC, and total N within 0–15 cm soil. Manure application significantly reduced soil bulk density and increased SOC and total N over urea-N. Particulate organic matter, mineralizable N, and permanganate-oxidizable C fractions significantly related with SOC. Long-term manure additions and no-tillage had potential to improve soil compaction and maintain SOC over chemical fertilizer N and CT.  相似文献   

10.
Many studies on soil organic carbon (SOC) sequestration in perennial biomass crops are available for Atlantic and continental environments of North Central Europe, while there is insufficient information for Southern Europe. Therefore, we assessed SOC turnover under Mediterranean climate, after a 9-year-old conversion from two annual crop systems, continuous wheat and maize/wheat rotation, to Miscanthus (Miscanthus sinensis?×?giganteus) and giant reed (Arundo donax), respectively. The naturally occurring 13C signature down to 0.60 m was used to evaluate the total amount of SOC in annual vs perennial species and to determine the portion of SOC derived from perennial species. Soil organic C was significantly higher under perennial (average, 91 Mg C ha?1) than annual species (average, 56 Mg C ha?1), with a stronger accumulation in the topsoil (0–0.15 m). This difference was consistent with reduced soil disturbance associated with perennial crop management. After 9 years of Miscanthus plantation, the amount of C4-derived C was 18.7 Mg ha?1, mostly stored at 0–0.15 m, whereas the amount of C3-derived C under giant reed was 34.7 Mg ha?1 and was more evenly distributed through soil depths, probably due to its deeper root apparatus. It is suggested that both Miscanthus and giant reed have a remarkable potential for SOC sequestration also under Mediterranean conditions, while supporting the growing bioenergy sector with biomass supply.  相似文献   

11.
ABSTRACT

A 6-year field experiment was conducted at Maharashtra, India, from 2011 to 2017 on a silty clay soil, to study the impact of organic manure prepared from common weed Trianthema portulacastrurm Linn. on soybean-fodder maize crop system and soil organic carbon (SOC) sequestration. Organic manures were prepared from Trianthema as compost, vermicompost, dry leaf powder and were compared with application of Farm Yard Manure (FYM), chemical fertilizer treatment (NPK), and control. All treatments were repeated to same earlier treated plots every year for subsequent 6 years. Soil samples were analyzed before experiment and after harvesting of crops at the end of 6 years. All organic manures prepared from Trianthema and FYM increased SOC, nitrogen, phosphorus, and potassium content in the soil as compared to chemical fertilizer treatment and control. The overall increase in SOC content in the 0–60-cm soil depth in vermicompost treatment was 3.51 Mg C ha?1 as compared to control at the end of this 6 years experiment at the carbon sequestration rate of 585 kg ha?1 year?1. Preparation and use of different manures from Trianthema will increase the carbon sequestration in soil, a measure to mitigate global warming.  相似文献   

12.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

13.
This study investigated the long-term effects of different composts (urban organic waste compost (OWC), green waste compost (GWC), cattle manure compost (MC) and sewage sludge compost (SSC)) compared to mineral fertilisation on a loamy silt Cambisol, after a 7-year start-up period. The compost application rate was 175 kg N ha?1, with 80 kg mineral N ha?1 and without. Soil characteristics (soil organic carbon (SOC), carbon-to-nitrogen (C/N) ratio and soil pH), nutrients (nitrogen (N), phosphorous (P) and potassium (K)) and crop yields were investigated between 1998 and 2012. SOC concentrations were increased by compost applications, being highest in the SSC treatments, as for soil pH. N contents were significantly higher with compost amendments compared to mineral fertilisation. The highest calcium-acetate-lactate (CAL)-extractable P concentrations were measured in the SSC treatments, and the highest CAL-extractable K concentrations in the MC treatments. Yields after compost amendment for winter barley and spring wheat were similar to 40 kg mineral N ha?1 alone, whereas maize had comparable yields to 80 kg mineral N ha?1 alone. We conclude that compost amendment improves soil quality, but that the overall carbon (C) and N cycling merits more detailed investigation.  相似文献   

14.
Abstract

Distribution of dissolved (DOC) and soil organic carbon (SOC) with depth may indicate soil and crop‐management effects on subsurface soil C sequestration. The objectives of this study were to investigate impacts of conventional tillage (CT), no tillage (NT), and cropping sequence on the depth distribution of DOC, SOC, and total nitrogen (N) for a silty clay loam soil after 20 years of continuous sorghum cropping. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. Soil was sampled from six depth intervals ranging from 0 to 105 cm. Tillage effects on DOC and total N were primarily observed at 0–5 cm, whereas cropping sequence effects were observed to 55 cm. Soil organic carbon (C) was higher under NT than CT at 0–5 cm but higher under CT for subsurface soils. Dissolved organic C, SOC, and total N were 37, 36, and 66%, respectively, greater under NT than CT at 0–5 cm, and 171, 659, and 837% greater at 0–5 than 80–105 cm. The DOC decreased with each depth increment and averaged 18% higher under a sorghum–wheat–soybean rotation than a continuous sorghum monoculture. Both SOC and total N were higher for sorghum–wheat–soybean than continuous sorghum from 0–55 cm. Conventional tillage increased SOC and DOC in subsurface soils for intensive crop rotations, indicating that assessment of C in subsurface soils may be important for determining effects of tillage practices and crop rotations on soil C sequestration.  相似文献   

15.
A long-term study was conducted to study the impact of integrated nutrient management on soil quality in post-monsoon sorghum (Sorghum bicolor) at Solapur in Maharashtra State in Western India under All India Coordinated Research Project for Dryland Agriculture. The experiment was laid out with ten Integrated Nutrient Management Treatments in a randomized block design with three replications. The results of the study indicated that among all the integrated nutrient management treatments practiced, the application of 25 kg nitrogen (N) ha?1 through crop residue (CR) + 25 kg N ha?1 (urea) showed the highest soil quality index of 2.36, which was at par with other treatments receiving farmyard manure (FYM) and crop residues along with urea. The relative order of performance of the integrated nutrient management treatments in influencing soil quality was: T6: 25 kg N ha?1 (CR) + 25 kg N ha?1 (urea) (2.36) >T5: 25 kg N ha?1 (FYM) (2.31) > T7: 25 kg N ha?1 (FYM) +25 kg N ha?1 (urea) (2.30) = T8: 25 kg N ha?1 (CR) +25 kg N ha?1 (Leucaena loppings) (2.30) > T10: 25 kg N ha?1 (Leucaena loppings) +25 kg N ha?1 (urea) (2.17) > T4: 25 kg N ha?1 (CR:crop residues) (2.16) > T9: 25 kg N ha?1 (Leucaena loppings) (2.15) > T3: 50 kg N ha?1 (urea) (2.10) > T2: 25 kg N ha?1 (urea) (1.99) > T1: 0 kg N ha?1 (control) (1.77). The results of the study also indicated that average percent contribution of each soil key indicator towards soil quality indices was: pH (3.97%), EC (1.94%), organic carbon (18.6%), available P (2.80%), available K (6.57%), exchangeable Ca (7.02%), available S (3.45%), Available Zn (17.9%), dehydrogenase (DHA) (16.2%), microbial biomass carbon (MBC) (18.5%) and mean weight diameter (MWD) (3.14%). Thus, the results of the present study will be highly useful to the land managers in planning effective management of soil quality.  相似文献   

16.
Climate, soil physical–chemical characteristics, land management, and carbon (C) input from crop residues greatly affect soil organic carbon (SOC) sequestration. According to the concept of SOC saturation, the ability of SOC to increase with C input decreases as SOC increases and approaches a SOC saturation level. In a 12‐year experiment, six semi‐arid cropping systems characterized by different rates of C input to soil were compared for ability to sequester SOC, SOC saturation level, and the time necessary to reach the SOC saturation level. SOC stocks, soil aggregate sizes, and C inputs were measured in durum wheat monocropping with (Ws) and without (W) return of aboveground residue to the soil and in the following cropping systems without return of aboveground residue to soil: durum wheat/fallow (Wfall), durum wheat/berseem clover, durum wheat/barley/faba bean, and durum wheat/Hedysarum coronarium. The C sequestration rate and SOC content were lowest in Wfall plots but did not differ among the other cropping systems. The C sequestration rate ranged from 0.47 Mg C ha−1 y−1 in Ws plots to 0.66 Mg C ha−1 y−1 in W plots but was negative (−0.06 Mg C ha−1 y−1) in Wfall plots. Increases in SOC were related to C input up to a SOC saturation value; over this value, further C inputs did not lead to SOC increase. Across all cropping systems, the C saturation value for the experimental soil was 57.7 Mg ha−1, which was reached with a cumulative C input of 15 Mg ha−1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In order to investigate the changes in chlorophyll fluorescence, chlorophyll, relative water content (RWC) and forage yield of corn and sorghum under various irrigation regimes and combination treatments of barley residue, zeolite and superabsorbent polymer, an experiment was conducted over 2 years in Kerman, Iran. A randomized complete block design arranged in a factorial split was used with three replications. Two irrigation regimes of normal and drought stress based on 70 and 140 mm cumulative pan evaporation, respectively, and two plant species (corn and sorghum) as factorial combinations were compared in the main plots. Five treatments, (1) 10 t ha?1 zeolite + 4.5 t ha?1 residue, (2) 60 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (3) 5 t ha?1 zeolite + 30 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (4) 4.5 t ha?1 residue and (5) – control, were compared in subplots. In both plants, forage yield, potential quantum yield (Fv/Fm), chlorophyll a, total chlorophyll and carotenoid contents decreased significantly under drought stress. Chlorophyll a content, SPAD index and Fv/Fm were higher in corn than in sorghum, but RWC was higher in sorghum. Corn produced higher forage yield (62.8 t ha?1) than sorghum (49.3 t ha?1). The application of 10 t ha?1 zeolite with 4.5 t ha?1 residue increased most traits more than any of the other treatments, but the superabsorbent had no significant effect on the studied traits.  相似文献   

18.
Abstract

A regional evaluation of the soil organic carbon (SOC) dynamics for the chernozem zone in northern Kazakhstan is now vitally important for agricultural and environmental policy making. The objectives of the present study were: (1) to predict spatial and temporal variability in C input as crop residues using multi-temporal MODIS satellite images, (2) to clarify spatial and temporal variability in CO2 emission as SOC output using geostatistics and model s, (3) to clarify spatial and temporal variability in the SOC budget using the results from (1) and (2). The mean growing-season C input as plant residues in cereal fields ranged from 0.9 to 1.4 Mg C ha?1, with higher values in wet years. Carbon input as plant residues was higher in the northern part of the area than in the other parts. The average growing-season CO2 emission ranged from 0.9 to 1.1 Mg C ha?1, and was also higher in wet years than in dry years. In addition, more CO2 was emitted in the northern part of this area. Accordingly the average growing-season C budget ranged from –0.2 to 0.3 Mg C ha?1 and showed a negative correlation with air temperature during the crop-growing season. The 5-year C budget for different crop rotation systems ranged from –1.0 (3-year cropped cereal with 2-year bare fallow) to 0.4 (5-year continuous cereal cropped) Mg C ha?1. These results indicate that fallow-based crop rotation systems are degradative with regard to the SOC budget in the studied area.  相似文献   

19.
Management practices can have significant implications for both soil quality and carbon (C) sequestration potential in agricultural soils. Data from two long‐term trials (one at field scale and the other at lysimeter scale), underway in north‐eastern Italy, were used to evaluate the dynamics of soil organic carbon (SOC) and estimate the impact of recommended management practices (RMPs) on soil carbon sequestration. Potential SOC sequestration was calculated as the differences between the change in SOC of treatments differing only for the specified RMP for a period of at least 25 years. The trials compared the following situations: (a) improved crop rotations versus monoculture; (b) grass versus improved crop rotations; (c) residue incorporation versus residue removal; (d) high versus low rates of inorganic fertilizers; (e) integrated nutrient management/organic manures versus inorganic fertilizers. At the lysimeter scale, some of these treatments were evaluated in different soils. A general decrease in SOC (1.1 t C ha?1 year?1) was observed after the introduction of intensive soil tillage, evidencing both the worsening of soil quality and the contribution towards global CO2 emissions. Initial SOC content was maintained only in permanent grassland, complex rotations and/or with the use of large quantities of livestock manure. SOC sequestration reached a maximum rate of 0.4 t C ha?1 year?1 comparing permanent grassland with an improved crop rotation. Crop residue incorporation and rates of inorganic fertilizer had less effect on SOC sequestration (0.10 and 0.038 t C ha?1 year?1, respectively). The lysimeter experiment highlighted also the interaction between RMPs and soil type. Peaty soil tended to be a source of C independent of the amount and quality of C input, whereas a proper choice of tillage practices and organic manures enhanced SOC sequestration in a sandy soil. The most promising RMPs in the Veneto region are, therefore, conversion to grassland and use of organic manures. Although some of these RMPs are already supported by the Veneto Region Rural Development Plan, their more intensive and widespread implementation requires additional incentives to become economically feasible.  相似文献   

20.
Abstract

Soil carbon sequestration in agricultural lands has been deemed a sustainable option to mitigate rising atmospheric CO2 levels. In this context, the effects of different tillage and C input management (residue management and manure application) practices on crop yields, residue C and annual changes in total soil organic C (SOC) (0–30 cm depth) were investigated over one cycle of a 4-year crop rotation (2003–2006) on a cropped Andisol in northern Japan. For tillage practices, the effects of reduced tillage (no deep plowing, a single shallow harrowing for seedbed preparation [RT]) and conventional deep moldboard plow tillage (CT) were compared. The combination of RT, residue return and manure application (20 Mg ha?1 in each year) increased spring wheat and potato yields significantly; however, soybean and sugar beet yields were not influenced by tillage practices. For all crops studied, manure application enhanced the production of above-ground residue C. Thus, manure application served not only as a direct input of C to the soil, but the greater crop biomass production engendered enhanced subsequent C inputs to the soil from residues. The SOC contents in both the 0–5 cm and 5–10 cm layers of the soil profile were greater under RT than under CT treatments because the crop residue and manure were densely incorporated into the shallow soil layers. Comparatively, neither tillage nor C input management practices had significant effects on annual changes in SOC content in either the 10–20 cm or 20–30 cm layers of the soil profile. When soil C sequestration rates, as represented by annual changes in total SOC (0–30 cm), were assessed on a total soil mass basis, an anova showed that tillage practices had no significant effect on total C sequestration, but C input management practices had significant positive effects (P ≤ 0.05). These results indicate that continuous C input to the soil through crop residue return and manure application is a crucial practice for enhancing crop yields and soil C sequestration in the Andisol region of northern Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号