首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Abstract

When a soil is flooded, iron (Fe) reduction and methane (CH4) production occurred in sequence as predicted by thermodynamics. The dissolution and precipitation of Fe reflected both soil pH and soil redox potential (Eh). The objective of our experiment was to determine both CH4 production and Fe reduction as measured by Fe in solution in a flooded paddy soil over a wide range of closely controlled pH and Eh conditions. The greatest release of CH4 gas occurred at neutral soil pH in combination with low soil redox potential (‐250 mV). Production of CH4 decreased when soil pH was lowered in combination with an increase in the soil redox potential above ‐250 mV. Highest concentration of ferrous‐iron (Fe2+) under reducing conditions occurred when soil pH was lowered. Thus Fe reduction influenced CH4 formation in the flooded paddy soil. Results indicated that CH4 production was inhibited by the process of ferric‐iron (Fe3+) reduction.  相似文献   

2.
Effects of flooding and redox conditions on solute diffusion in soil   总被引:1,自引:0,他引:1  
Rates of solute diffusion fundamentally affect the properties of flooded soils, but the effects of flooding on solute diffusion have not previously been studied in detail. Four soils with widely differing chemical and physical properties were packed to a range of bulk densities, flooded for varying times, and the self‐diffusion of chloride through the soils measured. Diffusion impedance factors were derived from the results. In each soil the impedance factor decreased linearly with increase in bulk density, and between soils impedance factors increased with increasing clay content. The impedance factor decreased by up to 20% during the first 3–6 weeks following flooding, but with prolonged flooding it increased to at least its initial value. Concomitantly the cation exchange capacities of the soils increased by between 30 and 100%, there was reductive dissolution of soil iron, probably both structural iron in soil clays and iron oxyhydroxide coatings on clay surfaces, and subsequently there was re‐precipitation of ferrous iron, probably as mixed carbonates and hydroxides. The decreases in diffusion impedance factors were consistent with the increases in cation exchange capacity and changes in soil iron, and the subsequent increases were consistent with re‐crystallization of mixed ferrous–ferric compounds. We conclude that the effects of changes in redox on diffusion impedance will be important in some soils, although they are smaller than the effects of water content per se.  相似文献   

3.
Abstract

Problems are invariably encountered when attempts are made to explain the variability in Bray percent yields or plant response in terms of soil or plant iron (Fe). To resolve this inconsistency, the present investigation was initiated to identify a combination of soil extractable Fe, soil properties and form of plant Fe that may be used as a measure of Fe deficiency. The study involved 16 diverse soils, using upland rice (Oryza sativa L.) as the test crop and Fe‐EDDHA [ferric ethylenediamine di (o‐hydroxyl‐phenyl acetic acid)] as source of Fe. The results showed that Bray percent yields were neither related to DTPA (diethylenetriamine pentaacetic acid) or EDTA (ethylenediamine tetraacetic acid) extractable Fe nor with total plant Fe. Even the inclusion of pH, lime, organic carbon and clay data in the regression equations was of no value. However, Bray percent yields were significantly and positively (r = 0.57* ) associated with ferrous Fe (Fe2+) in 40‐day‐old rice plants. The explanation concerning variability in Bray percent yields obtained on diverse soils could be increased about one and half 2 times (R2= 0.59*) if the contribution of lime and soil pH was also incorporated in the stepwise regression analysis. The individual contribution to R of lime, pi respectively. Thus, it appears that Fe2+ concentration in plants (along with soil pH) may identify Fe deficiency. The critical limit to separate Fe deficient from green rice plants was set at 45 ug Fe2+/g in the leaves.  相似文献   

4.
Phosphorus (P) adsorbed by iron (Fe) oxyhydroxides in soil can be released when the Fe(III) minerals are reductively dissolved after soil flooding. However, this release is limited in tropical soils with large Fe contents and previous studies have suggested that P sorbs or precipitates with newly formed Fe(II) minerals. This hypothesis is tested here by scavenging Fe2+ in flooded soils by increasing the cation exchange capacity (CEC) of soil through resin application (30 cmolc kg?1; Na‐form). Three soils from rice paddies with contrasting properties were incubated in aerobic and anaerobic conditions with or without resin and with or without addition of organic matter (OM) to stimulate redox reactions. Dissolved Fe was 0.1–1.1 mm in unamended anaerobic soils and decreased to less than 0.07 mm with resin addition. Anaerobic soils without resin and aerobic soils with or without resin had marginal available P concentrations (<2 mg P kg?1; anion‐exchange membrane P). In contrast, available P increased 3‐ to 14‐fold in anaerobic soils treated with resins, reaching 16 mg P kg?1 in combination with extra OM. Application of Ca‐forms of resin did not stimulate P availability and dissolved Ca concentrations were larger than in unamended soils. Resin addition can increase P availability, probably by a combination of reducing solution Fe2+ (thereby limiting the formation of Fe(II) minerals) and increasing the OM solubility and availability through reducing dissolved Ca2+. The soil CEC is a factor controlling the net P release in submerged soils.  相似文献   

5.
A greenhouse pot experiment was conducted with peanuts (Arachis hypogaea L., Fabceae) to evaluate iron compound fertilizers for improving within-plant iron content and correcting chlorosis caused by iron deficiency. Peanuts were planted in containers with calcareous soil fertilized with three different granular iron nitrogen, phosphorus and potassium (NPK) fertilizers (ferrous sulphate (FeSO4)–NPK, Fe–ethylendiamine di (o-hydroxyphenylacetic) (EDDHA)–NPK and Fe–citrate–NPK). Iron nutrition, plant biomass, seed yield and quality of peanuts were significantly affected by the application of Fe–citrate–NPK and Fe–EDDHA–NPK to the soil. Iron concentrations in tissues were significantly greater for plants grown with Fe–citrate–NPK and Fe–EDDHA–NPK. The active iron concentration in the youngest leaves of peanuts was linearly related to the leaf chlorophyll (via soil and plant analyzer development measurements) recorded 50 and 80 days after planting. However, no significant differences between Fe–citrate–NPK and Fe–EDDHA–NPK were observed. Despite the large amount of total iron bound and dry matter, FeSO4–NPK was less effective than Fe–citrate–NPK and Fe–EDDHA–NPK to improve iron uptake. The results showed that application of Fe–citrate–NPK was as effective as application of Fe–EDDHA–NPK in remediating leaf iron chlorosis in peanut pot-grown in calcareous soil. The study suggested that Fe–citrate–NPK should be considered as a potential tool for correcting peanut iron deficiency in calcareous soil.  相似文献   

6.
Wang  Xugang  Sun  Lirong  Chen  Zhihuai  Guo  Dayong  Fan  Haolong  Xu  Xiaofeng  Shi  Zhaoyong  Chen  Xianni 《Journal of Soils and Sediments》2020,20(8):3171-3180
Purpose

The iron redox cycle is closely tied to the fate of carbon in terrestrial ecosystems, especially paddy soils. Varies diurnally and seasonally, light—the crucial environmental factor—may be a fundamental factor elucidating temporal and spatial variabilities of carbon-containing gases emission. The role of sunlight in the iron-mediated carbon cycle, however, has not been fully elucidated. We conduct this study to test the role of light in the iron-mediated carbon cycling.

Materials and methods

In this study, we conducted anaerobic incubation experiments of a calcareous paddy soil in serum vials under alternating dark and light conditions. The dynamic evolution of the carbon and iron contents was evaluated by measuring the CO2, CH4, and O2 concentrations in the headspace of the vials, as well as the water-soluble inorganic carbon, microbial biomass carbon, and HCl-extractable ferrous iron contents in soil slurries. We also analyzed the soil microbial community structure by high-throughput 16S rRNA gene sequencing.

Results and discussion

The results highlighted the positive correlation between carbon mineralization and ferric iron reduction under dark conditions. Under light conditions, however, ferrous iron was oxidized by the O2 generated via oxygenic photosynthesis of phototrophic bacteria such as Cyanobacteria, along with a decreased production of CO2, CH4, and water-soluble inorganic carbon. The abundance of Cyanobacteria positively correlated to O2 levels and MBC content significantly. Light-induced periodic variations in the redox conditions facilitated carbon fixation in microbial biomass and up to 31.79 μmol g?1 carbon was sequestrated during 30 days light incubation.

Conclusions

These results indicate that light inhibits the emission of carbon-containing greenhouse gases associated with the iron redox cycle in calcareous paddy soil. Assimilation of inorganic carbon by phototrophs may responsible for the inhibition of carbon mineralization. Our study suggests that procedures allowing more light to reach the soil surface, for instance, reducing the planting density, may mitigate greenhouse gas emissions and promote carbon sequestration in paddy soils.

  相似文献   

7.
土壤中铁的氧还过程与碳氮转化及自净能力关系密切,已还原亚铁的氧化受土壤性质的影响。采用室内恒温培养试验研究了旱作褐土中铁还原氧化过程、及其与水溶性碳、NO3-、SO42-的关系。结果表明旱作褐土中铁氧化物在厌氧光照条件下可先被还原后被再次氧化,其再氧化量介于1.46~3.00 mg g-1之间,平均2.09 mg g-1;再氧化速率常数介于0.23~0.80 d-1之间,平均0.48 d-1。再氧化量与土壤无定形铁、水溶性硫酸盐含量、阳离子交换量显著负相关,与土壤总氮、总磷显著正相关;再氧化速率常数与土壤有机碳显著负相关,与黏粒含量极显著正相关。厌氧光照培养可使旱作褐土水溶性无机碳平均降低52.74%,水溶性NO3-降低92.15%,水溶性SO42-增加55.38%。研究结果为深入理解旱作土壤潜在的微生物铁循环转化方式提供理论支持。  相似文献   

8.
Dissolved organic matter (DOM) is a small but reactive pool of the soil organic matter (SOM) that contributes to soil dynamics including the intermediary pool spanning labile to resistant SOM fractions. The solubilization of SOM (DOM production) is commonly attributed to both microbially driven and physico-chemically mediated processes, yet the extent to which these processes control DOM production is highly debated. We conducted a series of experiments using 13C-ryegrass residue or its extract (13C-ryegrass-DOM) separately under sterile and non-sterile conditions to demonstrate the importance of DOM production from microbial and physico-chemical processes. Soils with similar properties but differing in parent material were used to test the influence of mineralogy on DOM production. To test the role of the source of C for DOM production, one set of soils was leached frequently with 13C-ryegrass-DOM and in the other set of soils 13C-ryegrass residue was incorporated at the beginning of the experiment into the soil and soils were leached frequently with 0.01 mol L−1 CaCl2 solution. Leaching events for both treatments occurred at 12-d intervals over a 90-day period. The amount of dissolved organic C and N (DOC and DON) leached from residue-amended soils were consistently more than 3 times higher in sterile than non-sterile soils, decreasing with the time. Despite changes in the concentration of DOC and DON and the production of CO2, the proportion of DOC derived from the 13C-ryegrass residue was largely constant during the experiment (regardless of microbial activity), with the majority (about 70%) of the DOM originating from native SOM. In 13C-residue-DOM treatments, after successive leaching events and regardless of the sterility conditions i) the native SOM consistently supplied at least 10% of the total leached DOM, and ii) the contribution of native SOM to DOM was 2–2.9 times greater in 13C-residue-DOM amended soils than control soils, suggesting the role of desorption and exchange reactions in DOM production in presence of fresh DOM input. The contribution of the native SOM to DOM resulted in higher aromaticity and humification index. Our results suggest that physico-chemical processes (e.g. exchange or dissolution reactions) can primarily control DOM production. However, microbial activity affects SOM solubilization indirectly through DOM turnover.  相似文献   

9.
The behavior of dissolved organic matter (DOM) in soils under varying environmental conditions represents a poorly studied aspect of the problem of organic matter loss from soils. The equilibrium and sustainable development of ecosystems in the northern latitudes are largely determined by the balance between the formation of DOM, its accumulation in the lower soil horizons, and its input with runoff into surface waters. The residence time, retention strength in the soil, and thermodynamic and biochemical stabilities depend on the localization of DOM in the pore space and its chemical structure. Amphiphilic properties represent a valuable diagnostic parameter, which can be used to predict the behavior of DOM in the soil. Acidic components of hydrophobic and hydrophilic nature constitute the major portion of DOM in forest soils of the temperate zone. The hydrophilic fraction includes short-chain aliphatic carboxylic acids, hydrocarbons, and amino acids and is poorly sorbed by the solid phase. However, the existence of this fraction in soil solution is also limited both in space (in the finest pores) and time because of higher accessibility to microbial degradation. The hydrophilic fraction composes the major portion of labile DOM in soils. The hydrophobic fraction consists of soluble degradation products of lignin; it is enriched in structural ortho-hydroxybenzene fragments, which ensure its selective sorption and strong retention in soils. Sorption is favored by low pH values (3.5–5), the high ionic strength of solution, the heavy texture and fine porous structure of soil, the high contents of oxalate- and dithionite-soluble iron (and aluminum) compounds, and hydrological conditions characterized by slow water movement. The adsorbed DOM is chemically and biochemically recalcitrant and significantly contributes to the humus reserves in the low mineral horizons of soils.  相似文献   

10.
Abstract

Plantation establishment using exotic species on disturbed cultivated and undisturbed primary forest soils is common in Gambo district, southern Ethiopia, but their effects on soil properties are not fully known. This study investigated the effects of plantation species on major soil physical and chemical properties and further evaluated the soil quality under different land uses. Soil samples in triplicates, collected under different plantations, were analysed for their physical and chemical properties. Based on these soil properties, an integrated soil quality index was determined. The soil bulk density (BD) varied from 0.72 to 0.80 cm?3 in plantations established on primary forest land and natural forest and from 0.86 to 1.14 g cm?3 in those plantations established on cultivated soils. Also significantly lower pore volume and infiltration rate were observed under plantations established on cultivated lands than those on primary forest soils. Higher water volume (% at ?1500 kPa matric potential) was obtained in soils under Juniperus procera and natural forest compared with that under the rest of the plantations investigated. The concentration of soil organic carbon (SOC) varied from 3.4 to 10.2%, N from 0.3 to 1.0% and Av.P from 1.5 to 7.0% in soils under plantations and natural forest. Exchangeable cations generally showed a decreasing trend with depth in all land use types with minor exceptions. The concentrations of exchangeable Ca+2 varied from 6.5 to 22.7 cmol kg?1 and were significantly higher under Juniperus procera than under Eucalyptus species. The soil under plantations on previously cultivated lands showed soil quality index below 0.5 (the baseline value), while those established on undisturbed forest soil were generally above that value. The study results suggest that selecting species such as Juniperus procera and prolonging the harvesting period would improve and maintain the quality of soil properties.  相似文献   

11.

Purpose

Soil dissolved organic matter (DOM) as the labile fraction of soil organic carbon (SOC) is able to facilitate biogeochemical redox reactions effecting soil respiration and carbon sequestration. In this study, we took soil samples from 20 sites differing in land use (forest and agriculture) to investigate the electron transfer capacity of soil DOM and its potential relationship with soil respiration.

Materials and methods

DOM was extracted from 20 soil samples representing different land uses: forest (nos. 1–12) and agriculture (nos. 13–20) in Guangdong Province, China. Chronoamperometry was employed to quantify the electron transfer capacity (ETC) of the DOM, including electron acceptor capacity (EAC) and electron donor capacity (EDC), by applying fixed positive or negative potentials to a working electrode in a conventional three-electrode cell. The reversibility of electron accepting from or donating to DOM was measured by applying switchable potentials to the working electrode in the electrochemical system with the multiple-step potential technique. Carbon dioxide produced by soil respiration was measured with a gas chromatograph.

Results and discussion

Forest soil DOM samples showed higher ETC and electron reversible rate (ERR) than agricultural soil DOM samples, which may be indicative of higher humification rate and microbial activity in forest soils. The average soil respiration of forest soil (nos. 1–12) and agricultural soil (nos. 13–10) was 26.34 and 18.58 mg C g?1 SOC, respectively. Both EDC and EAC of soil DOM had close relationship with soil respiration (p?<?0.01). The results implied that soil respiration might be accelerated by the electroactive moieties contained in soil DOM, which serve as electron shuttles and facilitate electron transfer reactions in soil respiration and SOC mineralization.

Conclusions

DOM of forest soils showed higher ETC and ERR than DOM of agricultural soils. As soil represents one of the largest reservoirs of organic carbon, soil respiration affects C cycle and subsequently CO2 concentration in the atmosphere. As one of the important characteristics of soil DOM related to soil respiration, ETC has a significant impact on greenhouse gas emission and soil carbon sequestration but has not been paid attention to.  相似文献   

12.
This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35?days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14?days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.  相似文献   

13.
Abstract

Diethylaminoethyl cellulose (DEAE cellulose), a weak anion exchange resin, has been used to isolate dissolved organic matter (DOM) from soil solutions collected from three different soil types, to investigate the amount of DOM isolated from soil solutions of various origin, and the extent to which inorganic ions are isolated together with DOM. The concentration of DOM in the various soil solutions ranged from 2.5 to 32.8 mg#lbL‐1 DOC. More than 80% of dissolved organic carbon (DOC) was usually isolated with DEAE cellulose. High concentrations of aluminum (Al) and sulfate (SO4 2‐) in the soil solutions have reduced DOC recovery. More than 90% of potassium (K+), calcium (Ca2+), and magnesium (Mg2+), were removed during the isolation procedure, but 10 to 20% of Al and 30 to 40% of iron (Fe) were isolated together with the DOC, probably due to strong complexation to DOM. The advantages of using DEAE cellulose were that the use of strong acids and bases was limited and that pH adjustments of the sample, leading to chemical modification of DOM, was not required.  相似文献   

14.
The kinetics of oxidation of iron in an aqueous suspension of a thoroughly reduced low-humus tropical rice paddy soil were followed by measuring the extractable ferrous iron in the whole suspension and in the solution. Three-quarters of the initial ferrous iron was oxidized rapidly (first-order rate constant = 9.2 × 10?5 s?1). The subsequent reaction was slow (first-order rate constant = 9.4 × 10?7 S?1) and was not studied in detail. The pH fell from 6.6 to 4.9 over the course of the fast reaction. In further experiments the rate of oxidation was followed at constant pH values in the range 6.5 to 4.5. It was concluded that the oxidation of adsorbed iron was much faster than solution iron, and that the adsorbed iron was oxidized at a rate that was nearly independent of the pH. During the reaction some ferrous iron is adsorbed on the ferric hydroxide formed. The proportion of the remaining ferrous iron adsorbed on ferric hydroxide rather than the original exchange surfaces was high at pH > 6.0 and low at pH < 5.0. The rate of oxidation of the ferrous iron was similar whether it was adsorbed on exchange sites or on the ferric hydroxide formed. Since the rate of oxidation of the iron adsorbed on ferric hydroxide was very much slower than that on ferric hydroxide formed in the absence of soil, it is suggested that the rate in soil may be controlled by diffusion of oxygen to the adsorption sites.  相似文献   

15.
Tree species have significant effects on the availability and dynamics of soil organic matter. In the present study, the pool sizes of soil dissolved organic matter (DOM), potential mineralizable N (PMN) and bio-available carbon (C) (measured as cumulative CO2 evolution over 63 days) were compared in soils under three coniferous species — 73 year old slash (Pinus elliottii), hoop (Araucaria cunninghamii) and kauri (Agathis robusta) pines. Results have shown that dissolved organic N (DON) in hot water extracts was 1.5–1.7 times lower in soils under slash pine than under hoop and kauri pines, while soil dissolved organic C (DOC) in hot water extracts tended to be higher under slash pine than hoop and kauri pines but this was not statistically significant. This has led to the higher DOC:DON ratio in soils under slash pine (32) than under hoop and kauri pines (17). Soil DOC and DON in 2 M KCl extracts were not significantly different among the three tree species. The DOC:DON ratio (hot water extracts) was positively and significantly correlated with soil C:N (R2 = 0.886, P < 0.01) and surface litter C:N ratios (R2 = 0.768, P < 0.01), indicating that DOM was mainly derived from litter materials and soil organic matter through dissolution and decomposition. Soil pH was lower under slash pine (4.5) than under hoop (6.0) and kauri (6.2) pines, and negatively correlated with soil total C, C:N ratio, DOC and DOC:DON ratio (hot water extracts), indicating the soil acidity under slash pine favored the accumulation of soil C. Moreover, the amounts of dissolved inorganic N, PMN and bio-available C were also significantly lower in soils under slash pine than under hoop and kauri pines. It is concluded that changes in the quantity and quality of surface litters and soil pH induced by different tree species largely determined the size and quality of soil DOM, and plantations of hoop and kauri pine trees may be better in maintaining long-term soil N fertility than slash pine plantations.  相似文献   

16.
The mobility of polycyclic aromatic hydrocarbons (PAH) in soils can be influenced by the presence of dissolved organic matter. Partition coefficients of selected polycyclic aromatic hydrocarbons, ranging from 3-ring to 6-ring compounds, to water-soluble soil organic matter (WSSOM) were determined. Partition coefficients were determined for WSSOM obtained from two soils under agricultural use and forest and for commercially available humic acid (Aldrich), taking advantage of a reversed phase (C18) separation method. The WSSOM was characterised with regard to charge and hydrophilic/hydrophobic properties with a dissolved organic matter (DOM) fractionation method. No sorption to WSSOM was found for the tri- and tetracyclic PAH, whereas the penta- and hexacyclic PAH showed a significant binding to both types of WSSOM and to Aldrich humic acid. The affinity of penta- and hexacyclic PAH to WSSOM was considerably lower compared to the affinity to Aldrich humic acid. This is suggested to be due to the lower amount of hydrophobic fractions, c. 30%, in the natural WSSOM as compared to Aldrich humic acid. Effective partition coefficients (Koceff) for the sorption of PAH to bulk soil calculated from KDOC and DOM in the naturally occurring concentration range were only 60–70% of the Koc values in pure water. The impact of DOM on pollutant transport is further influenced by non-equilibrium behaviour of PAH in soils and by sorption of DOM to the solid-soil matrix. Several scenarios are described in which the effect of DOM on pollutant transport may become important.  相似文献   

17.
The cycling of dissolved organic matter (DOM) in soils is controversial. While DOM is believed to be a C source for soil microorganisms, DOM sorption to the mineral phase is regarded as a key stabilization mechanism of soil organic matter (SOM). In this study, we added 14C-labelled DOM derived from Leucanthemopsis alpina to undisturbed soil columns of a chronosequence ranging from initial unweathered soils of a glacier forefield to alpine soils with thick organic layers. We traced the 14C label in mineralized and leached DOM and quantified the spatial distribution of DO14C retained in soils using a new autoradiographic technique. Leaching of DO14C through the 10 cm-long soil columns amounted up to 28% of the added DO14C in the initial soils, but to less than 5% in the developed soils. Biodegradation hardly contributed to the removal of litter-DO14C as only 2–9% were mineralized, with the highest rates in mature soils. In line with the mass balance of 14C fluxes, measured 14C activities in soils indicated that the major part of litter DO14C was retained in soils (>80% on average). Autoradiographic images showed an effective retention of almost all DO14C in the upper 3 cm of the soil columns. In the deeper soil, the 14C label was concentrated along soil pores and textural discontinuities with similarly high 14C activities than in the uppermost soil. These findings indicate DOM transport via preferential flow, although this was quantitatively less important than DOM retention in soils. The leaching of DO14C correlated negatively with oxalate-extractable Al, Fe, and Mn. In conjunction with the rapidity of DO14C immobilization, this strongly suggests that sorptive retention DOM was the dominating pathway of litter-derived DOM in topsoils, thereby contributing to SOM stabilization.  相似文献   

18.
Iron speciation in soils is still poorly understood. We have investigated inorganic and organic standard substances, diluted mixtures of common Fe minerals in soils (pyrite, ferrihydrite, goethite), soils in a forested watershed which constitute a toposequence with a hydrological gradient (Dystric Cambisol, Dystric Planosol, Rheic Histosol), and microsites of a dissected soil aggregate by X‐ray Absorption Near Edge Spectroscopy (XANES) at the iron K‐edge (7112 eV) to identify different Fe(II) and Fe(III) components. We calculated the pre‐edge peak centroid energy of all spectra and quantified the contribution of different organic and inorganic Fe‐bearing compounds by Linear Combination Fitting (LCF) conducted on the entire spectrum (E = 7085–7240 eV) and on the pre‐edge peak. Fe‐XANES conducted on organic and inorganic standards and on synthetic mixtures of pyrite, ferrihydrite and goethite showed that by calculating the pre‐edge peak centroid energy, the Fe(II)/Fe(III) ratio of different Fe‐bearing minerals (Fe sulphides, Fe oxyhydroxides) in mineral mixtures and soils can be quantified with reasonable accuracy. A more accurate quantification of the Fe(II)/Fe(III) ratio was possible with LCF conducted on the entire XANES spectrum. For the soil toposequence, an increased groundwater influence from the Cambisol to the Histosol was reflected in a larger contribution of Fe(II) compounds (Fe(II) silicate, Fe monosulphide, pyrite) and a smaller contribution of Fe(III) oxyhydroxides (ferrihydrite, goethite) to total iron both in the topsoil and the subsoil. In the organic topsoils, organically bonded Fe (33–45% of total Fe) was 100% Fe(III). For different microsites in the dissected aggregate, spatial resolution ofμ‐XANES revealed different proportions of Fe(II) and Fe(III) compounds. Fe K‐edge XANES andμ‐XANES allows an approximate quantification of Fe(II) and Fe(III) and different Fe compounds in soils and (sub)micron regions of soil sections, such as mottles, concretions, and rhizosphere regions, thus opening new perspectives in soil research.  相似文献   

19.
Iron deficiency anemia is a widespread occurrence. Consequently, iron is commonly added in cereal fortification programs. However, many iron sources cause undesirable sensory changes, especially color changes, in the food being fortified. This study evaluated the effect of different iron sources on CIE L*a*b* color values and sensory color perception in fortified corn tortillas. Corn masa flour was fortified with micronutrient premix containing vitamins, zinc, and one of eight iron compounds. Iron sources included ferrous fumarate (F), ferrous sulfate (S), ferric orthophosphate (OP), ferrous lactate (L), ferrous gluconate (G), ferric pyrophosphate (PP), sodium iron (III)‐EDTA, and A‐131 electrolytic iron (E), with addition levels adjusted based on bioavailability. Control (Ct) samples were prepared with all micronutrients except iron. All iron‐fortified tortillas had lower L* values and were significantly darker than control tortillas. Based on instrumental color values and Mexican regulatory recommendations, five treatments were selected for further testing. A difference‐from‐control sensory test was conducted comparing PP, E, OP, F, and S with Ct tortillas. Sensory rankings were C t > E = PP > OP > F > S. A‐131 electrolytic iron is recommended for fortification of corn tortillas due to minimal effect on color and significantly lower cost than other iron sources evaluated.  相似文献   

20.
Contaminated riparian soils can release metals to surface water. Periodic waterlogging affects metal mobility but the processes and soil factors governing net trends are not well understood. Experiments were combined with geochemical modelling to identify processes explaining the dynamics of zinc (Zn) in contaminated soils following waterlogging. Samples were collected from 12 Spodosols near streams in a metal‐contaminated area and four similar but uncontaminated soils were sampled in a reference area. Air‐dried samples were submerged and incubated under N2. The soil redox potential decreased from 470 mV initially to approximately 30 mV over 2 months. The pore‐water Zn concentrations surprisingly increased over the same period by, on average, a factor of 18 (range 0.6–80; immobilization in one soil only) despite an increase in pH of 1.8 units, on average. Dissolved organic matter (DOM) in the soil solution increased during waterlogging but the observed increase in Zn solubility could not be explained by increased complexation with DOM, because the estimated Zn2+ activity also increased by a factor of 18 on average (range 0.2–82). Speciation modelling suggests that Zn mobilization during waterlogging results from Fe2+ displacing sorbed Zn2+ from particulate organic matter and from dissolution of Zn‐bearing Fe/Mn oxyhydroxides. This hypothesis is supported by the significant positive correlation (r = 0.87, n = 13) between the factor change in pore‐water Zn concentration and the ratio of dithionite‐extractable Fe to organic carbon content. These results show that Fe dynamics are important for predicting the fate of trace metals in anoxic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号