首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
农田土壤有机碳库是全球碳循环的重要组成部分,其积累和分解直接影响陆地生态系统碳贮藏与全球碳平衡。土壤团聚体是土壤结构的物质基础和土壤肥力的重要载体,也是土壤有机碳的固定场所。稳定~(13)C同位素示踪技术是研究土壤碳动态变化的有效手段,能够揭示新输入碳在土壤及团聚体中赋存状态、周转过程以及微生物的调节机制。本文主要归纳与阐述了稳定~(13)C同位素示踪技术在农田土壤有机碳循环及土壤团聚体固碳机理方面的研究进展,提出~(13)C同位素示踪技术在未来土壤碳循环和固碳机制方面的主要研究方向。  相似文献   

2.
土壤团聚体对有机碳物理保护机制研究   总被引:2,自引:0,他引:2  
《土壤与作物》2015,(2):85-90
提升土壤中有机碳固定量在修复退化土壤,降低土壤CO2释放,增加土壤肥力,提高作物生产力方面具有重要作用。在有机碳固定方面,土壤团聚体对有机碳的物理保护是土壤固碳的重要机制之一。文章从1土壤团聚体形成概念模型;2土壤团聚体对有机碳的物理保护;3土壤团聚体物理性质与有机碳固定三个方面阐述了国内外关于土壤团聚体对有机碳物理保护机制的研究进展,并提出今后可能的研究方向。  相似文献   

3.
固碳土壤学的核心科学问题与研究进展   总被引:57,自引:10,他引:57  
土壤碳固定是当前有关陆地生态系统碳循环与全球变化的地球表层过程研究的重要优先领域。国际社会对全球农业温室气体减排的需求,驱动着土壤学对土壤固碳容量与潜力、固碳与减排的过程与机理的前沿探索,并越来越呈现为一个独特的土壤学新兴分支学科——固碳土壤学(SoilScience of C Sequestration)。本文围绕固碳土壤学的基本科学问题,回顾了最近10多年来,特别是最近5年来国内外关于土壤固碳研究的主要进展,讨论了固碳土壤学中的核心科学问题是土壤固碳容量与固碳作用的机理,论述了土壤物理保护、碳化学结合与碳化学转化稳定与固碳容量及稳定化的关系,提出了土壤-植物(作物)-微生物相互作用是当前固碳土壤学的前沿领域和深化方向,并结合国内对水稻土固碳的研究进展,提出了固碳土壤学的概念性框架,认为我国亟待加强固碳土壤学研究,深入探索我国农业经营管理特色下土壤固碳容量、过程、机理,丰富和发展农业土壤碳循环理论,并服务于全球变化生物学和国家碳管理。  相似文献   

4.
土壤团聚体中有机质研究进展   总被引:70,自引:2,他引:68  
窦森  李凯  关松 《土壤学报》2011,48(2):412-418
团聚体和有机质是保持土壤结构和肥力的基础,二者相互作用,不可分割,前者是后者存在的场所,后者是前者存在的胶结物质。在现有资料中,分别以团聚体和有机质为主要研究对象的报道较多,而团聚体中有机质性质的研究较少。本文从土壤有机质物理分组与化学分组相结合的角度,介绍国内外有关土壤团聚体中有机质的数量和特性及其对农业措施的响应方面的研究进展,内容包括团聚体分组、数量和稳定性,团聚体中的有机质的数量、未分组有机质的性质和腐殖物质组分的性质,颗粒分组中的有机质数量和性质,团聚体-密度联合分组中的有机质的数量和性质,不同土地利用方式和长期耕作施肥对团聚体中的有机质的影响等。以期推动不同粒级团聚体和不同HS组分相互作用及其对土壤固碳和肥力贡献研究工作的开展,为探索土壤有机质物理保护与化学保护之间的关系,揭示土壤固碳和培肥机理提供依据。  相似文献   

5.
陈小红  段争虎 《土壤通报》2007,38(4):765-772
土壤碳库是陆地生态系统中最大的碳库,在全球碳循环中起着非常重要的作用。本文论述了土壤有机碳对土壤生产力和气候变化的影响。阐述了影响土壤碳含量的各种自然因素和人为因素。对土壤碳素固定以及影响土壤碳素平衡的物理、化学及生物稳定性的各种机理进行了详细评述,阐明了土壤有机碳调控的方法和途径。为控制和调节土壤有机碳储量提供了理论依据。这对今后提高土壤生产力、利用土壤的固碳潜力来降低大气中二氧化碳的浓度和缓解气候变化有着非常重要的意义。  相似文献   

6.
卢孟雅  丁雪丽 《土壤》2024,56(1):10-18
稻田土壤碳循环是我国陆地生态系统碳循环的重要组成部分。促进稻田生态系统碳的固定及稳定对减缓全球气候变化起着不容忽视的作用。微生物主导的有机碳转化过程是土壤碳循环研究的核心,微生物同化代谢介导的细胞残体迭代积累在土壤有机碳长期截获和稳定过程中发挥重要作用。与旱地土壤相比,关于稻田土壤中微生物残体积累动态对外源有机物质如作物秸秆输入的响应及主要影响因子的认识还相对有限,对微生物通过同化作用参与土壤固碳的过程和机制尚缺乏系统认识。基于此,本文介绍了微生物残体对土壤有机碳库形成和积累的重要性及评价指标,重点探讨了秸秆还田对稻田土壤微生物残体积累动态以及外源秸秆碳形成细胞残体转化过程的影响,分析了影响微生物残体积累转化的主要气候因素和土壤因素,最后提出了未来应借助先进的光谱和高分辨率成像技术并结合同位素示踪对微生物残体的稳定性与机理开展更为深入的研究。  相似文献   

7.
大量研究证明稻田土壤比旱地土壤更具固碳潜力,但至今对稻田土壤固碳机制的认识尚不甚清楚。本研究于2007年利用两个开垦年代相似,近20多年分别一直种植双季稻和双季玉米的长期定位试验,来比较不同种植模式下土壤有机碳及其组分的差异。结果表明,水田土壤总有机碳和总氮的浓度分别是旱地的2.2倍和2.5倍。与试验前相比,水稻种植显著提高了土壤有机碳的含量,增幅达到30.8%,而旱地的前后差异不显著。在所有团聚体粒径水平上,水田有机碳的浓度均显著高于旱地。其中53~250μm微团聚体相差最大,水田是旱地的近3倍。水田微团聚体保护碳(iPOM_m)在土壤中的浓度是旱地的4.2倍,微团聚体保护碳在总有机碳中的比重也显著高于旱地,达到25.5%,是旱地的2倍。水田和旱地iPOM_m组分碳的差异能够解释其总有机碳差异的42.8%。上述结果可以增强我们对稻田土壤固碳机制的了解,为稻田土壤碳管理提供理论依据。  相似文献   

8.
土壤团聚体与有机碳稳定机制的研究进展   总被引:12,自引:3,他引:9  
《土壤通报》2017,(6):1523-1529
土壤不同稳定机制(物理、化学、生物)的有机碳是土壤中主要的物质基础,在土壤的各方面特性中都发挥着巨大的作用。土壤固定外源碳的能力与土壤中团聚体的组成息息相关。团聚体的评价指标很多,但其中应用最广泛的是:水稳性团聚体的数量、平均重量直径(MWD)、平均重量直径变化值和分形维数(fractal dimension,D)。相比土壤总有机碳(SOC),土壤物理、化学、生化的不同稳定机制团聚体有机碳在外界条件变化时,能够更好更快的反映土壤质量的变化。本文重点阐述了目前土壤团聚体形成与稳定机制以及不同稳定机制下的有机碳分离技术研究进展,并提出未来土壤团聚体与有机碳方面的研究重点。  相似文献   

9.
温室气体排放引起的全球气候变暖和平流层臭氧空洞已成为当前人们关注的环境问题之一。土壤碳库作为地表生态系统中最活跃的碳库之一,是甲烷、二氧化碳、一氧化二氮等温室气体的重要释放源,也是重要的吸收汇。因此,寻找农田土壤系统碳管理的有效方法已经成为缓解温室效应的重要科学问题。西方发达国家已将固碳农业作为环境管理的重要导向,应用颗粒分组13CNMR或CPMAS-NMR技术对土壤碳固定的机制研究指出微团聚体与矿物-粘粒复合体的相互作用是土壤有机碳稳定存在的主要方式,揭示了土壤有机碳的腐殖质转化及其与土壤矿物、金属氧化物结合的微观水平,且从土壤物理结构、化学组成和生物学特性等多学科交叉研究土壤有机碳的固定机理及其稳定机制。长期传统的土地利用方式和管理措施所导致的土壤有机碳含量、密度及垂直分布的变化是造成土壤碳库损失的主要原因,为了增加农业生态系统土壤有机碳的含量,土地利用方式和农业管理措施应该从增加有机碳输入量和减少有机碳矿化两方面着手,加强对农业土壤固碳潜力和土壤碳库稳定性影响因素的多角度研究。  相似文献   

10.
土壤团聚体中有机碳研究进展   总被引:64,自引:4,他引:60  
增加土壤有机碳有助于农业可持续发展, 同时对缓解温室气体增加造成的全球气候变暖等具有重要意义。土壤团聚体是土壤的重要组成部分, 影响土壤的各种物理化学性质。土壤团聚体和有机碳是不可分割的, 前者是后者存在的场所, 后者是前者存在的胶结物质。本文在综合各方面研究的基础上, 阐述了土壤团聚体和有机碳的依存关系, 影响团聚体固碳的几大因素, 团聚体对有机碳的物理保护机制以及目前应用比较广泛的团聚体内有机碳的研究方法, 为以后的研究提供理论和方法上的支持。  相似文献   

11.
Understanding the natural variation of carbon within the soil, and between soil types, is crucial to improve predictive models of carbon cycling in high and mid-latitude ecosystems in response to global warming. We measured the carbon isotope distributions (12C, 13C and 14C) in soil organic matter (SOM) from Podzols, Brown Podzolic soils and Stagnohumic Gleysols from the British uplands, which were then compared with the total amounts and turnover of carbon in these soils. We did so by sampling at 2-cm intervals down six profiles of each soil type. The average amount of carbon stored in the top 28 cm of the Stagnohumic Gleysols is twice that of the other two soils. The 13C content and 14C age show a general increase with depth in all soils, and there is also a significant correlation between isotopic variation and the main pedogenic features. The latter suggests that soil-forming processes are significant in determining the carbon isotope signatures retained in SOM. Organic matter formed since 1960 is not found below 5 cm in any of the soils. Evidently organic detritus in the surface layers (LF and Oh) is rapidly mineralized. This accords with our modelled net annual C fluxes which show that more than 80% of the CO2 emanating from these soils is derived from the top 5 cm of each profile. Although these soils contain much carbon, they do not appear to assimilate and retain SOM rapidly. The mean residence time of most of their carbon is in the 2–50 years range, so the soils are fairly ineffective sinks for excess CO2 in the atmosphere. Under the predicted future ‘greenhouse’ climate, likely to favour more rapid microbial decomposition of organic materials, these soils are a potential source of CO2 and are therefore likely to accelerate global warming.  相似文献   

12.
In the highly weathered soils of humid tropical forests, iron (Fe) plays a key role in ecosystem biogeochemical cycling through its interactions with carbon (C) and phosphorus (P). We used a laboratory study to explore the role of C quantity and quality in Fe reduction and associated P mobilization in tropical forest soils. Soils were incubated under an ambient atmosphere headspace (room air) with multiple levels of leaf litter leachate or acetate additions. Net Fe reduction occurred in all the treatments and at every time point. The more complex mixture of organic compounds in leaf litter leachate stimulated Fe reduction as much acetate, an easily fermentable C source. At the end of the experiment, Fe reduction was generally greater with higher C additions than in the low C additions and controls. The microbial biomass P had increased significantly suggesting rapid microbial uptake of P liberated from Fe. This occurred without increases in the available (NaHCO3) P pool. The immobilization of P by microbes during the incubation provides a P conservation mechanism in these soils with fluctuating redox potential, and may ultimately stimulate more C cycling in these highly productive ecosystems. Iron cycling appears to be an important source of P for the biota and can contribute significantly to C oxidation in upland tropical forest soils.  相似文献   

13.
Yang  Jin-Ling  Yuan  Da-Gang  Zhao  Yu-Guo  He  Yue  Zhang  Gan-Lin 《Journal of Soils and Sediments》2021,21(5):2154-2164
Purpose

With increasing urban area and population, global cities are playing a more important role in the alteration of the global biogeochemical cycles. The aims of this study are to understand the concentrations and stoichiometric relations of biogenic elements (C, N, and P) in urban soils, further to reveal the effects of C, N, and P accumulation on the urban environment.

Materials and methods

We collected 317 surface (0–10 cm) soil samples taken from Nanjing, China, a typical city with more than 2000 years of history. These soil samples were located in different urban zones of Nanjing with different land use histories. The soil C, N, and P concentrations were determined. The stoichiometric relations of soil C, N, and P were investigated in urban soils. Meanwhile, some studies on sources of C, N, and P in diverse urban settings from literature were combined to explore the universal rule of C, N, and P cycling and their ecological and environmental effects in urban area.

Results and discussion

Compared to rural soils, more C, N, and P are accumulated in the urban soils, which also change their stoichiometric relations. The concentrations of OC, TN, and TP in urban top soils are 17.0 ± 9.69 g kg?1, 1.53 ± 0.92 g kg?1, and 1.31 ± 0.67 g kg?1, respectively. The mean atomic ratio of C:N:P is 37:3:1 in the surface of urban soils that strictly differs from natural soils in China and the whole world. The mean of C:N ratio in urban soils is similar to that of agriculture, grassland, and forest soils. However, the ratios of C:P and N:P in urban soils are much lower than that in agricultural, forest, and grassland soils. This implies that P is extremely enriched in the urban soils. The high C in urban soils are considered coming from natural and anthropogenic sources. The high N and P mainly come from anthropogenic sources.

Conclusions

The well-constrained C:N:P ratio in rural soils does not apply for urban soils. The abnormal C:N:P ratio of urban soils is the result of unbalanced accumulation of C, N, and P from human activities. Urban soils are already an important storage of carbon. High N and P in urban soils may bring threat of surface water eutrophication and ground water contamination. These effects are expected to increase with the city development time.

  相似文献   

14.
中国不同生态系统土壤硅的研究进展   总被引:2,自引:0,他引:2  
硅是土壤和岩石的一种基本成分,具有促进植物的生长、增强植物抗性、参与生物地球化学循环过程、调节全球碳循环和缓解全球气候变暖趋势等方面的作用。本文在全面介绍土壤硅的形态、有效性及生物循环特征基础上,分析了我国不同生态系统中土壤硅及植硅体含量状况,阐明了影响土壤有效硅及植硅体的因素,重点阐述了近年来有关稻田土壤有效硅与水稻生长及森林土壤有效硅与林分植硅体形成关系,以及植硅体的形成机制及其在全球土壤碳汇中的重要作用,并提出需要进一步研究的问题,可为未来我国开展土壤有效硅与植硅体研究提供借鉴。  相似文献   

15.
In the last years, archaea have been identified as key players in global N cycling, especially in nitrification. Ammonia-oxidizing archaea (AOA) are postulated to belong to the new phylum Thaumarchaeota for which the lipid crenarchaeol should be specific. The ratios between two independent markers for AOA, the ammonia monooxygenase gene and crenarchaeol have been studied in different aerated soils, but so far not in flooded soils. This study investigated ammonia-oxidizing archaea in four paddy soils and a tidal wetland. Ratios were significantly higher in the paddy soils compared to the tidal wetland and in general higher as in upland soils, leading to the assumption that archaeal ammonia oxidizers different from crenarchaeol-containing Thaumarchaeota may play an important role in paddy soils.  相似文献   

16.
无机氮对土壤中有机碳矿化影响的探讨   总被引:15,自引:2,他引:15       下载免费PDF全文
采用1 4 C同位素示踪恒温密闭培养法 ,研究了秸秆和化肥配合施用体系中 ,无机氮对1 4 C秸秆碳矿化的影响 ,培养期一年。结果表明 ,在非石灰性土壤中 ,无机氮的施用促进了1 4 C秸秆碳的矿化 ,相对增加了土壤固有碳 ( 1 2 C)的固持 ,两者间的互补显示无机氮对土壤总碳矿化的影响不大 ;淹水土壤中的1 4 C秸秆碳年矿化率比旱地高 ,发现无机氮对1 4 C秸秆碳年矿化率的增加不论在旱地或水田状况是近似的。在石灰性土壤中 ,无机氮对1 4 C秸秆碳、土壤固有碳的矿化均起到抑制作用 ,没有发现无机氮对有机碳矿化的促进。对有机肥和无机肥配合施用体系中 ,化学氮肥对土壤有机碳转化影响 ,以及化学氮肥在土壤有机碳内循环中的作用功能等 ,提出了一些新的见解  相似文献   

17.
农田土壤的固碳潜力对于理解陆地生态系统碳循环和气候变化至关重要.分别选取亚热带区4种典型稻田和旱地土壤,设置裸土光照和裸土黑暗处理,探讨土壤有机碳(SOC)及其活性组分(可溶性有机碳(DOC)和微生物生物量碳(MBC))对光照和黑暗条件的响应。结果表明,与培养前相比,培养80 d后,光照和黑暗培养下稻田及旱地土壤SOC含量差异不显著,这可能与土壤SOC含量变化是一个缓慢的过程有关.光照和黑暗培养均显著提高了土壤DOC含量(与培养前相比,光照和遮光培养平均分别提高73.37%和80.58%),而MBC显著降低(与培养前相比,光照和遮光培养平均分别降低35.58%和32.32%)。相关分析表明,培养后的土壤DOC含量与土壤粘粒含量呈极显著正相关性(P<0.01),而与土壤原有碳氮水平呈极显著负相关;土壤MBC则恰好相反,MBC与土壤粘粒含量呈极显著负相关,而与土壤原有碳氮水平呈极显著正相关.本研究表明,短期(80d)的光照和黑暗培养对稻田及旱地土壤SOC含量变化影响不大,而显著改变了有机碳活性组分(DOC和MBC)含量,进一步说明了土壤活性有机碳是土壤中活性化学组分,随环境条件变化表现出强烈的变化趋势。  相似文献   

18.
Grassland ecosystems contain ∼12% of global soil organic carbon (C) stocks and are located in regions where global climate change will likely alter the timing and size of precipitation events, increasing soil moisture variability. In response to increased soil moisture variability and other forms of stress, microorganisms can induce ecosystem-scale alterations in C and N cycling processes through alterations in their function. We explored the influence of physiological stress on microbial communities by manipulating moisture variability in soils from four grassland sites in the Great Plains, representing a precipitation gradient of 485-1003 mm y−1. Keeping water totals constant, we manipulated the frequency and size of water additions and dry down periods in these soils by applying water in two different, two-week long wetting-drying cycles in a 72-day laboratory incubation. To assess the effects of the treatments on microbial community function, we measured C mineralization, N dynamics, extracellular enzyme activities (EEA) and a proxy for substrate use efficiency. In soils from all four sites undergoing a long interval (LI) treatment for which added water was applied once at the beginning of each two-week cycle, 1.4-2.0 times more C was mineralized compared to soils undergoing a short interval (SI) treatment, for which four wetting events were evenly distributed over each two-week cycle. A proxy for carbon use efficiency (CUE) suggests declines in this parameter with the greater soil moisture stress imposed in LI soils from all four different native soil moisture regimes. A decline in CUE in LI soils may have been related to an increased effort by microbes to obtain N-rich organic substrates for use as protection against osmotic shock, consistent with EEA data. These results contrast with similar in situ studies of response to increased soil moisture variability and may indicate divergent autotrophic vs. heterotrophic responses to increased moisture variability. Increases in microbial N demand and decreases in microbial CUE with increased moisture variability observed in this study, regardless of the soils’ site of origin, imply that these systems may experience enhanced heterotrophic CO2 release and declines in plant-available N with climate change. This has particularly important implications for C budgets in these grasslands when coupled with the declines in net primary productivity reported in other studies as a result of increases in precipitation variability across the region.  相似文献   

19.
The quantification of carbon (C) and nitrogen (N) cycling inecosystems is important for (a) understanding changes inecosystem structure and function with changes in land use, (b)determining the sustainability of ecosystems, and (c) balancingthe global C budget as it relates to global climate change.A meso-scale study was conducted to determine regional effectsof climate change on C and N cycling within disturbedecosystems. Objectives of the research were to quantify (a)sediment yield, (b) current C storage in vegetation and soils,and (c) soil C efflux from both abandoned and rehabilitatedcoal surface-mined lands in Ohio. A dynamic model was developedto simulate sediment yield, grassland production, and C and Ncycling on surface-mined lands. Evaluation of plant productionand soil erosion submodels with data sets from surface-minedlands in the mid-western U.S. resulted in r2 values of 0.99 and0.97, respectively. Depending on the initial values of soil organic carbon (SOC),model simulations estimated that unvegetated surface-mined landsin Ohio yield approximately 441,325 Mg yr-1 of sediment andemit between 2,000–20,000 Mg yr-1 of C to the atmosphere fromdecomposition of SOC. While rehabilitated lands had a higher Cefflux rate than barren lands, a positive C sequestration rateof 18.4 Mg km-2 yr -1 was estimated as a result oforganic matter additions. This sequestion rate increasedconsiderably under projected climate change scenarios, while itdecreased when simulated rehabilitated grasslands were harvestedfor hay. Changes in land use and cover can cause surface-minedlands to be either a net sink or source for C. Successful rehabilitation of mined lands can decrease erosion and promotesoil C sequestration, while at the same time providingadditional lands for the management of natural resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号