首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了快速精准地识别复杂果园环境下的葡萄目标,该研究基于YOLOv5s提出一种改进的葡萄检测模型(MRWYOLOv5s)。首先,为了减少模型参数量,采用轻量型网络MobileNetv3作为特征提取网络,并在MobileNetv3的bneck结构中嵌入坐标注意力模块(coordinate attention,CA)以加强网络的特征提取能力;其次,在颈部网络中引入RepVGG Block,融合多分支特征提升模型的检测精度,并利用RepVGG Block的结构重参数化进一步加快模型的推理速度;最后,采用基于动态非单调聚焦机制的损失(wise intersection over union loss,WIoU Loss)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的MRW-YOLOv5s模型参数量仅为7.56 M,在测试集上的平均精度均值(mean average precision,mAP)达到97.74%,相较于原YOLOv5s模型提升了2.32个百分点,平均每幅图片的检测时间为10.03 ms,比原YOLOv5s模型减少了6.13 ms。与主流的目标检测模型S...  相似文献   

2.
在高架栽培环境下,精准识别草莓果实并分割果梗对提升草莓采摘机器人的作业精度和效率至关重要。该研究在原YOLOv5s模型中引入自注意力机制,提出了一种改进的YOLOv5s模型(ATCSP-YOLOv5s)用于高架草莓的果实识别,并通过YOLOv5s-seg模型实现了果梗的有效分割。试验结果显示,ATCSP-YOLOv5s模型的精确率、召回率和平均精度值分别为97.24%、94.07%、95.59%,较原始网络分别提升了4.96、7.13、4.53个百分点;检测速度为17.3帧/s。此外,YOLOv5s-seg果梗分割模型的精确率、召回率和平均精度值分别为82.74%、82.01%和80.67%。使用ATCSP-YOLOv5s模型和YOLOv5s-seg模型分别对晴天顺光、晴天逆光和阴天条件下的草莓图像进行检测,结果表明,ATCSP-YOLOv5s模型在3种条件下识别草莓果实的平均精度值为95.71%、95.34%、95.56%,较原始网络提升4.48、4.60、4.50个百分点。YOLOv5s-seg模型在3种条件下分割草莓果梗的平均精度值为82.31%、81.53%、82.04%。该研究为草莓采摘机器人的自动化作业提供了理论和技术支持。  相似文献   

3.
采用改进YOLOv4-tiny的复杂环境下番茄实时识别   总被引:7,自引:7,他引:0  
实时识别番茄的成熟度是番茄自主采摘车的关键功能。现有目标识别算法速度慢、对遮挡番茄和小番茄识别准确率低。因此,该研究提出一种基于改进YOLOv4-tiny模型的番茄成熟度识别方法。在头部网络(Head network)部分增加一个76×76的检测头(y3)来提高小番茄的识别准确率。为了提高被遮挡番茄的识别准确率,将卷积注意力模块(Convolution Block Attention Module,CBAM)集成到YOLOv4-tiny模型的骨干网络(Backbone network)部分。在深层卷积中使用Mish激活函数替代ReLU激活函数以保证提取特征的准确性。使用密集连接的卷积网络(Densely Connected Convolution Networks, DCCN)来加强全局特征融合,并建立红风铃番茄成熟度识别的数据集。试验结果表明,与YOLOv3、YOLOv4、YOLOv4-tiny、YOLOv5m和YOLOv5l模型相比,改进YOLOv4-tiny-X模型的平均精度均值(mean Average Precision, mAP)分别提高了30.9、0.2、0.7、5.4和4.9个百分点,在Nvidia GTX 2060 GPU 上达到111帧/s的速度,平均精度均值达到97.9%。不同模型的实时测试可视化结果表明,改进模型能够有效解决遮挡和小番茄识别准确率低的问题,可为番茄采摘车研制提供参考。  相似文献   

4.
针对目前苹果在复杂环境下难以进行生长状态分类识别、姿态信息同步获取等问题,该研究提出了一种基于改进YOLOv7的苹果生长状态分类和果实姿态融合识别方法。首先改进多尺度特征融合网络,在骨干网络中增加160×160的特征尺度层,用于增强模型对微小局部特征的识别敏感度;其次引入注意力机制CBAM(convolutional block attention module),改善网络对输入图片的感兴趣目标区域的关注度;最后采用Soft-NMS算法,能够有效避免高密度重叠目标被一次抑制从而发生漏检现象。此外,结合UNet分割网络和最小外接圆及矩形特征获取未遮挡苹果姿态。试验结果表明,改进YOLOv7的识别精确率、召回率和平均识别精度分别为86.9%、80.5%和87.1%,相比原始YOLOv7模型分别提高了4.2、2.2和3.7个百分点,与Faster RCNN、YOLOv5s、YOLOv5m相比,检测平均准确率分别提升了18.9、7.2和5.9个百分点,另外苹果姿态检测方法的准确率为94%。该文模型能够实现苹果生长状态分类及果实姿态识别,可为末端执行器提供了抓取方向,以期为苹果无损高效的采摘奠定基础。  相似文献   

5.
现有的目标检测算法检测茶叶嫩芽的精度较低,为提高茶叶嫩芽的检测精度,该研究提出一种基于改进YOLOv5s网络模型的茶叶嫩芽检测算法。该算法将骨干特征提取网络中的空间金字塔池化结构(spatial pyramid pooling-fast,SPPF)替换为空洞空间卷积池化金字塔结构(atrous spatial pyramid pooling,ASPP),增强模型对不同分辨率下目标的识别能力;针对茶叶嫩芽的小目标特征,在颈部网络中引入可加权重的双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),提高特征融合的效率,同时在颈部网络中的每个集中综合卷积模块(concentrated-comprehensive convolution block,C3)后添加卷积注意力模块(convolutional block attention module,CBAM)来提高模型关注小目标特征的能力。试验结果表明,改进后获得的Tea-YOLOv5s比原模型的准确率(precision,P)、召回率(recall,R)和平均精度值(mean average precision,mAP)分别高出4.4、0.5和4个百分点,且模型鲁棒性强,在多个场景下茶叶嫩芽的检测中具有更高的置信度分数。改进后的模型可为茶叶的产量估计和茶叶采摘机器人的嫩芽识别奠定基础。  相似文献   

6.
基于面向通道分组卷积网络的番茄主要器官实时识别   总被引:2,自引:2,他引:0  
番茄器官的实时准确识别是实现自动采摘、靶向施药等自动化生产的关键。该文提出一种基于面向通道分组卷积网络的番茄主要器官实时识别网络模型,该模型直接用特征图预测番茄器官目标边界和类型。以统计可分性、计算速度等为判据,并结合样本扩增训练,分析了该网络和几种典型网络在番茄器官图像处理上的性能,以此筛选出识别网络的基础结构,在基础结构后面分别附加带dropout层的面向通道分组卷积模块和全卷积层作为识别网络的总体架构。试验结果表明:用面向通道分组卷积网络作为识别网络的基础结构,可在显著提高网络召回率、识别速度和精度的前提下,大幅降低模型的大小,该结构网络对花、果、茎识别的平均精度分别为96.52%、97.85%和82.62%,召回率分别为77.39%、69.33%和64.23%,识别速度为62帧/s;与YOLOv2相比,该文识别网络召回率提高了14.03个百分点,精度提高了2.51个百分点。  相似文献   

7.
基于无人机航拍与改进YOLOv3模型的云杉计数   总被引:6,自引:6,他引:0  
为解决目前苗木计数由人工完成而导致的成本高,效率低,计数精度不能得到保障的问题,该研究以自然环境下的云杉为研究对象,以无人机航拍云杉图像和拼接后完整地块云杉图像为数据源,根据云杉尺寸差异大和训练样本小的特点提出一种基于改进YOLOv3(You Only Look Once v3,YOLOv3)模型的云杉计数模型。该模型将密集连接模块和过渡模块引入特征提取过程,形成Darknet-61-Dense特征提取网络。通过694幅无人机航拍云杉图像测试表明,密集连接模块和过渡模块可解决YOLOv3模型小样本训练过拟合问题和云杉特征丢失问题,改进YOLOv3模型可以快速准确实现云杉计数,在精确率P、召回率R、平均精度AP、平均计数准确率MCA和平均检测时间ADT这5个评价指标上达到96.81%、93.53%、94.26%、98.49%和0.351 s;对比原有YOLOv3模型、SSD模型和Faster R-CNN模型,精确率P分别高2.44%、4.13%和0.84%。对于拼接后完整地块云杉图像,改进YOLOv3模型的5个评价指标的结果分别为91.48%、89.46%、89.27%、93.38%和1.847 s;对比原有YOLOv3模型、SSD模型和Faster R-CNN模型,精确率P分别高2.54%、9.33%和0.74%。该研究为利用无人机快速准确统计苗木数量的关键步骤做出有益的探索。  相似文献   

8.
基于改进型YOLOv4-LITE轻量级神经网络的密集圣女果识别   总被引:9,自引:9,他引:0  
对密集圣女果遮挡、粘连等情况下的果实进行快速识别定位,是提高设施农业环境下圣女果采摘机器人工作效率和产量预测的关键技术之一,该研究提出了一种基于改进YOLOv4-LITE轻量级神经网络的圣女果识别定位方法。为便于迁移到移动终端,该方法使用MobileNet-v3作为模型的特征提取网络构建YOLOv4-LITE网络,以提高圣女果果实目标检测速度;为避免替换骨干网络降低检测精度,通过修改特征金字塔网络(Feature Pyramid Networks,FPN)+路径聚合网络(Path Aggregation Network,PANet)的结构,引入有利于小目标检测的104×104尺度特征层,实现细粒度检测,在PANet结构中使用深度可分离卷积代替普通卷积降低模型运算量,使网络更加轻量化;并通过载入预训练权重和冻结部分层训练方式提高模型的泛化能力。通过与YOLOv4在相同遮挡或粘连程度的测试集上的识别效果进行对比,用调和均值、平均精度、准确率评价模型之间的差异。试验结果表明:在重叠度IOU为0.50时所提出的密集圣女果识别模型在全部测试集上调和均值、平均精度和准确率分别为0.99、99.74%和99.15%,同比YOLOv4分别提升了0.15、8.29个百分点、6.54个百分点,权重大小为45.3 MB,约为YOLOv4的1/5,对单幅416×416像素图像的检测,在图形处理器(Graphics Processing Unit,GPU)上速度可达3.01 ms/张。因此,该研究提出的密集圣女果识别模型具有识别速度快、识别准确率高、轻量化等特点,可为设施农业环境下圣女果采摘机器人高效工作以及圣女果产量预测提供有力的保障。  相似文献   

9.
为提高自然环境下生姜叶片病虫害的识别精确率,提出一种基于改进YOLOv5s的生姜叶片病虫害识别模型。建立了田间不同自然环境条件下的生姜叶片病虫害数据集,为保证模型在田间移动设备上流畅运行,实现网络模型的轻量化,在YOLOv5s中引入GhostNet网络中的Ghost模块和Ghost BottleNeck结构。同时,为避免生姜叶片病虫害图像小目标特征丢失的情况,增强图像特征提取,加入CA注意力机制模块,提升生姜叶片病虫害的识别准确率和定位精确度。改进后的模型参数量、计算量和权重文件大小分别为YOLOv5s模型的52.0%、50.6%和55.2%,对生姜叶片病虫害识别平均精度均值达到了83.8%。与Faster-RCNN、SSD、YOLOv4、YOLOv5s、Tea-YOLOv5s等算法相比,平均精度均值分别提高37.6、39.1、22.5、1.5、0.7个百分点,将改进后的目标检测模型部署在Jetson Orin NX开发板上,并使用TensorRT、Int8量化和CUDA等方法对检测模型加速,加速后的模型检测速度为74.3帧/s,满足实时检测的要求,测试结果显示,改进后的模型减少了漏检、误检的情况,并且对目标定位更加精准,适用于自然环境下生姜叶片病虫害的精准识别,为后续生姜机械自动化施药作业提供技术理论支持。  相似文献   

10.
畜牧业自动化管理面临的一个关键挑战是如何准确地检测大规模放牧养殖牲畜的种群,确定其数量和实时更新群体信息。牲畜规模化、自动化检测受环境场地等因素影响,当前目标检测算法经常出现漏检、误检等情况。该研究基于YOLOV5s目标检测网络设计了一种牲畜检测算法LDHorNet(livestock detect hor net),参考HorNet的递归门控卷积设计了HorNB模块对网络模型进行改进,以提高检测算法的空间交互能力和检测精度。然后在网络结构中嵌入CBAM(convolutional block attention module)注意力机制,以提高小目标的检测精度和注意力权重,并利用Repulsion 损失函数提高目标检测网络的召回率和预测精度。试验结果表明,所提出的LDHorNet算法的精准率、召回率分别为95.24%、88.87%,平均精准率均值mAP_0.5、mAP_0.5:0.95分别为94.11%、77.01%,比YOLOv5s、YOLOv8s、YOLOv7-Tiny精准率分别提高了2.83、2.93和9.79个百分点,召回率分别提高了6.66和4.95、13.42个百分点,平均精准率均值mAP_0.5:0.95分别提高12.46、5.26和20.97个百分点。该算法对于小目标和遮挡场景下的牲畜检测效果优于原算法与对比算法,表现出良好的鲁棒性,具有广泛的应用前景。  相似文献   

11.
基于轻量型卷积神经网络的马铃薯种薯芽眼检测算法   总被引:1,自引:1,他引:0  
马铃薯种薯芽眼属于小目标物体,识别难度大、要求高。为了在试验台(芽眼识别装置)上快速、准确地完成识别任务,该研究提出一种基于轻量型卷积神经网络的芽眼检测模型。首先,为了降低模型的计算量和聚焦小目标物体,替换YOLOv4的主干网络CSPDarkNet-53为GhostNetV2轻量型特征提取网络;其次,在YOLOv4的颈部网络中,使用深度可分离卷积(depthwise separable convolution,DW)模块代替普通卷积块进一步降低模型计算量;最后,更改边界框损失函数为具有角度代价的边界框损失函数(SIoU),避免因预测框的位置不确定,而影响模型收敛速度和整体检测性能。结果表明,改进后芽眼检测模型参数量为12.04 M,使用笔记本电脑CPU检测单张图片的时间为0.148 s,从试验台收集的测试数据显示平均精度为89.13%。相对于其他主干特征提取网络CSPDarkNet-53、MobileNetV1、MobileNetV2、MobileNetV3、GhostNetV1,其检测精度分别高出1.85、0.75、2.67、4.17、1.89个百分点;与同类目标检测模型SSD、Fa...  相似文献   

12.
针对目前在水下复杂环境中池塘养殖河蟹与饵料的检测算法存在检测精度低、速度慢等问题,该研究提出了基于改进YOLOv5s(you only look once version 5 small)的河蟹与饵料检测方法。首先,采用轻量化卷积Ghost替换普通卷积,同时利用GhostBottleneck结构替换原主干网络中的残差结构快速提取网络特征,减少模型计算量,满足安卓端的应用要求。其次,为了弥补因网络参数量减少造成网络检测精度稍有降低的问题,借鉴BiFPN(bidirectional feature pyramid network)的思想改进原始YOLOv5s的双向融合骨干网络,以较低的计算成本提高网络对小目标的检测精度。此外,为了帮助网络进一步更好地识别目标,加入了CA(coordinate attention)注意力机制,使得图像中感兴趣的区域能够更准确地被捕获。试验结果表明:该研究改进模型平均精度均值为96.9%,计算量为8.5GFLOPs,与当前主流的单阶段有锚框目标检测算法SSD(single shot multibox detector)和YOLOv3相比,具有更高的检测精度以及更少的计算量。相比于原始YOLOv5s模型,本文改进模型平均精度均值提高了2.2个百分点,计算量和模型内存都降低了40%以上。最后,将改进前后的模型部署到安卓设备上测试。测试结果表明:改进后模型的平均检测速度为148ms/帧,相较于原始模型检测速度提高了20.9%,并且保持了较好的检测效果,平衡了安卓设备对模型检测精度以及速度的性能需求,能够为河蟹养殖投饵量的精准确定提供参考。  相似文献   

13.
为实现花椒簇的快速准确检测,该研究提出了一种基于改进YOLOv5s的花椒簇检测模型。首先,使用MBConv(MobileNetV3 block convolution,MBConv)模块和基于ReLU的轻量级自注意力机制优化了EfficientViT网络,用其代替YOLOv5s的主干,减少模型的参数量、增强模型对重要特征的表达能力。其次,在模型的训练过程中采用了OTA(optimal transport assignment)标签分配策略,优化训练中的标签分配结果。最后,使用WIoU损失函数对原损失函数CIoU进行替换,提高锚框的质量。试验结果表明,改进YOLOv5s模型的平均准确度均值(mean average precision,mAP)为97.3%、参数量为5.9 M、检测速度为131.6帧/s。相较于YOLOv5s模型,mAP提升1.9个百分点、参数量降低15.7%、检测速度提高14.5%。结果表明,该研究提出的改进YOLOv5s模型准确度高、参数量低、检测速度快,可实现对花椒簇的有效检测。  相似文献   

14.
随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该文提出了一种基于YOLOv5(you only look once version 5)模型的OMM-YOLO(ostreatus measure modle-YOLO)平菇目标检测与分类模型。通过在YOLOv5模型的Backbone层添加注意力模块,对输入的平菇图像特征进行动态加权,以获得更详细的特征信息,并在Neck层采用加权双向特征金字塔网络,通过与不同的特征层融合,提高算法的平菇目标检测的精度。此外,为了改善算法的准确性和边界框纵横比的收敛速度,该文采用了EIoU(enhanced intersection over union)损失函数替代了原有的损失函数。试验结果表明,与原始模型相比,改进模型OMM-YOLO对成熟平菇、未成熟平菇和未生长平菇的平均精度均值分别提高了0.4个百分点、4.5个百分点和1.1个百分点。与当前主流模型Resnet50、VGG16、YOLOv3、YOLOv4、YOLOv5m和YOLOv7相比,该模型的精确率、召回率和检测精度均处于优势,适用于收集现代化菇房中的平菇信息,有效避免了平菇之间因相互遮挡而产生的误检测现象。菇房平菇目标检测可以自动化地检测平菇的数量、生长状态等信息,帮助菇房工作人员掌握菇房内的菇况,及时调整温湿度等环境条件,提高生产效率,并且对可以对平菇进行质量控制,确保平菇产品的统一性和品质稳定性。同时可以减少对人工的依赖,降低人力成本,实现可持续发展,对智能化现代菇房建设具有积极作用。  相似文献   

15.
李韬  任玲  胡斌  王双  赵明  张玉泉  杨苗 《农业工程学报》2023,39(23):174-184
为了提高番茄穴盘苗分级检测精度,该研究提出了改进YOLOv5s目标检测模型,并通过迁移学习对番茄穴盘病苗识别精度进行优化。采用轻量级网络EfficientNetv2的Backbone部分作为特征提取网络,保留YOLOv5s中的SPPF空间金字塔池化模块,压缩模型参数数量以减少计算量;更改模型Neck部分原始上采样模块为CARAFE轻量级上采样模块,在引入很少参数量的情况下提高模型精度;同时将PANet替换为BiFPN,引入特征权重信息,增强不同尺度特征融合能力;引入有效多尺度注意力机制(efficient multi-scale attention,EMA),提高对番茄苗的关注,减少背景干扰;替换CIoU损失函数为SIoU损失函数,考虑真实框与预测框之间的方向匹配,提高模型收敛效果。试验结果表明,改进的YOLOv5s目标检测模型经过迁移学习训练后,平均精度均值达到95.6%,较迁移学习前提高了0.7个百分点;与原YOLOv5s模型相比,改进YOLOv5s模型平均精度均值提升2.6个百分点;改进YOLOv5s模型的参数量、计算量和权重大小分别为原YOLOv5s模型的53.1%、20.0%和53.6%,便于后期将模型部署到边缘设备中;与Faster-RCNN、CenterNet及YOLO系列目标检测模型相比,改进YOLOv5s模型在检测精度和检测速度方面均有明显优势,该研究成果可以为穴盘苗的分级检测提供依据。  相似文献   

16.
针对破壳鸡蛋(破口蛋和裂纹蛋)缺陷差异性大,在线检测要求实时,以及人工检测依靠主观经验且检测速度慢、检测精度不高等问题,该研究提出一种基于改进的YOLOv7(You Only Look Once v7)模型的破壳鸡蛋在线实时检测系统。即以YOLOv7网络为基础,将YOLOv7网络的损失函数CIoU(complete-IoU)替换为WIoUv2(wise-IoU),在骨干网络(backbone)中嵌入坐标注意力模块(coordinate attention,CA)和添加可变形卷积DCNv2(deformable convnet)模块,同时将YOLOv7网络中的检测头(IDetect)替换为具有隐式知识学习的解耦检测头(IDetect_Decoupled)模块。在PC端的试验结果表明,改进后的模型在测试集上平均精度均值(mean average precision,mAP)为94.0%,单张图片检测时间为13.1 ms,与模型改进之前相比,其mAP提高了2.9个百分点,检测时间仅延长1.0 ms;改进后模型的参数量为3.64×107,较原始模型降低了2.1%。最后通过格式转换并利用ONNXRuntime深度学习框架把模型部署至设备端,在ONNXRuntime推理框架下进行在线检测验证。试验结果表明:该算法相较原始YOLOv7误检率降低了3.8个百分点,漏检率不变,并且在线检测平均帧率约为54帧/s,满足在线实时性检测需求。该研究可为破壳鸡蛋在线检测研究提供技术参考。  相似文献   

17.
为实现虾只机械剥壳环节裸肉虾与带壳虾自动分选,该研究提出一种基于改进YOLOv4模型的虾只肉壳辨识方法。将YOLOv4模型中CSP-Darknet53网络替换为GhostNet网络,增强模型自适应特征提取能力及简化模型参数计算量。在YOLOv4主干特征提取网络Resblock模块中引入轻量级注意力机制,增强主干特征提取网络的特征提取能力。将YOLOv4模型中GIoU损失函数替换为CIoU损失函数,提高模型预测框的回归效果。为检测改进效果进行了不同模型对比验证,轻量化结果表明改进YOLOv4模型参数量最少、计算量最小;消融试验表明改进YOLOv4模型的平均精度均值为92.8%,比YOLOv4模型提升了6.1个百分点。不同场景下应用改进YOLOv4模型进行虾只肉壳辨识性能试验。结果表明:同品种不同环境的虾只肉壳辨识总体平均准确率为95.9 %,同品种不同剥壳方式的虾只肉壳辨识准确率平均值为90.4 %,不同品种虾只肉壳辨识准确率平均值为87.2 %。研究结果可为裸肉虾与带壳虾自动分选提供技术支撑。  相似文献   

18.
疏果期苹果目标检测是实现疏果机械化、自动化需要解决的关键问题。为实现疏果期苹果目标准确检测,该研究以YOLOv7为基础网络,融合窗口多头自注意力机制(Swin Transformer Block),设计了一种适用于近景色小目标检测的深度学习网络。首先在YOLOv7模型的小目标检测层中添加Swin Transformer Block,保留更多小尺度目标特征信息,将预测框与真实框方向之间的差异考虑到模型训练中,提高模型检测精度,将YOLOv7中的损失函数CIoU替换为SIoU。最后利用Grad-CAM方法产生目标检测热力图,进行有效特征可视化,理解模型关注区域。经测试,该文模型的检测均值平均精度为95.2%,检测准确率为92.7%,召回率为91.0%,模型所占内存为81 MB,与原始模型相比,均值平均精度、准确率、召回率分别提高了2.3、0.9、1.3个百分点。该文模型对疏果期苹果具有更好的检测效果和鲁棒性,可为苹果幼果生长监测、机械疏果等研究提供技术支持。  相似文献   

19.
针对目前日光温室损伤程度的统计方法普遍依靠人工目视导致的检测效率低、耗时长、精确度低等问题,该研究提出了一种基于改进YOLOv5s的日光温室损伤等级遥感影像检测模型。首先,采用轻量级MobileNetV3作为主干特征提取网络,减少模型的参数量;其次,利用轻量级的内容感知重组特征嵌入模块(content aware reassembly feature embedding,CARAFE)更新模型的上采样操作,增强特征信息的表达能力,并引入显式视觉中心块(explicit visual center block,EVCBlock)替换和更新颈部层,进一步提升检测精度;最后将目标边界框的原始回归损失函数替换为EIoU(efficient intersection over union)损失函数,提高模型的检测准确率。试验结果表明,与基准模型相比,改进后模型的参数数量和每秒浮点运算次数分别减少了17.91和15.19个百分点,准确率和平均精度均值分别提升了0.4和0.8个百分点;经过实地调查,该模型的平均识别准确率为84.00%,优于Faster R-CNN、SSD、Centernet、YOLOv3等经典目标检测算法。日光温室损伤等级快速识别方法可以快速检测日光温室的数量、损伤等级等信息,减少设施农业管理中的人力成本,为现代化设施农业的建设、管理和改造升级提供信息支持。  相似文献   

20.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号