首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
保水缓释氮肥水分状态与吸持特征研究   总被引:1,自引:1,他引:1  
保水肥料的水分有效性不但取决于保水肥料的吸水倍率,还取决于水分在保水肥料中的存在状态及吸持特征。首次用差示扫描量热仪(DSC)和水分特征曲线方法对实验合成的保水缓释氮肥水分状态及吸持特征进行了研究。发现保水缓释氮肥的自由水+束缚水含量随着平衡含水量增大而提高,保水缓释氮肥平衡含水量中94%以上为自由水+束缚水,其与普通水具有相同或相近的热力学性质,其相当于土壤重力水,毛管水和薄膜水之和,保水缓释氮肥所持水分90%以上是植物有效水。保水缓释氮肥的结合水占5%以下,其相当于土壤吸湿水,是植物难利用水。DSC测定的有效水(94%)和水分特征曲线测定的有效水(91%)十分接近,因此,DSC可作为评价吸水保水缓释肥料有效性快速方法。保水缓释肥料可增加土壤持水量,降低土壤水分蒸发,提高土壤保水和释水量。保水缓释氮肥合成过程中待聚液保温时间是一个重要工艺参数。  相似文献   

2.
保水肥料是缓/控释肥料剂一个新的发展方向。本文中作者对研发的一种保水缓释包膜尿素肥料的包膜物理化学特征,养分缓释机制进行了研究。电镜观察显示,保水材料包膜上存在网状孔隙,膜厚度0.12mm~0.30mm,是水分贮存的物理空间。红外光谱分析表明,保水材料与尿素表面存在着氢键作用,这种氢键作用使保水包膜材料对尿素有一定吸附作用,这是保水包膜尿素具有养分缓释的一种机制。吸水倍率测定表明,保水包膜材料吸水倍率在70倍以上,吸水达饱和的时间为1.4小时,在盐水中还有一定的吸水倍率,pH为6.87。因此,保水包膜尿素肥料是水肥复合一体化的缓释肥料。  相似文献   

3.
具有保水功能的缓释肥料的制备研究   总被引:3,自引:1,他引:2  
以尿素、高吸水性树脂、低品位磷矿、风化煤、膨润土等为主要材料,制备了一种既有吸水保水功能又有缓释功能的双层包膜尿素。对其工艺条件进行了优化,结果表明,当以低品位磷矿为缓释材料,粘结剂浓度为50%,石蜡用量为10%,保水剂粒径为0.15 mm时,保水缓释肥在水中24 h和168 h氮素累计释放率分别为4.36%和26.5%,在土壤中64 d氮素累计释放率为49.34%,常压下吸附肥料自身质量20.3倍的水分。加有保水缓释肥的土壤保水率曲线表明,该保水缓释肥可明显降低水分蒸发率,提高土壤水分的有效性,改善土壤释水、保水的能力。保水缓释肥兼有吸水、保水和养分缓释性能,具有较好开发和应用前景。  相似文献   

4.
水肥调控技术及其功能性肥料研究进展   总被引:3,自引:1,他引:2  
综述水肥调控的有关技术,以及以高吸水性树脂 (super absorbent polymer,SAP) 为保水、缓/控释材料制备保水型缓/控释肥料的研究进展,为今后此类肥料的开发、应用提供依据。水分和养分是限制我国旱地农业可持续发展的主要因子,以肥调水,以水促肥,充分发挥水肥的协同效应是提高水肥利用率的关键。目前,水肥调控 (耦合) 技术的实施主要通过农艺措施和施肥灌溉技术来完成。近年来,随着SAP性能的不断改善和使用的普及,人们对SAP在吸水保水的同时,对土壤肥料养分的保持和缓释作用开始给予了重视,以SAP为保水、缓释材料的保水型缓/控释肥料的研究成为水肥调控研究的热点。SAP与一般聚合物不同之处是它具有高度亲水性,聚合物的骨架是一个适度交联的网状结构,进入树脂分子内的养分离子或分子可以以各种结合形式被暂时固定而延缓了养分的释放。土壤中可溶性盐对SAP吸水性能有重要影响,但尿素分子影响甚小。保水型缓/控释肥料可通过养分负载、复混或包膜等工艺制备。保水型缓/控释肥料是水肥调控 (耦合) 技术、化学制剂保水节水技术和肥料缓/控释技术的综合运用和物化的载体,兼具吸水、保水和养分缓/控释功能,实现水肥在同一时空条件下的一体化调控,同时提高水分和肥料的利用效率,在农业、林业、环境修复、生态工程等领域具有广阔的应用前景。未来工作是进一步寻求合适的SAP制造原料和工艺,降低成本;应用分子设计,改善SAP的结构,提高生物降解性,控制盐分的不利影响,提高肥料的吸水、保水和对养分的缓释性能;加强养分释放机理和不同于普通缓/控释肥料评价方法的研究。  相似文献   

5.
保水剂作为肥料养分缓释载体的应用   总被引:8,自引:0,他引:8  
保水缓/控释肥料是具有吸水、保水及释水的新型缓/控释肥料,其对改善水肥效率具有良好的前景。保水缓/控释肥料的开发应用技术关键是研究开发可作为肥料载体材料的低成本新型保水剂材料。保水剂在性能上应具备吸水倍率高,吸水速率适宜,耐盐性好的优点;保水剂对肥料的吸附容量及其与肥料的化学结合性也是保水剂实际应用应考察的重要性能。不同类型的保水剂对肥料显示不同的吸附及化学结合特征,保水剂与肥料复合可以是物理、化学或物理化学的作用机制。保水剂可以通过物理包埋,物理、化学吸附、氢键、离子键及共价键结合、复合肥料养分。今后应加强新型廉价高效保水剂材料及其与肥料复合机制的研究。  相似文献   

6.
保水缓/控释肥料的研究进展   总被引:25,自引:6,他引:25  
肥料与保水剂复合一体化使用是水肥调控的重要技术,是肥料研究的国际前沿。该文主要对保水剂与化肥的复合方式与工艺,保水剂与肥料养分相互作用及其研究方法,以及保水及保水肥料应用的水肥效应方面的进展进行综述,并指出了保水缓/控释肥料研究存在的问题和今后努力的方向。保水剂与肥料可以通过物理混合(吸附或造粒)、包膜或化学合成3种方式结合为材料与功能复合一体化的保水缓/控释肥料,包膜和化学合成是高养分含量保水缓/控释肥料制备的先进工艺。肥料或盐影响保水剂的吸水膨胀及吸附作用,因肥料及盐的种类和离子电价而异。7 d溶解量法、土壤淋洗法及土壤培养法等是研究保水剂及保水缓释肥料养分吸附解吸的常用方法。保水剂或保水缓/控释肥料对一些养分的缓释作用报道基本一致,对土壤水分改善作用存在不一致的报道,与高盐含量和保水剂用量有关。保水缓/控释肥料今后发展方向应加强养分含量与吸水倍率指标标准、保水材料及其与肥料复合机制的创新、以及湿润及养分控释机理的研究,还应加强中试及产业化技术开发研究。  相似文献   

7.
为探究匹配冬小麦氮素需求规律的最佳缓释氮肥与尿素配施比例,优化施肥结构,达到氮肥高效利用与经济效益“双赢”的目标,该研究以冬小麦为研究对象,通过2 a(2019—2020年和2020—2021年)田间试验,设置7个施肥处理:仅施尿素(U)、仅施缓释氮肥(S)、缓释氮肥与尿素1:3配施(SU1)、缓释氮肥与尿素1:1配施(SU2)、缓释氮肥与尿素3:1配施(SU3)、不施氮肥(N0)和不施肥(CK),研究缓释氮肥配施比例对冬小麦干物质积累和转运、产量和氮肥利用效率的影响。结果表明,冬小麦干物质快速生长期和最大累积速率随缓释氮肥配施比例的增加而增加,缓释氮肥与尿素配施的冬小麦干物质平均累积速率比普通尿素提高1.90%~19.91%。缓释氮肥与尿素配施可在改善花前干物质转运量的同时提高花后生产量,花后干物质生产量对籽粒贡献率达53.18%~71.83%。产量随缓释氮肥配施比例的增加而显著提高,SU3处理2 a产量分别为7 243和8 021 kg/hm2,较S和U处理分别提高了7.25%和16.07%,其经济效益较S和U处理提高了15.18%和25.67%。与仅施尿素相...  相似文献   

8.
复合高吸水树脂的制备及性能研究   总被引:1,自引:0,他引:1  
以过硫酸铵为引发剂,以丙烯酸和丙烯酰胺为单体,以高岭土为无机填料,采用反相悬浮法制备高岭土复合淀粉接枝丙烯酰胺—丙烯酸高吸水树脂。探讨了单体质量比、高岭土添加量等因素对产品性能的影响,研究了产品的保水能力,并对产品的结构进行了分析和表征。研究结果表明,该高吸水性树脂具有一定的凝胶强度、流变性,且成本相对较低,可以将其应用到建筑混凝土等材料中,通过树脂的吸水及保水能力从而提高混凝土的保水性,在水土保持边坡防护方面具有很好的应用前景。  相似文献   

9.
缓释型保水剂对土壤物理性状作用及油菜增产效果的研究   总被引:3,自引:0,他引:3  
田间小区试验对施用缓释型保水剂、保水剂、常规肥料下土壤物理性状及油菜生长进行了研究。结果表明,缓释型保水剂为植株提供适宜的水分条件,促进了作物生长,油菜产量增加;缓释型保水剂具有保水和持水性能,提高了土壤水分含量,同时改善了土壤物理性状,降低土壤容重,使土壤孔隙数量增加,提高了土壤总孔隙度,尤其增加了非毛管孔隙度,增强了土壤通气性能;缓释型保水剂增加了土壤中大于0.25mm团聚体的数量,从而提高了土壤通气性,同时也增加了土壤中2mm以上的团聚体数量,提高了土壤的抗蚀性。  相似文献   

10.
保水剂与肥料互作及保水缓/控释肥料研究展望   总被引:9,自引:0,他引:9  
保水剂在农业上的作用日益重要,肥料与保水剂一体化使用是水肥调控的重要技术,是肥料研究的国际前沿。保水剂是吸水量超过自身重量数百倍以上的亲水性高聚物。保水剂一般分为天然的,合成的及半合成的。保水剂与肥料可以通过物理混合、包膜或化学合成三种方式结合为一体化的保水缓/控释肥料。保水剂具有吸水吸肥功能,保水剂可吸附大量中性分子,对阳离子养分也有较强吸附作用,对阴离子养分吸附弱。肥料种类与盐浓度影响保水剂的吸附作用与膨胀能力。保水缓/控释肥料在土壤中对肥料养分有延迟释放作用。保水缓/控释肥料可改善土壤持蓄水分和水肥交互作用,促进植物对养分的吸收和作物增产。保水缓/控释肥料发展方向是包膜和化成保水缓/控释肥料。保水缓/控释肥料湿润及养分控释机理研究也需要加强。  相似文献   

11.
In several studies, the beneficial effects of the application of chloride on root growth have been reported. However, the effect of chloride application on the morphology of roots has not been studied extensively. The effects of the use of chloride salts and sulfate salts on the growth of rice (Oryza sativa L.) until the 7-leaf stage were investigated in soil and water culture experiments. In the soil culture experiments, the root biomass in the chloride treatment showed a 58% increase compared with the sulfate treatment. Total root length, top root ratio (T / R ratio) and root length per primary root revealed the existence of root growth promotion by chloride. In the water culture experiments, root growth was also stimulated by chloride, as in the soil culture experiments. In order to analyze the effect of chloride application, the ion composition and pH of the soil solution or water culture solution were used to determine the amounts of ion species in the solution using the MINTEQA2 computer program, and the results were applied to estimate the osmotic pressure of these solutions. The osmotic pressure of chloride salts was obviously higher than that of sulfate salts based on van't Hoff's law of osmotic pressure and a positive correlation between the osmotic pressure and root length was obtained. The results suggest that the higher osmotic pressure induced by chloride would be involved in the root growth promotion of rice.  相似文献   

12.
Edible films were prepared from solutions of soy protein with calcium salts and glucono-delta-lactone (GDL). Calcium salts cross-linking interactions with soy-protein isolate (SPI) could result in the formation of films with rigid three-dimensional structure. GDL contributed to the formation of a homogeneous film structure due to increased protein--solvent attraction. Tensile strength (TS) of calcium sulfate treated SPI film (8.6 MPa) was higher than the TS of calcium chloride treated SPI films (6.4 MPa) and the control SPI film (5.5 MPa). Puncture strength (PS) of calcium sulfate treated SPI film (9.8 MPa) was higher than the PS of calcium chloride treated SPI films (8.5 MPa) and the control SPI film (5.9 MPa). SPI film formulated with GDL had larger elongation at break (39.4%) than that of SPI control film (18.2%). Calcium salts and GDL-treated SPI films had lower water-vapor permeability than the SPI control film.  相似文献   

13.
Methylibium petroleiphilum PM1, which is capable of degrading of methyl tert-butyl ether (MTBE), was immobilized in calcium alginate gel beads. Various applications were explored to increase the mechanical strength of these gel beads. The introduction of 0.3 mol/L calcium chloride into the crosslinking solution, 0.002 mol/L calcium chloride into the growth medium, and 0.2% polyethyleneimine (PEI) as chemical crosslinking agent increased the stability of the Ca-alginate gel beads under the operation conditions of the bioreactor. The degradation rates of MTBE by the immobilized cells in the bioreactor system operated in batch and continuous mode , respectively, were compared. A MTBE biodegradation rate of 5.79 mg/L·h was reached for over 400 h (50 batches), and the immobilized cells in the bioreactor removed >96% MTBE during 50 days of operation. Molecular analysis of the PM1 cells revealed that microbial growth occurred predominantly as microcolonies in the outer area of the beads during the first 20 days of operation. The results of this study show that a continuous-mode, fixed-bed bioreactor reactor coupled with PM1-immobilized cells is a promising technology for remediating MTBE-contaminated groundwater.  相似文献   

14.
The primary objective for this study addressed the effects of supplemental calcium on the functional properties of a modified whey protein ingredient (mWPC), prepared by acidification to pH 3.35, followed by extended heat treatment, gelation, and spray drying. In the presence of added calcium (mWPC-Ca2+), protein solutions showed increased thickening capacity, especially under refrigeration temperatures, compared to dispersions made with mWPC alone. A rheological assessment included the determination of (i) power law parameters, (ii) viscoelastic properties, and (iii) the effects of heating and cooling on these protein systems. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) banding profile suggested that various disulfide-linked molecular forms of beta-lactoglobulin, bovine serum albumin, and immunoglobulin were likely formed during manufacturing of the mWPC ingredient based on the patterns obtained when electrophoresis was performed in the absence of beta-mercaptoethanol compared to those observed with commercial WPC samples. An enhanced water-holding capacity was measured in mWPC-Ca2+ dispersions. Differential scanning calorimetry established that the addition of calcium salts caused a 2-fold increase in the amount of bound or unfreezeable water compared to mWPC controls. The physical appearance of the network structure varied significantly upon visualization with scanning electron microscopy, in which case the formation of large, rounded, spherical structures was noted in mWPC-Ca2+ samples, ascribed to an increased surface tension caused by the higher salt content. Ultimately, such attributes may afford distinct advantages for whey-based ingredients intended for application within food systems, especially under cold processing conditions.  相似文献   

15.
Soil structure was measured from the roughness of soil fracture surfaces created by breaking unsaturated soil clods under tensile stress. Soil clods were collected in 1986 and 1987 from field plots to which calcium compounds had been applied in 1980 (to improve degraded structure) at rates of 0, 2, 4, 10, 14 and 20 t ha−1, and which had not been disturbed since the initial establishment of pasture. A residual effect on the soil structure was sought. In 1987, samples were equilibrated at different water suctions in the laboratory, and physical and chemical measurements including tensile strength, penetrometer resistance, exchangeable cations and dispersible clay were made.

Exchangeable cation and dispersible clay values did not correspond with the amounts of calcium added in 1980, indicating that most of the applied calcium had leached by the time measurements were made in 1986 and 1987. The water content at which measurements were made was the dominant factor controlling the tensile strength and penetrometer resistance of the soil clods. The water content also had a major influence on the fracture surface roughness; wetter clods had rougher tensile fracture surfaces. Because most of the applied calcium was leached by the time measurements were made, the residual effect of the calcium amendments was only detectable in the microstructure (undisturbed since 1980). Soils to which greater amounts of calcium had been added tended to have clods with smoother tensile fracture surfaces. This was attributed to stabilization by calcium of aggregates with diameters up to 0.1 mm in the soil structural hierarchy. The importance of the scale at which fracture surface roughness measurements are made is emphasized.  相似文献   


16.
为了获得具有较好的持水性、生物相容性且没有细胞毒性的水凝胶,该文在不经过任何化学处理的条件下,将γ-聚谷氨酸(γ-polyglutamic acid,γ-PGA)与聚乙烯醇(polyvinyl alcohol,PVA)以3∶7,4∶6,5∶5,6∶4,7∶3的质量配比进行反应,制得pH敏感型水凝胶。对制得的水凝胶进行性能和结构表征,研究不同单体配比的水凝胶在不同p H值溶液(pH值分别为4.0,7.4,9.0)中的溶胀动力学,同时对制备的水凝胶进行了药物缓释性能初步研究。结果表明,γ-聚谷氨酸/聚乙烯醇水凝胶具备pH敏感性,溶胀度随着γ-聚谷氨酸量的增加而减小,保水率及热稳定性均随着γ-聚谷氨酸量的增加而升高。溶胀性能研究表明不同pH值的溶液媒介对水凝胶的初始扩散行为没有影响,都属于non-Fickian扩散模式,而且不同水凝胶样品在不同pH值环境中的溶胀速率的变化趋势类似,说明了在γ-PGA/PVA水凝胶的溶胀初期,水分子的扩散速率与网络大分子的松弛速率相当。不同配比的水凝胶在相同pH值环境中,水的扩散系数随着水凝胶的溶胀速率的增大而增大,且溶胀速率值又会随着PVA含量的增加而增大。药物缓释研究显示Gel3/7、Gel4/6、Gel5/5、Gel6/4、Gel7/3的包埋率分别为79.87%、75.75%、74.00%、73.50%和70.25%,说明5组水凝胶样品包埋效果较为理想,p H值的变化对5组水凝胶样品的释放性能的影响是一致的,均在p H值为7.4的缓冲溶液中药物释放较快,在p H值为1.2的缓冲溶液中释放较为平缓,释放周期加长;随着γ-PGA含量的增加,PVA含量的减少,药物的释放速率也随之减小,最终的平衡释药百分数变小,释药周期加长。研究结果为γ-聚谷氨酸/聚乙烯醇水凝胶材料在生物技术、医学以及工业领域的应用提供参考。  相似文献   

17.
ABSTRACT

Responses of tobacco (Nicotiana tabacum L.) to chloride vary according to tobacco types, cultivars, and methods of fertilization, cultivation, and harvesting used. Until now, research has focused on types other than Oriental. In this work, the effect of chloride concentration (10 to 80 mg L?1) in irrigation water on growth and agronomic and chemical characteristics of Oriental tobacco was evaluated with a three-year (1999–2001) outdoor pot experiment. Whether Oriental tobacco cultivars, aromatic and neutral, respond differently to chloride was also investigated. The results showed that the influence of chloride on growth-development and total cured leaves yield on Oriental tobacco was inconsistent and substantial only in neutral cultivars. The increased cured leaves yield in neutral cultivars with 50 mg Cl L?1 was attributed mainly to the increased size of leaves. Leaf chloride concentration increased linearly with the increase of chloride level in irrigation water, but the leaf chloride concentration and the rate of linear increase were highest in the upper leaves of the plant, and decreased gradually from the upper to the lower leaves. Generally, the optimum chloride level in irrigation water was found to be below 20 mg L?1, whereas the 40 mg L?1 level was the critical upper threshold to avoid adverse effects on Oriental tobacco. The six cultivars showed different accumulation rates of chloride in leaves, and these rates were affected differently by the increased chloride in water. The changes in chemical characteristics examined concerning cured-leaf product quality were minor. The results indicate that one may choose among cultivars, either aromatic or neutral, in order to limit the adverse effects of irrigation with water containing increased chloride concentration.  相似文献   

18.
Cost‐effective strategies for using chemically amended organic fertilizers need to be developed to minimize nutrient losses in surface and groundwater. Coupling specific soil physical and chemical characteristics with amendment type could increase their effectiveness. This study investigated how water‐extractable phosphorus (P) was affected by chemical amendments added to pig slurry and how this effect varied with soil properties. A 3‐month incubation study was conducted on 18 different mineral soils, stored at 10 °C and 75% humidity and treated with unamended and amended slurry which was incorporated at a rate equivalent to 19 kg total P (TP )/ha. The amendments examined were commercial‐grade liquid alum, applied at a rate of 0.88:1 [Al:TP ], and commercial‐grade liquid poly‐aluminium chloride (PAC ), applied at a rate of 0.72:1 [Al:TP ]. These amendments were previously identified by the authors as being effective in reducing incidental losses of P. The efficacy of the amendments varied with the soil test P, the degree of P saturation (DPS ) and the Mehlich aluminium, iron and calcium, but not soil texture. Chemical amendments were most effective in soils with DPS over approximately 20%. Due to their high cost, the incorporation of amendments into existing management practices can only be justified as part of a holistic management plan where soils have high DPS .  相似文献   

19.
The chemical composition of water in 44 lakes of the Kulunda steppe has been studied. It is shown that solute concentrations in different lakes vary from 1 to 390 g/l. Four chemical types of the water salinity—chloride, sulfate, chloride-sulfate with the presence of sodium bicarbonate, and sodic waters—are distinguished. The nature of the water alkalinity has been studied in 12 lakes. In the lakes with neutral chloride and sulfate salts, the total alkalinity does not exceed 16.56 meq/l. In the lakes with the presence of soda, it reaches 189 meq/l. In sodic waters, the total alkalinity varies from 600 to 1504.6 meq/l. In the latter case, the water alkalinity is conditioned by the presence of soda and borate salts. Salt minerals in the bottom sediments and in the salt crusts of solonchakous playas around the lakes are represented by halite, calcite, dolomite, and thenardite. In two salt crusts, the presence of soda and trona has been diagnosed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号