首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The importance of molybdenum (Mo) for plant growth is disproportionate with respect to the absolute amounts required by most plants. Chickpea (Cicer arietinum L.) cv. K-75 plants were raised in refined sand in glasshouse at graded levels from 0.002 to 1 µM for 100 days. Mo deficiency symptoms appeared as interveinal chlorosis of middle and old leaves. Compared with the control (0.2 µM Mo), dry matter, yield and seed protein decreased at low and excess Mo. The concentration of Mo in leaves and seed as well as the activity of nitrate reductase (NR) increased with an increase in Mo supply. The activities of antioxidative enzymes stimulate at both low and excess Mo supply. Low and excess Mo decreased the lipid peroxidation status in chickpea leaves, suggesting its antiperoxidative nature. The values of deficiency, threshold of deficiency and threshold of toxicity of Mo were, respectively, 0.38, 1.2 and 15 µg g?1 in leaves of chickpea.  相似文献   

2.
Tomato plants were grown for 2 years at 4 different rates of Mg fertilization on a Princeton loamy sand at pH 4.8 with 29 kg exchangeable Mg/ha. Calcareous limestone was used to provide a pH treatment in the second year. Magnesium deficiency symptoms were observed on plants grown on plots having 38 kg/ha NH4OAC‐extractable Mg. Application of 56 kg Mg/ha corrected Mg deficiency and produced a significant increase in yield. Application of calcitic limestone also produced significant yield increases, but did not affect the development of Mg deficiency symptoms. Tomato yield was increased 27.9% by Mg application and 17.7% by lime application. Highest tomato yield was obtained with application of 112 kg Mg/ha. Symptoms of Mg deficiency were observed when the Mg concentration in recently mature leaf tissue was in the 0.30 to 0.32% range. Magnesium concentration in leaf tissue increased linearly with increasing Mg rate. Leaf Mg concentration at various growth stages of the tomato plant was variable depending on Mg treatment. Magnesium fertilization rate bad little effect on Ca or K leaf concentrations. Application of Calcltic limestone increased leaf tissue Ca and reduced leaf tissue Mg and Mn concentrations.  相似文献   

3.
Two experiments are described in which tomato plants (Lycopersicon esculentum L. var Ailsa Craig) were grown in water culture supplied with 10–300 μM Mn. Toxicity symptoms associated with a yield reduction were observed only in treatments in excess of 50 μM Mn indicating that this species is relatively tolerant of high Mn supply. Dark brown/black spots appeared first in the cotyledons. Similar symptoms were observed in the leaves, progressively from the oldest leaf. Manganese concentration in the shoot tissues ranged from 286 to 4240 μg. g‐1 dry weight. The high Mn concentration values found in the shoot tissues of the toxic plants indicate that Mn was highly mobile in the xylem as confirmed by xylem sap analysis.

The concentrations of both Ca and Mg were lower in the smaller Mn toxic plants. Not only was uptake of Ca and Mg retarded but so also was the distribution of Ca and Mg to the younger tissues as illustrated by measurements of Ca and Mg concentrations along a leaf age sequence. This is in accord with the cation‐anion balance of the xylem exudates collected from decapitated plants.

Higher cation exchange capacity (CEC) was found in the leaf tissues of toxic plants particularly in the older leaves but similar values of C.E.C were recorded for the younger leaf tissues of both control and toxic plants.  相似文献   

4.
巴西蕉的营养特性及钾镁肥配施技术研究   总被引:18,自引:0,他引:18  
钾、镁肥配施是香蕉施肥的重要措施之一。研究巴西蕉(Musa.AAA.Giant.Cavendish.cv.Baxi)的营养特性及钾镁肥配施对其生长影响的田间试验结果表明,假茎与叶片是养分累积的最主要部位;在整个生育期,叶片Mg/K比波动最大。为获得60t/hm2的高产,巴西蕉需要吸收N.275.3.kg、P24.6.kg、K900.0.kg、Ca.151.2.kg、Mg.73.2.kg、S.23.9kg、Fe.2091.7g、Mn.2910.6g、B.228.6.g和Zn.435.6.g。在土壤镁素丰富及Mg/K比为6.87和香蕉大量施钾条件下,施镁肥对巴西蕉的叶片营养、植株长势、蕉果农艺性状、品质及产量没有明显影响,因此,在此条件下可不必配施镁肥。  相似文献   

5.
【目的】甘肃河西走廊绿洲盐化潮土地玉米缺锌现象非常普遍,土壤镁含量高通常被认为是造成土壤和作物缺锌的重要因素之一,本文探讨了绿洲盐化潮土锌、镁之间的关系。【方法】采用盆栽模拟试验方法,以硫酸镁为原料,设加入Mg2+0、74、147、221、515 mg/kg,形成交换性Mg含量分别为287.3、349.2、411.6、487.9、755.2 mg/kg的混合土壤,来模拟绿洲盐化潮土含镁量低、较低、中等、较高、极高5种类型。在玉米生长期间浇灌去离子水,用重量法控制水分的供应。玉米生长45 d收获,测定株高后,采集心叶下第二个叶片鲜样用于测定叶绿素含量,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量。植株分地上部和根系,烘干粉碎后用于测定锌的含量。【结果】1)较高和极高的土壤交换性镁抑制玉米幼苗的生长。镁加入量为22l mg/kg,土壤交换性镁含量达到487.9 mg/kg时,玉米植株矮小,生长已受到胁迫,加入量为515 mg/kg,土壤交换性镁含量达到755.2 mg/kg时,玉米株高显著降低了14.5%,植株叶缘焦枯,个别植株叶片出现白色条纹,表现出明显的镁中毒症状和典型缺锌症状。2)随施镁量的增加或土壤含镁量水平的提高,玉米地上部和地下部的干重分别降低了11.9%~38.3%和4.6%~23.0%,茎叶干重的降低幅度明显高于根系。3)随施镁量的增加或土壤含镁量水平的提高,玉米叶片叶绿素含量降低了9.4%~45.9%,用量达到515 mg/kg时几乎降低了一半,导致地上部叶片出现枯黄。叶片SOD、POD、CAT活性都是先升高再迅速降低,峰值分别出现在147 mg/kg、74 mg/kg和147 mg/kg,用量达到515 mg/kg时分别降低了49.75%、48.06%和32.21%;MDA含量始终呈增加趋势,增幅在20.39%~183.58%。4)施镁显著降低了玉米幼苗的锌含量和吸收量,但对茎叶和根系的抑制程度不同。与不施镁处理相比,茎叶锌含量降低了4.05%~57.09%,吸收量降低了15.41%~73.55%;根系锌含量降低了7.55%~18.99%,吸收量降低了11.62%~37.40%,不管是锌含量还是吸收量,根系的降低幅度都明显低于茎叶。这也导致锌从根系向地上部的转运显著降低,施镁147 mg/kg时锌的转运率还有46.60%,施镁515 mg/kg时只有34.55%,仅达到不施镁水平的62%。5)随着施镁量的增加或土壤含镁量水平的提高,土壤有效锌含量也显著降低,降幅在11.4%~46.6%,特别是施镁515 mg/kg,土壤交换性镁含量达到755.2 mg/kg时,土壤有效锌含量已降至0.47 mg/kg,超过了土壤缺锌临界值(DTPA-Zn0.5 mg/kg)。【结论】绿洲盐化潮土上的玉米缺锌问题与土壤含镁量水平密切相关,随着施镁量的增加,玉米幼苗的生长受到抑制,株高、干重、叶片中的叶绿素含量和SOD、POD、CAT活性都显著降低,MDA含量显著增加。施镁抑制了玉米幼苗对锌的吸收,对茎叶的抑制程度明显高于根系,导致锌从根系向地上部的转运率显著降低。施镁降低了土壤有效锌含量,用量达到515 mg/kg时,土壤有效锌含量已低于缺锌临界值。  相似文献   

6.
Iron (Fe) distribution in plant of a high Fe concentration genotype IR68144 and a low one IR64 was compared. In experiment I, Fe supply was stopped at the fourth leaf stage for 30 d, and the results showed that 6.37 µg Fe/plant in older leaves and 5.5 µg Fe/plant in leaf sheath were retranslocated into newly growing leaves and tillers in IR68144, which was 1.9 and 3.4 times of those in IR64. In experiment II, plants were treated with three different Fe levels to anthesis and then stopping Fe supply until full mature; the results showed that total Fe uptake of both genotypes increased with Fe treated levels, but Fe concentration in brown rice did not. After stopping Fe supply, more Fe was moved out from flag leaf into newly growing organs in IR68144. Those results indicated IR68144 has a greater ability to reutilize Fe from source tissues than IR64.  相似文献   

7.
Soy is to one of the main crops in the world. However, there are aspects related to its management that should be explained, especially regarding its mineral nutrition, because a proper nutritional balance is associated with productivity levels. The objective of this study was to evaluate the accumulation of nutrients in the tissues related to the deficiency of nutrients and its effects on plant development. In addition, nutritional disorder symptoms were evaluated according to the deficiency of macronutrients. For this, seven treatments were evaluated. They comprised a complete nutrient solution followed by deficiency of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) in a completely randomized design with three replications. Plant height, number of leaves, leaf area, stem diameter, relative chlorophyll content, and production of dry matter of soybean plants were evaluated. The deficiency of any macronutrient affects biometric variables, especially the production of dry matter. The nutrients that limited the most the production of dry matter were Ca>N>K>Mg>P > S. With the exception of S, all other macronutrients, when suppressed, caused nutritional disorder symptoms. The plants presented an accumulation of K > N>Ca>P>Mg>S in leaves. In the present study, soybean plants had a high nutritional requirement of K followed by N. This requires care in the development of fertilization programs in view of the essential roles these nutrients play in the life cycle of plants.

Abbreviations: N_Nitrogen; P_Phosphorus; K_Potassium; Ca_Calcium; Mg_Magnseium; S_Sulfur; DM_Dry matter; NL_number of leaves; H_plant height; SD_stem diameter; RCI_Relative chlorophyll index; AP_Aerial part; R_Roots; EP_Entire plant; DMS_significant mean difference; CV_Coefficient of variation; pH_hydrogen potential; NaOH_sodium hydroxide; HCl_hydrochloric acid.  相似文献   


8.
Strawberry plants, cv. Cambridge Favourite were grown at osmotic potentials of ‐0.2 and ‐0.8 bars in nutrient solutions with magnesium : calcium ratios ranging from 0.3 to 5.6: 1. When the OP was ‐0.8 bars, all plants showed leaf tipburn, guttated little, yielded small volumes of exudate overnight from cut stolons and had small calcium concentrations and contents in their emergent leaves, regardless of the Mg: Ca ratio of the nutrient. No symptoms were seen in plants grown at an OP of ‐0.2 bars, although the calcium concentration in the emergent leaves was smaller when the Mg: Ca ratio of the nutrient exceeded 0.8: 1. The overall salt concentration, which reduced the water potential gradient through the root and prevented development of root pressure at night, was more important than the magnesium to calcium balance of the nutrient solution in causing a local calcium deficiency in emergent leaves of the strawberry plant.  相似文献   

9.
《Journal of plant nutrition》2013,36(8):1381-1393
Abstract

Root and leaf ferric chelate reductase (FCR) activity in Annona glabra L. (pond apple), native to subtropical wetland habitats and Annona muricata L. (soursop), native to nonwetland tropical habitats, was determined under iron (Fe)-sufficient and Fe-deficient conditions. One-year-old seedlings of each species were grown with 2, 22.5, or 45 µM Fe in a nutrient solution. The degree of tolerance of Fe deficiency was evaluated by determining root and leaf FCR activity, leaf chlorophyll index, Fe concentration in recently mature leaves, and plant growth. Root FCR activity was generally lower in soursop than in pond apple. Eighty days after plants were put in nutrient solutions, leaf FCR activity of each species was lower in plants grown with low Fe concentrations (2 µM) than in plants grown with high (22.5 or 45 µM) Fe concentrations in the nutrient solution. Leaves of pond apple grown without Fe became chlorotic within 6 weeks. The Fe level in the nutrient solution had no effect on fresh and dry weights of soursop. Lack of Fe decreased the leaf chlorophyll index and Fe concentration in recently matured leaves less in soursop than in pond apple. The rapid development of leaf chlorosis in low Fe conditions and low root and leaf FCR activities of pond apple are probably related to its native origin in wetland areas, where there is sufficient soluble Fe for adequate plant growth and development. The higher leaf FCR activity and slower growth rate of soursop compared to pond apple may explain why soursop did not exhibit leaf chlorosis even under low Fe conditions.  相似文献   

10.
Effects of Magnesium Deficiency on Carbohydrates in Phaseolus vulgaris   总被引:1,自引:0,他引:1  
Phaseolus vulgaris ‘Saxa’ was cultivated in quartz sand under natural light conditions in an open-top-chamber and supplied with either complete (1.3 mM Mg) or magnesium-free nutrient solution. 57 days old plants showed interveinal chloroses of older leaves, decreased magnesium and increased potassium tissue concentrations in leaves and pods. Plants with magnesium supply exhibited typical diurnal changes of hexoses, sucrose and starch in trifoliate leaves. Magnesium deficiency caused retarded sucrose formation and pronounced starch accumulation in trifoliate leaves throughout the day. Soluble sugars and starch were decreased in pods of plants without Mg-supply. The results are discussed with regard to diurnal changes of carbohydrate metabolism.  相似文献   

11.
12.
Abstract

Humic acids have many benefits for plant growth and development, and these effects may be maximized if these materials are combined with micronutrient applications. In the present study, pot experiments were conducted to evaluate the effects of zinc (Zn) humate and ZnSO4 on growth of wheat and soybean in a severely Zn‐deficient calcareous soil (DTPA‐Zn: 0.10 mg kg?1 soil). Plants were grown for 24 (wheat) and 28 days (soybean) with 0 or 5 mg kg?1 of Zn as either ZnSO4 or Zn humate. Zinc humate used in the experiments was obtained from Humintech GmbH, Germany, and contained 5% of Zn. When Zn was not supplied, plants rapidly developed visible symptoms of Zn deficiency (e.g., chlorosis and brown patches on young leaves in soybean and necrotic patches on middle‐aged leaves in wheat). Adding Zn humate eliminated Zn‐deficiency symptoms and enhanced dry matter production by 50% in soybean and 120% in wheat. Zinc‐humate and ZnSO4 were similarly effective in increasing dry matter production in wheat; but Zn humate increased soybean dry matter more than ZnSO4. When Zn was not supplied, Zn concentrations were 6 mg kg?1 for wheat and 8 mg kg?1 for soybean. Application of Zn humate and ZnSO4 increased shoot Zn concentration of plants to 36 and 34 mg kg?1 in wheat and to 13 and 18 mg kg?1 in soybean, respectively. The results indicate that soybean and wheat plants can efficiently utilize Zn chelated to humic acid in calcareous soils, and this utilization is comparable to the utilization of Zn from ZnSO4. Under Zn‐deficient soil conditions, plant growth and yield can be maximized by the combined positive effects of Zn and humic acids.  相似文献   

13.
Little is known about the effect of varying levels of potassium (K) on the mineral element concentration, growth, and gas exchange, characteristics of woody ornamental plants. The commercially important woody ornamental species Hibiscus rosa‐sinensis L. cv. Leprechaun was evaluated for K response in a series of three experiments with full strength Hoagland's nutrient solution, which supplied 0 to 10 mM K. Plants grown with 4 mM K in nutrient solution (2.4% leaf tissue K) had the greatest shoot growth and root extension. Gas exchange rates (net photosynthesis, transpiration, and stomatal conductance) were also highest at 4 mM K compared to the control (0 mM K /0.6% leaf tissue K), 0.2, 2.0 and 10 mM K treatments. The application of 4 mM K increased net photosynthesis and tranpiration by 2.1 fold and stomatal conductance by 4.5 fold over 0 mM K controls. Increasing K in nutrient solution correlated positively with tissue K, manganese (Mn), and zinc (Zn), but negatively with nitrogen (N), phosphorus (P), calcium (Ca), and magnesium (Mg). There was a stronger sink for K in yonger leaves (the first to fourth fully expanded leaf from the shoot apex) which had higher K concentration than older leaves (the eighth to twelfth fully expanded leaf from the shoot apex). However, with increasing K in nutrient solution, K concentration in leaf tissue increased regardless of leaf age, and the difference between the younger and older leaf was constant. Daily application of 10 mM K resulted in 6.9% leaf tissue K and caused a decrease in plant total dry matter, net photosynthesis, compared to 4 mM K treated plants. However, these parameters remained higher in 10 mM K plants, which retained high ornamental quality than in 0 mM controls. Plants fertilized with 10 mM K, had the highest leaf tissue K and Zn, but lowest P, Ca, Mg, iron (Fe), copper (Cu) and boron (B). Nevertheless, the 10 mM K treated plants exhibited no morphological differences or deficiency symptoms; rather those plants had similar vegetative vigor and flower bud formation rate as those at 4 mM K.  相似文献   

14.
Black gram (Vigna mungo L.) var. Shyam plants were raised in refined sand at four levels of molybdenum (Mo), i.e., low (0.002 µM) to excess (2 µM) for 70 days. The molybdenum deficiency symptoms appeared as interveinal chlorosis of young and middle leaves. Compared to control (0.2 µM Mo), total dry matter, seed yield and seed protein decreased at low and excess Mo. The concentration of Mo in leaves and seed as well as activity of nitrate reductase increased with an increase in Mo supply. Low and excess Mo deteriorated the quality of seeds by lowering the content of starch, sugars, protein, and nitrogen and increasing electrical conductivity of seed leachate. Molybdenum deficiency and excess both resulted in production of lightweight immature seeds, poor in vigor and germination potential. The values of sufficiency and threshold of toxicity in leaves were 0.078 and 2.15 µg Mo g?1 dry matter of black gram.  相似文献   

15.
《Journal of plant nutrition》2013,36(8):1581-1593
Abstract

In order to improve determinations of nutrient critical levels using growth response curves, a detailed study of magnesium (Mg) deficiency on pepper (Capsicum annuum L.) biomass allocation was performed. For each growth parameter, data were fitted using the modified Mitscherlich's model and Mg‐critical level was calculated. Under Mg‐deficiency, pepper plants showed a decrease in their relative growth rate (RGR), total dry weight (DW), stem and root mass fractions (SMF and RMF), total leaf area, specific leaf area (SLA), and unit leaf rate (ULR), whereas leaf mass fraction (LMF) and shoot to root ratio increased. Growth response coefficient (GRC) analysis indicated that the decrease in RGR was mainly due to a decrease in ULR. When the interval time between two harvests was ≥10 days, determination of Mg‐critical level (x c ) using the modified Mitscherlich's model showed that the best growth parameter for early detection of Mg‐deficiency in pepper plants was total DW (x c  ≈ 0.21%), whereas other parameters underestimated Mg‐critical level.  相似文献   

16.
Assays based on acid phosphatase activity in plant tissue show promise for rapid diagnosis of phosphorus deficiency. This study was undertaken to evaluate a simple leaf disc assay for the detection of the phosphorus deficiency in maize leaves. Leaf discs were excised from 36 to 48 day old greenhouse‐grown maize plants which had been supplied with phosphate in solution culture at levels of 5, 25 or 75 yM and which had total P concentrations in the leaves ranging from 26 to 309 mmol kg‐1 dry wt. For acid phosphatase activity determinations, discs were incubated 15 min. at 30°C with 5 mM paranitrophenol phosphate in a pH 5.8 acetate buffer. In plants which showed visual symptoms of P‐deficiency, acid phosphatase activity was 2 to 3 times as great as in P‐suf‐ficient plants. Results were inconsistent in plants which were only moderately P‐deficient. This study indicates that the leaf disc acid phosphatase assay should be useful in confirming visual diagnosis of acute phosphorus deficiency in maize, but may not be adequately sensitive to detect moderate P deficiency.  相似文献   

17.
Abstract

To clarify the mechanism of Magnesium (Mg) in alleviating cadmium (Cd) phytotoxicity, Japanese mustard spinach (Brassica rapa L. var. pervirdis) was grown for 10 days after treatment in hydroponics in a growth chamber under natural light. The treatments were: (1) nutrient solution alone (Control), (2) 10 mmol L?1 Mg (High-Mg), (3) 2.5 µmol L?1 Cd (Cd-toxic), (4) 2.5 µmol L?1 Cd plus 10 mmol L?1 Mg (Mg-alleviated). The Cd-toxic treatment showed substantial growth retardation and chlorosis of young leaves, such symptoms were not observed in Mg-alleviated plants. Magnesium-alleviated plants showed higher shoot growth, more than twofold, and decreased shoot Cd concentration, approximately 40%, compared with Cd-toxic plants. This increase in shoot growth and simultaneous decrease in shoot Cd concentration may explain the alleviation of Cd toxicity with Mg in Japanese mustard spinach. In Cd-toxic plants, concentrations of K in shoots and Zn in both shoots and roots increased compared with the other three treatments. Concentrations and accumulations of Fe and Mn in shoots decreased significantly in the Cd-treated (Cd-toxic and Mg-alleviated) plants compared with the control and High-Mg plants. Thus, the application of high amounts of Mg in the nutrient solution can alleviate Cd toxicity in plants.  相似文献   

18.
In southern Jiangxi province of China, ‘Newhall’(Citrus sinensis Osbeck) navel orange presented a conspicuous symptom of boron (B) deficiency in mature leaves, whereas B deficiency symptoms were not manifested on ‘Skagg's Bonanza’(C. sinensis Osbeck) navel orange. In this study, changes in concentrations of B, calcium (Ca), potassium (K), magnesium (Mg), manganese (Mn), and zinc (Zn) were comparatively investigated in the structural parts of the fruit (rind and pulp) and leaves (old leaves from last season and spring-flush leaves from current year) of ‘Newhall’ and ‘Skagg's Bonanza’ navel orange during the growing season. Two peaks of B concentrations were observed in the rind of the two cultivars during fruitlet growth and fruit enlargement, respectively. Boron concentrations were relatively high in the rind during fruitlet growth, and then decreased in both rind and pulp, whereas, during middle and late fruit enlargement significant increases were found for B in both rind and pulp of the two cultivars. Boron concentrations in old leaves of ‘Newhall’ decreased progressively and remained relatively low, whereas that of ‘Skagg's Bonanza’ was relatively high and changed slightly as the season progresses. Both Ca and K concentrations were above the critical threshold values, while their dynamics were reverse to that of B in fruit and leaves during certain times. Old leaf Mg concentrations of samples at 140 days after full bloom from the two cultivars and spring-flush leaves from ‘Newhall’ were below the threshold limit for sufficiency. In addition, Mg in old leaves was much lower from ‘Newhall’ than from ‘Skagg's Bonanza’. Spring-flush leaf concentrations of Mn and Zn and Mn concentrations in old leaves from ‘Newhall’ were relatively lacking during middle and late season, which accelerated the occurrence of B deficiency symptoms on mature leaves of ‘Newhall.’  相似文献   

19.
Abstract

This study had the objective of assessing growth, deficiency symptoms and leaf anatomy of crambe plants submitted to macronutrient availability. The experimental design was the complete randomized with four replications. The first treatment consisted of cultivating crambe plants in a nutrient solution completed with N, P, K, Ca, Mg, and S. Using the diagnosis by subtraction, the other treatments consisted of the same solution with individual omission of each nutrient, totaling seven treatments. Supplement of different solutions took place two weeks after emergence. One week forward, visual symptoms of deficiency started to be evaluated. By the end of the experiment, the number of leaves, number of branches, shoot dry matter and leaf anatomic parameters were evaluated. Nutrient deficiency limited shoot dry matter in the following order: N?>?Ca?>?P>Mg?>?S?>?K. Subtracting Ca from the solution was most limiting to crambe growth once plants did not even reach reproductive stages. Individual subtractions of each macronutrient anatomically altered crambe leaves, especially omitting Ca, K, and S, which reduced tissue thickness.  相似文献   

20.
Mineral element deficiencies and toxicities are common problems associated with sorghum [Sorghum bicolor (L.) Moench] production on acid soils. To better understand some of the mineral element problems and the analysis of plant tissue of sorghum plants grown on acid soils, four sorghum genotypes were grown on an acid Oxisol at Carimagua, Colombia limed with dolomite at 2 and 6 Mg ha‐1.

Samples for mineral element analyses were obtained from leaves at different positions on the four genotypes. Concentrations of P and Mg were highest in the flag leaf (Leaf No. 1) and decreased as the position on the plant declined from the top of the plant for plants grown at 2 Mg lime ha‐1. Similar decreases in P, Mg, K, and Zn concentrations occurred in plants grown with 6 Mg lime ha‐1. Concentrations of Ca, S, Si, Mn, Fe, Cu, and Al increased as leaf position declined from the flag leaf for plants grown at 2 and 6 Mg lime ha‐1. The higher lime supply enhanced Ca and reduced Mn and Fe concentrations in leaves. Differences in mineral element concentrations for the four genotypes used were fairly extensive. The elements to show the greatest range among genotypes were Al and Si and the elements to show the least range among genotypes were P, K, and S. Care should be used in collecting leaf samples for plant analysis and genotypic differences for accumulation of mineral elements should be considered in interpretation of results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号