首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
激光雷达(Light Detection And Ranging,LiDAR)在森林空间结构测量方面具有无可比拟的优势,但单独利用地基或无人机LiDAR难以完整描述森林垂直结构。为此,该研究提出了地基和无人机LiDAR点云相结合的单木参数提取方法,采用相对最短路径算法(Comparative Shortest-Path algorithm,CSP)和点云区域生长算法分别从地基和无人机LiDAR点云中识别单木,根据地基和无人机LiDAR的单木位置与地面实测单木位置进行点云粗匹配,然后采用迭代最近点(Iterative Closest Point,ICP)进行点云精匹配,采用最高值和基于密度的噪声应用空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)提取单木树高和胸径,并通过地面实测样地数据对地基、无人机和融合点云的单木参数提取精度进行评价。结果表明:基于地基和融合点云的单木检出率一致,简单、中等、复杂样地的单木检出率分别为98%、94%、91%,基于无人机点云的单木检出率较低;基于地基与融合点云的胸径提取精度基本一致,三种样地胸径提取值的决定系数R2均在0.96以上,均方根误差(Root Mean Square Error,RMSE)在1.2~1.6 cm之间;基于融合点云的树高提取精度最优,简单、中等、复杂样地树高提取值的R2分别为0.98、0.94和0.73,RMSE在1.38~4.19 m之间;融合点云对中等样地树高提取精度提升较大,融合后RMSE相较地基点云降低了0.34 m,R2提高了3%,对简单、复杂样地提升较小;所研究的单木中,杉木的胸径和树高提取精度最高,R2最高分别为0.99、0.89,RMSE最低分别为1.35 cm、1.96 m。地基和无人机LiDAR融合点云可以更精细地测量森林空间结构,更好地满足森林资源调查业务应用。  相似文献   

2.
无人机倾斜航空摄影监测崩岗侵蚀量变化的方法   总被引:2,自引:1,他引:1  
如何高效精确地监测崩岗的动态发育过程并且量化侵蚀量是崩岗侵蚀机理研究中的难点。该文以准专业级无人机对目标崩岗进行倾斜摄影获得的全方位多角度航空影像为基础,通过空三加密处理生成目标崩岗的三维点云模型;利用点云数据构建DTM,提取目标崩岗地形数据;运用多时相连续DEM相减的方法获取监测周期内崩岗的高程变化,计算侵蚀量并找到侵蚀严重的部位,再使用2.5D体积测算方法细化侵蚀严重的崩壁和沟头部位的侵蚀量,以此作为补充,最终获得监测期内的总侵蚀/沉积量体积并换算为泥沙量。最终结果验证的平均相对误差为9.69%,一个月监测周期内最大的绝对误差仅为0.303 3 m3,满足监测要求。因此利用无人机倾斜航空摄影测量的方法监测崩岗侵蚀量是可行有效的,该方法可提取崩岗的所有地形信息,研究侵蚀泥沙的来源和侵蚀过程,是较为快速和精确的崩岗监测手段。  相似文献   

3.
利用轻小型飞机遥感数据建立人工林特征参数模型   总被引:3,自引:1,他引:2  
目前获取森林特征参数的主要方法是外业测量,工作量大、效率低。该文以中国自主研发的轻小型航空遥感系统为数据获取工具,以油松人工林为研究对象,通过对获取森林的激光雷达(light detection and ranging,LIDAR)点云数据去噪,分类,提取等过程获得单木的树高数据,对获取的航空影像数据进行预处理,匹配,拼接,分割及冠幅提取获得单木的冠幅数据,再与外业抽样调查的单木的树高、胸径建立回归模型,同时验证模型精度。试验结果表明:通过LIDAR点云数据提取的树高与实测的树高具有极显著的相关性,所建立的模型预测精度达97.5%,通过影像提取的冠幅与实测的胸径也具有极显著的相关性,预测精度达91.6%,基本上能够满足林业生产的要求。  相似文献   

4.
基于无人机平台的柑橘树冠信息提取   总被引:2,自引:1,他引:1       下载免费PDF全文
为了快速获取柑橘树冠信息,提升柑橘园精准管理,该研究基于无人机平台获取了柑橘数码和多光谱影像,分析了无人机影像反演柑橘树冠信息的效果。首先利用无人机数码影像及分水岭算法进行柑橘单木分割,然后构建柑橘树冠层高度模型,提取柑橘株数、株高、冠幅投影面积等结构参数信息,进而利用无人机多光谱影像获取柑橘的8种常用植被指数,采用全子集分析法筛选柑橘冠层氮素含量的敏感植被指数,构建基于多元线性回归的冠层氮素遥感反演模型,进行以冠幅为基本单元的柑橘树冠层氮素含量遥感制图。研究结果表明:柑橘的单木识别准确率在93%以上,召回率在95%以上,平均F值为96.52%;柑橘树的反演株高与实测株高具有较强的相关性,决定系数R2为0.87,均方根误差为31.9cm;单株冠幅投影面积与人工绘制的冠幅面积的决定系数,除果园A在12月的结果较低(R2为0.78)外,其余均在0.94及以上;采用全子集分析法筛选的柑橘冠层氮素敏感植被指数为归一化植被指数(NDVI)、绿色归一化植被指数和冠层结构不敏感指数,所建立的多元回归模型的决定系数R2达0.82,均方根误差为0.22%,相对误差为6.59%。综上,无人机影像在柑橘树冠参数信息提取方面具有较好的应用效果,能够快速有效地提取柑橘树冠参数信息。该研究可为使用无人机平台进行果园精准管理提供技术支撑。  相似文献   

5.
基于数字高程模型的树木三维体积测量   总被引:6,自引:2,他引:4  
为了实现对树木高精度无损的三维体积测量,该文以三维激光扫描系统采集树木点云数据为依据,并运用数字化测绘成图软件对树木的点云数据建立数字高程模型,通过立体三角网的建立,利用成图软件的土方计算功能计算出树木的体积,并详细介绍了系统的计算原理。本文以试验区选定的20棵树为研究对象,采用该系统对20棵不同高度和体积的油松进行了10次重复试验,并将测量结果与人工测量结果进行了对比分析,试验结果表明与人工测量结果相一致,(标准误差δx=3.54,绝对误差限△=7.002,相对误差限E/%=3.15%,精度可达96.852%,)能够运用于树木体积的测量。  相似文献   

6.
激光雷达是目前发展迅速的一种主动遥感技术,其发射的激光脉冲能穿透树林冠层,实现森林三维结构特征的获取。为验证机载激光扫描器提取森林单木参数的可行性,该研究以海南省博鳌机场周边人工林为研究对象,使用机载激光扫描器Mapper5000(中国)获取的点云数据,探索对人工经济林单木参数估测的可行性。根据研究区的地形和林木结构特征,分别对槟榔和橡胶2个树种进行单木参数提取,使用K-means分层聚类对不同样地的林木进行单木分割,提取样地内单木树高、冠幅、胸径、材积和地上生物量。结果表明,2个树种的单木分割正检率均在85%以上,总体平均正检率在90%以上;单木树高、冠幅、胸径、材积、地上生物量估测结果的决定系数均达到0.8以上,与同类的研究相比,估测精度较高,说明该点云数据对提高森林参数估测精度有积极作用,机载激光雷达技术在森林资源精细调查中有较大的应用潜力,同时也可应用于相关果树生长情况监测,为数字果园的发展提供技术支撑。  相似文献   

7.
基于无人机图像分析的树木胸径预测   总被引:5,自引:1,他引:4  
树木胸径是林木资产评估中的重要参数,该文利用图像分析技术预测树木胸径可为资产评估提供参考。以银杏和法国梧桐为试验树种,通过拟合无人机正射图像中的单株树木树冠面积与胸径的关系预测树木胸径值。首先利用二型模糊聚类方法对无人机采集的纯林样地正射图像中的单株树冠进行分割,获取树冠像素面积,然后利用地面参照物计算出树冠的实际面积,并与测量的胸径值进行拟合,得出树冠面积与胸径的函数关系,林区中其他树木胸径值可基于该函数关系和其树冠面积计算得出。试验结果显示无人机正射图像中的银杏及法桐树冠面积与胸径均呈对数关系,且该文计算所得的银杏1.2 m处的胸径与实际胸径之间的平均误差约为0.31 cm,法桐1 m处的胸径与实际胸径之间的平均误差为0.27 cm,均在行业允许的1 cm误差范围内,该文提出的基于无人机正射图像分析技术预测树木胸径较为准确,可为中小尺度林地资产评估提供参考。  相似文献   

8.
基于三维点云数据的苹果树冠层几何参数获取   总被引:11,自引:9,他引:2  
针对果园环境下苹果树冠层参数获取精度较低的问题,提出了基于地面三维激光扫描仪高精度获取苹果树冠层参数的方法.选用Trimble TX8地面三维激光扫描仪作为苹果树冠层三维点云数据采集设备,提出了基于标靶球的KD-trees-ICP算法,用于高精度配准苹果树冠层三维点云数据.研究了平均风速小于4.5 m/s时,距离地面三维激光扫描仪不同远近条件下的标靶球配准残差和拟合误差的变化规律,分析结果表明,标靶球平均配准残差为1.3mm,平均拟合误差为0.95 mm,低于大场景测量配准误差要求(5mm).为了提高有风环境下提取苹果树冠层参数的精度,研究了0.9~4.5 m/s区间平均风速影响下的苹果树冠层枝干、果实、叶片的三维点云质量,建立了风速与叶片侧面厚度的曲线拟合模型,分析结果表明,在果园平均风速小于1.6 m/s时可以从苹果树冠层三维点云数据中提取高精度冠层参数.利用地面激光三维扫描仪获取距离苹果树12 000 mm以内冠层参数,测量精度高于人工测量,相对误差小于4%,为果树高通量信息获取提供了技术支持.  相似文献   

9.
多视角深度相机的猪体三维点云重构及体尺测量   总被引:3,自引:1,他引:2  
对活体牲畜三维重构,数据采集方式、快速配准融合方法、表型体尺测量方法缺乏成熟有效的方案,导致目前活体牲畜的自动体尺测量技术难以在养殖场中推广应用。该文以猪为研究对象运用消费级深度相机KinectV2从正上方和左右两侧3个不同角度同步获取在采集通道中自由行走猪的局部点云。局部点云采用邻域曲率变化法去噪,并运用基于轮廓连贯性点云配准融合,最后采用多体尺数据精确估算技术测定包括体长、体高、胸宽、腹围等数据。该文分别对比实验室中模型猪由传输带以5种不同速率经过通道和养殖场内25头猪逐一经过通道,2种情况下采集数据进行各项体尺测算结果。其结果显示模型猪在传输带上以0、0.3、0.6、0.9和1.2 m/s等5种不同速率下测量体长、体高、胸宽、腹围值与实测值的平均相对误差分别为1.77%、1.36%、2.74%和2.17%。养殖环境下对25头猪同样4种体尺值与实测值的平均相对误差分别为2.56%,2.32%,3.89%和4.51%。试验结果发现养殖场活体猪测量最小误差可以达到实验室环境下的效果,但是最大相对误差变化较大,其原因在于养殖场中猪自由行走采集数据时行为姿态发生很大变化。  相似文献   

10.
在植物表型研究中,植物器官分割是实现无损、高通量、自动化表型测量的重要步骤。然而,现有植物器官分割方法通常需要凭借经验设置合理的阈值参数,且很少同时执行语义分割和实例分割。该研究提出了一个基于三维点云的植物多任务分割网络(a multi-task segmentation network for plant on 3D point cloud,MT-SegNet),结合多值条件随机场(multi-value conditional random field,MV-CRF)模型,同时实现茎、叶语义分割和叶实例分割。在MT-SegNet中,为解决用最大池化或平均池化方法来聚合邻域点特征可能会导致重要信息丢失的问题,该研究提出了一种基于注意力机制的多头注意力池化模块。它能自动学习到重要的邻域点特征,从而有利于提高网络的分割性能。同时,MT-SegNet分成两个不同的分支,分别用于预测点的语义类别和将这些点嵌入到高维向量,以便将这些点聚类为实例。最后,使用MV-CRF进行多任务的联合优化。在彩叶芋点云数据集上的试验结果表明,该方法的茎、叶语义分割的交并比、准确率、召回率和F1分数的平均值分别为84.54%、93.64%、91.39%、92.48%,叶实例分割的平均准确率、平均召回率、平均实例覆盖率和平均加权实例覆盖率分别为88.10%、78.44%、76.24%、76.93%,均优于PointNet、JSNet等现有的深度学习网络。该模型也适用于类似植物的点云分割类任务。这有助于为植物自动化表型测量提供必要的技术条件。  相似文献   

11.
陈杨  何勇 《农业工程学报》2019,35(22):305-313
建设农村分布式光伏电站前需要人工消耗大量时间攀爬屋顶勘测尺寸,勘测人员生命安全也缺乏有效保障。针对该问题该研究开发了一款可以快速搭载的小型无人机五相倾斜摄影相机ZTRS-M5B,相比于其他倾斜相机,ZTRS-M5B拥有更好的便携性和更低的制作成本。使用搭载ZTRS-M5B的无人机倾斜摄影系统分别对建有分布式光伏电站的农村居民住宅区和工厂区域进行三维建模,并与地面人工实测值进行比较来检验模型精度。结果表明光伏电站太阳能板的模型倾角和实际倾角高度相关,房屋建筑的模型水平尺寸平均绝对误差为0.11 m,平均相对误差为0.37%,模型垂直尺寸平均绝对误差为0.12 m,平均相对误差为1.04%,精度上满足农村分布式光伏电站建设前期勘测要求,证明该系统也能够替代其他倾斜摄影系统对中小区域范围进行快速勘测。  相似文献   

12.
基于超分辨率重建和多模态数据融合的玉米表型性状监测   总被引:1,自引:1,他引:0  
无人机遥感技术已逐渐成为获取作物表型参数的重要工具,如何在不降低测量精度的同时提高空间分辨率和测量通量受到表型研究人员的重视。该研究以玉米为研究对象,获取5个生育期无人机图像序列,结合小波变换与双三次插值对数码影像进行超分辨率重建,提取原始影像和重建影像的冠层结构、光谱等参数。基于单一参数和多模态数据构建地上生物量估算模型。结果表明:重建影像质量较高、失真较小,其峰值信噪比为21.5,结构相似性为0.81。航高60 m的重建影像地面采样距离与30 m的原始影像相近,但每分钟可多获取0.2 hm2地块的图像。多模态数据融合在一定程度上克服冠层饱和问题,相对于单一参数获得更高的生物量估测精度,拟合的决定系数为0.83,单一参数拟合的决定系数为0.095~0.750。在采用更高飞行高度条件下,结合超分辨率重建和多模态数据融合估算生物量的精度没有降低、反而略有提高,满足更高测量通量的需求,为解码基因型与表型关联的策略提供依据。  相似文献   

13.
为解决当前果园探测技术难以在恶劣的果园环境中提取果树冠层信息的问题。该研究将毫米波雷达应用于果园冠层探测,搭建了基于毫米波雷达的果园冠层探测系统,利用该系统扫描得到了果园点云,检测和估算得到每棵果树的株高、冠幅和体积参数。针对毫米波雷达在不同距离下产生点云密度不同的问题,该研究提出了一种基于可变轴的椭球模型自适应密度聚类算法,用以提高果树点云识别效果,进而使用Alpha-shape算法和随机抽样一致算法(Random Sample Consensus)对果树进行了表面重建和结构参数的提取。通过与人工测量数据比较,该研究提出的聚类算法可以有效的识别和提取单木冠层点云,代表果树识别精度的 F1 分数为 93.7%;检测到的果树的株高和冠幅的平均相对误差分别为8.7%和8.1%,决定系数分别为0.84和0.92,均方根误差分别为16.39和7.82 cm;使用Alpha-shape算法计算得到平均果树体积为5.6 m3,相比传统几何法测量体积,体积计算准确度提高了59.4%。该研究表明毫米波雷达可以用于果园冠层信息的准确提取,为采集果园冠层信息提供了技术,对农业信息采集和自动化作业技术的发展具有重要意义。  相似文献   

14.
利用无人机倾斜影像与GCP构建高精度侵蚀沟地形模型   总被引:3,自引:0,他引:3  
为了提高侵蚀沟立体建模与监测的精度,该文采用消费级无人机作为低空遥感平台,以黄土高原一典型切沟为研究对象,通过无人机采集的倾斜影像与部署的地面控制点,采用多视立体运动恢复结构方法(structure from motion with multi-view stereo,Sf M-MVS)构建了高精度侵蚀沟表面模型,对其建模精度与数字高程模型、正射影像等成果进行分析,并与传统正射航图建模成果进行了比较。结果表明:构建的侵蚀沟稠密点云模型的水平均方根误差约为0.096 m,高程均方根误差约为0.018 m,满足1:500比例尺数字线划图与正射影像图的要求。与正射航图建模成果相比,高程误差减小了50%;侵蚀沟稠密点云的整体密度与地面激光雷达相当,且避免了后者多站拼接造成的密度不均问题。除了沟头部分的小块内凹区域,沟壁、沟头部分没有明显的空洞,植被覆盖的区域也能够正常建模。而正射航图的建模成果中在沟头内凹部分以及植被覆盖部分存在大块的空洞;由侵蚀沟的数字高程模型与等高线图可见,构建的侵蚀沟模型能够准确地反映切沟的形态特征。总体而言,该方法在侵蚀沟的高精度建模与监测方面具有显著优势,具有推广应用的潜力。  相似文献   

15.
农田信息快速采集是精准农业的基础。为快速、高效、准确、节能获取农田信息,该文搭建了多旋翼无人机平台,设计了以STM32F407为主控制器的多旋翼飞行控制系统。采用了比例积分微分(proportion,integration,differentiation,PID)双闭环控制策略,外环为角度反馈,内环为角速度反馈。通过工程凑试法得到合适的PID控制参数。运用专家控制策略改进上述控制方法,使控制参数适应无人机姿态变化。对所设计的无人机控制系统进行抗干扰和阶跃响应试验。系统在受到30?横滚与俯仰角干扰后,其对应恢复平衡时间均在3.4 s内,航向角30?干扰后恢复时间在4 s内。系统横滚与俯仰角阶跃响应调节时间在1~2 s内,航向角在3.4 s内。试验结果表明:双闭环PID控制策略实现多旋翼无人机姿态稳定控制,专家控制策略增强无人机的抗干扰能力。在室外农田环境中,无人机能根据指令在1~2 s内快速调整姿态。当姿态受风影响发生倾斜时,陀螺仪测量角速度大于3(?)/s,采用的控制策略能迅速调整电机转速,保持无人机姿态稳定平衡。试验证明该控制系统稳定可控且具有较强抗干扰性,满足多旋翼无人机低空采集农田信息的要求。  相似文献   

16.
针对传统立体视觉三维重建技术难以准确表征果树多尺度复杂表型细节的问题,该研究提出了一种基于相机位姿恢复技术与神经辐射场理论的果树三维重建方法,设计了一套适用于标准果园环境的果树图像采集设备和采集方案。首先,环绕拍摄果树全景视频并以抽帧的方式获取果树多视角图像;其次,使用运动结构恢复算法进行稀疏重建以计算果树图像位姿;然后,训练果树神经辐射场,将附有位姿的多视角果树图像进行光线投射法分层采样和位置编码后输入多层感知机,通过体积渲染监督训练过程以获取收敛且能反映果树真实形态的辐射场;最后,导出具有高精度与高表型细节的果树三维实景点云模型。试验表明,该研究构建的果树点云能准确表征从植株尺度的枝干、叶冠等宏观结构到器官尺度的果实、枝杈、叶片乃至叶柄、叶斑等微观结构。果树整体精度达到厘米级,其中胸径、果径等参数达到毫米级精度,尺度一致性误差不超过5%。相较于传统的立体视觉三维重建方法,重建时间缩短39.50%,树高、冠幅、胸径和地径4个树形参数的尺度一致性误差分别降低了77.06%、83.61%、45.47%和62.23%。该方法能构建具有高精度、高表型细节的果树点云模型,为数字果树技术的应用奠定基础。  相似文献   

17.
[目的]研究基于无人机低空遥感影像的面向对象分类技术在开发建设项目水土保持监测中的应用,为水土保持监测工作的信息化能力提升提供技术支撑。[方法]利用旋翼无人机获取水土保持监测目标区域的低空遥感影像,通过倾斜摄影技术构建数字表面模型,结合ESP分割尺度评价工具获取最优分割尺度参数,采用多元特征空间指标参与最邻近分类法的监督分类,并依据位置信息的评价方法和误差矩阵对分类解译精度进行验证。[结果]本研究的水土保持监测目标区域的地物分类总体精度达到了86.10%,Kappa系数为0.841,有较好的一致性,能够满足精度需求。[结论]利用无人机低空遥感影像的面向对象分类技术实现了开发建设项目水土保持监测区域地物的快速、精确识别和分类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号