首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

2.
Water quantity and quality were monitored for 3 years in a 360-m-long wetland with riparian fences and plants in a pastoral dairy farming catchment. Concentrations of total nitrogen (TN), total phosphorus (TP) and Escherichia coli were 210–75,200 g N m−3, 12–58,200 g P m−3 and 2–20,000 most probable number (MPN)/100 ml, respectively. Average retentions (±standard error) for the wetland over 3 years were 5 ± 1%, 93 ± 13% and 65 ± 9% for TN, TP and E. coli, respectively. Retentions for nitrate–N, ammonium–N, filterable reactive P and particulate C were respectively −29 ± 5%, 32 ± 10%, −53 ± 24% and 96 ± 19%. Aerobic conditions within the wetland supported nitrification but not denitrification and it is likely that there was a high conversion rate from dissolved inputs of N and P in groundwater, to particulate N and P and refractory dissolved forms in the wetland. The wetland was notable for its capacity to promote the formation of particulate forms and retain them or to provide conditions suitable for retention (e.g. binding of phosphate to cations). Nitrogen retention was generally low because about 60% was in dissolved forms (DON and NOX–N) that were not readily trapped or removed. Specific yields for N, P and E. coli were c. 10–11 kg N ha−1 year−1, 0.2 kg P ha−1 year−1 and ≤109 MPN ha−1 year−1, respectively, and generally much less than ranges for typical dairy pasture catchments in New Zealand. Further mitigation of catchment runoff losses might be achieved if the upland wetland was coupled with a downslope wetland in which anoxic conditions would promote denitrification.  相似文献   

3.
Altered soil nutrient cycling under future climate scenarios may affect pasture production and fertilizer management. We conducted a controlled-environment study to test the hypothesis that long-term exposure of pasture to enriched carbon dioxide (CO2) would lower soil nutrient availability. Perennial ryegrass was grown for 9 weeks under ambient and enriched (ambient + 120 ppm) CO2 concentrations in soil collected from an 11.5-year free air CO2 enrichment experiment in a grazed pasture in New Zealand. Nitrogen (N) and phosphorus (P) fertilizers were applied in a full factorial design at rates of 0, 12.5, 25 or 50 kg N ha−1 and 0, 17.5 or 35 kg P ha−1. Compared to ambient CO2, under enriched CO2 without P fertilizer, total plant biomass did not respond to N fertilizer, and tissue N/P ratio was increased indicating that P was co-limiting. This limitation was alleviated with the lowest rate of P fertilizer (17.5 kg P ha−1). Plant biomass in both CO2 treatments increased with increasing N fertilizer when sufficient P was available. Greater inputs of P fertilizer may be required to prevent yield suppression under enriched CO2 and to stimulate any response to N.  相似文献   

4.
Nitrate has been found to accumulate more rapidly in soils fertilized with urea than with inorganic sources of NH4 +, despite the fact that nitrification must be preceded by hydrolytic decomposition. For acidic conditions, this finding has been attributed to limited uptake of NH4 + by ammonium-oxidizing bacteria (also reported herein), suggesting an advantage for direct utilization of a nonionizable N substrate such as urea. If the same advantage applies to urea-C, nitrification of urea-N would also be promoted in neutral or alkaline soils, as reported in numerous studies. To ascertain whether urea-C can be utilized directly by nitrifying organisms, NO2 production was measured for Nitrosomonas europaea and Nitrosospira sp. NPAV in minimal media with urea as the sole source of either C or C and N. Nitrite accumulated only with the latter organism, in which case nearly quantitative recovery was observed for N added as NH4 + and/or urea. In a subsequent study, recovery of 14C and 15N in gaseous, extractable, and hydrolyzable forms was determined after incubation with labeled urea for up to 29 days, by using two soils that differed markedly in physiochemical properties affecting nutrient availability. Results obtained in correlating 14C incorporation in the amino acid fraction with 15N accumulation as NO3 were consistent with the stoichiometry that would be expected if C fixation were driven by autotrophic nitrification. Our findings demonstrate unequivocally that urea is utilized as a source of C and N by nitrifying microorganisms, which may account for rapid nitrification of urea-N in soils.
G. K. SimsEmail: Phone: +1-217-3336099Fax: +1-217-3335251
  相似文献   

5.
The abandonment of cultivated wetland soil increased the contents of light fraction organic matter (LFOM), heavy fraction organic matter (HFOM) and soil organic matter (SOM). The LFOM and HFOM content increased to 13.3 g kg−1 and 62.4 g kg−1 after 5 years whereas they were 8.4 and 47.9 g kg−1 after 9 years of cropping, respectively. Fourteen years after abandonment, HFOM content increased to 104.3 g kg−1. LFOM was positively correlated with HFOM (p < 0.001). A Langmuir equation was used to calculate the highest HFOM value. The value for the natural wetland soil was closed to this theoretical value (140.8 g kg−1). After 14 years of abandonment, the HFOM maximum (HFOMMax) value was lower than the equilibrium value suggesting that a further increase in HFOM can occur after abandonment. Assuming a linear accumulation (3.87 Mg C ha−1yr−1), it would take approximately 24 years after the abandonment to reach the HFOMMax value.  相似文献   

6.
Secondary salinity effects on soil microbial biomass   总被引:2,自引:0,他引:2  
Secondary soil salinilization is a big problem in irrigated agriculture. We have studied the effects of irrigation-induced salinity on microbial biomass of soil under traditional cotton (Gossypium hirsutum L.) monoculture in Sayhunobod district of the Syr-Darya province of northwest Uzbekistan. Composite samples were randomly collected at 0–30 cm depth from weakly saline (2.3 ± 0.3 dS m−1), moderately saline (5.6 ± 0.6 dS m−1), and strongly saline (7.1 ± 0.6 dS m−1) replicated fields, 2-mm sieved, and analyzed for pH, electrical conductivity, total C, organic C (COrg), and extractable C, total N and P, and exchangeable ions (Ca2+, Mg2+, K+, Na+, Cl, and CO32−), microbial biomass (Cmic). The Na+ and Cl concentrations were 36-80% higher in strongly saline compared to weakly saline soil. The COrg concentration was decreased by 10% and CExt by 40% by increasing soil salinity, whereas decrease in Cmic ranged from 18-42% and the percentage of COrg present as Cmic from 8% to 26%. We conclude that irrigation-induced secondary salinity significantly affects soil chemical properties and the size of soil microflora.  相似文献   

7.
The effect of reduced tillage (RT) on nitrous oxide (N2O) emissions of soils from fields with root crops under a temperate climate was studied. Three silt loam fields under RT agriculture were compared with their respective conventional tillage (CT) field with comparable crop rotation and manure application. Undisturbed soil samples taken in September 2005 and February 2006 were incubated under laboratory conditions for 10 days. The N2O emission of soils taken in September 2005 varied from 50 to 1,095 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in September 2005 were statistically (P < 0.05) higher or comparable than the N2O emissions from their respective CT soil. The N2O emission of soils taken in February 2006 varied from 0 to 233 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in February 2006 tended to be higher than the N2O emissions from their respective CT soil. A positive and significant Pearson correlation of the N2O–N emissions with nitrate nitrogen (NO3 –N) content in the soil was found (P < 0.01). Leaving the straw on the field, a typical feature of RT, decreased NO3 –N content of the soil and reduced N2O emissions from RT soils.  相似文献   

8.
Total gaseous mercury (TGM) fluxes from the forest floor and a boreal wetland were measured by a flux chamber technique coupled with an automatic mercury vapour analyser. The fluxes were measured at three sampling sites in southern Finland, 61°14′ N, 25°04′ E in summer 2007, with additionally in situ TGM concentrations in the air at one of the sites and mercury bulk deposition at another. Most of the flux data were collected during the daytime. At one of the sites, diurnal flux behaviour was studied, and a clear cycle with an afternoon maximum and a night minimum was observed. The highest emissions (up to 3.5 ng m−2 h−1) were observed at the forest floor site having a moss and grass cover. At the wetland and litter-rich forest floor sites, the emissions were below 1 ng m−2 h−1 and sometimes negative (down to −1.0 ng m−2 h−1), indicating mercury uptake. The measured average fluxes in August were 0.9 ± 1.1 and 0.2 ± 0.3 ng m−2 h−1 for the forest floor sites and wetland sites, respectively. The flux data were compared with the mercury bulk deposition, which proved to be of the same magnitude, but opposite in sign. At the mossy forest floor site, the extrapolated TGM emissions were 130% of the Hg deposition in August 2007. Comparison with other studies showed that the fluxes in background areas are relatively uniform, regardless of measurement site location and method used. Airborne TGM remained at the background level during the study, with an average value of 1.3 ± 0.2 ng m−3; it frequently showed a diurnal cycle pattern.  相似文献   

9.
Temporal depositional rates are important in order to understand the production and occurrence of perchlorate (ClO4) as limited information exists regarding the impact of anthropogenic production or atmospheric pollution on ClO4 deposition. Perchlorate concentrations in discrete ice core samples from the Eclipse Icefield (Yukon Territory, Canada) and Upper Fremont Glacier (Wyoming, USA) were analyzed using ion chromatography tandem mass spectrometry to evaluate temporal changes in the deposition of ClO4 in North America. The ice core samples cover a time period from 1726 to 1993 and 1970 to 2002 for the Upper Fremont Glacier (UFG) and Eclipse ice cores, respectively. The average ClO4 concentration in the Eclipse ice core for the time period from 1970 to 1973 was 0.6 ± 0.3 ng L−1, with higher values of 2.3 ± 1.7 and 2.2 ± 2.0 ng L−1 for the periods 1982–1986 and 1999–2002, respectively. All pre-1980 ice core samples from the UFG had ClO4 concentrations <0.2 ng L−1, and the post-1980 samples ranged from <0.2 ng L−1 to a maximum of 2.6 ng L−1 for the year 1992. A significant positive correlation (R = 0.75, N = 15, p < 0.001) of ClO4 with SO42− was found for the annual UFG ice core layers and of ClO4 with SO42− and NO3 in sub-annual Eclipse ice samples (R > 0.3, N = 121, p < 0.002). The estimated yearly ClO4 depositional flux for the Eclipse ice core ranged from 0.6 (1970) to 4.7 μg m−2 year−1 (1982) and the UFG from <0.1 (pre-1980) to 1.4 μg m−2 year−1 (1992). There was no consistent seasonal variation in the ClO4 depositional flux for the Eclipse ice core, in contrast to a previous study on the Arctic region. The presence of ClO4 in these ice cores might correspond to an intermittent source such as volcanic eruptions and/or any anthropogenic forcing that may directly or indirectly aid in atmospheric ClO4 formation.  相似文献   

10.
This study was conducted to investigate the effect of inorganic nitrogen (N) and root carbon (C) addition on decomposition of organic matter (OM). Soil was incubated for 200 days with nine treatments (three levels of N (no addition (N0) = 0, low N (NL) = 0.021, high N (NH) = 0.083 mg N g−1 soil) × three levels of C (no addition (C0) = 0, low C (CL) = 5, high C (CH) = 10 mg root g−1 soil)). The carbon dioxide (CO2) efflux rates, inorganic N concentration, pH, and potential activities of β-glucosidase and oxidative enzyme were measured during incubation. At the beginning and the end of incubation, the native soil organic carbon (SOC) and root-derived SOC were quantified by using a natural labeling technique based on the differences in δ 13C between C3 and C4 plants. Overall, the interaction between C and N was not significant. The decomposition of OM in the NH treatment decreased. This could be attributed to the formation of recalcitrant OM by N because the potentially mineralizable C pool was significantly lower in the NH treatment (3.1 mg C g−1) than in the N0 treatment (3.6 mg C  g−1). In root C addition treatments, the CO2 efflux rate was generally in order of CH > CL > C0 over the incubation period. Despite no differences in the total SOC concentration among C treatments, the native SOC in the CH treatment (18.29 mg C g−1) was significantly lower than that in the C0 treatment (19.16 mg C g−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号